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Abstract

In this paper, we study the orbital stability of peakons and periodic peakons
for a nonlinear quartic Camassa-Holm equation (QCHE).We first verify that the
QCHE has global peakon and periodic peakon solutions. Then by the invariants
of the equation and controlling the extrema of the solution, we prove that the
shapes of the peakons and periodic peakons are stable under small perturbations
in the energy space.

Key words: Camassa-Holm equation, peakon, patched peakon, orbital
stability

1. Introduction
The Camassa-Holm (CH) equation
Up — Upge + 3UUL = 2UpUgpy + Ulggy (1.1)

was proposed as a model for describing the unidirectional propagation of the
shallow water waves over a flat bottom [2, 3|, with u(z,?) representing the
water’s free surface in non-dimensional variables. It may also be found using the
method of recursion operators as an example of bi-Hamiltonian equation with
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an infinite number of conserved quantities by Fokas and Fuchssteiner [11]. The
CH equation has attracted much attention in the last two decades because of its
interesting properties: complete integrability [2], the presence of breaking waves
[5-7] (i.e. a wave profile remains bounded while its slope becomes unbounded in
finite time), and algebro-geometric formulations [20]. Among those properties,
remarkable is that the CH equation admits the peakons solutions in the following
form
w(x,t) = cp(z — ct) = ce” 127t (1.2)

The peakons were proved orbital stable by Constantin and Strauss in [8]. A
variational approach for proving the orbital stability of the peakons was intro-
duced by Constantin and Molient [9]. Orbital stability of multi-peakon solutions
was discussed by Dika and Molient in [10]. Liu, Liu and Qu [17] considered the
modified Camassa-Holm equation with cubic nonlinearity, which is integrable
and admits the single peakons and mult-peakons. Using energy argument and
combining the method of the orbital stability of a single peakon with mono-
tonicity of the local energy norm, they proved that the sum of N sufficiently
decoupled peakons is orbitally stable in the energy space. Moreover, the orbital
stability of the single peakons for the DP equation was proved by Lin and Liu
[15]. They developed the approach due to Constantin and Strauss [8] in a deli-
cate way. The approach in [8] was extended in [18] to prove the orbital stability
of the peakons for the Novikov equation. Liu et al. [16] investigated the orbital
stability of the peaked solitary-wave solutions for a generalization of the modi-
fied Camassa-Holm equation with both cubic and quadratic nonlinearities. Very
recently, Guo, Liu, Liu and Qu [13] studied the orbital stability of peakons for
a generalized modified Camassa-Holm (gmCH) equation. It is worth to point
out that the proof for orbital stability of peakons could be utilized to periodic
peakons as well. Orbital stability of the periodic peakons for the CH equation
was studied by Lenells in [14]. Wang and Tian [22] extended Lenell’s approach
to discuss the orbital stability of the periodic peakons for the Novikov equation.
Chen, Lenells and Liu [4] showed that the periodic peakons of the pCH equation
are orbitally stable. Liu, Qu and Zhang [19] further proved that the periodic
peakons of the modified pCH equation are orbitally stable.

In this paper, we shall discuss the stability issue of peakons and periodic
peakons for the following nonlinear quartic Camassa-Holm equation (QCHE)

1
my + <4(u2 —u2)? +u(u® - Ui)m> =0, m=1u— Uy, (1.3)

which was proposed by Anco and Recio in [1]. Eq. (1.3) has bi-Hamiltonian
structures and peakon solutions in the form of

3 3¢ —|z—c
@(x7t) = \/ 56 | t‘7 (14)

and the periodic peakon solution in the form of

3c 1
oz, t) = \3/(2cosh2 (1) + 1) cosh (3) cosh (2 —(x—ct)+[z— ct]) . (1.5)




Recently, Gao, Li and Liu [12] provide a method, called patching technic, to
truncate traveling wave solutions and patch different segments to obtain patched
bounded single-valued peakon weak solutions which satisfy jump conditions at
peakons. Here peakon (1.4) and periodic peakon solution (1.5) are also patched
peakon weak solutions of the QCHE. More recently, Qu and Fu [21] proved the
local well-posedness to the Cauchy problem (1.3) in Besov spaces, and estab-
lished a few criteria for the blow-up of solutions in Sobolev spaces, then they
derived several types of conditions on initial data which could lead to finite
time curvature blow-up. In the present work, we shall prove the stability for
both peakons (1.4) and periodic peakons (1.5). The proof is inspired by [8]
where the case of peakons of the Camassa-Holm equation is considered. The
approach taken here is similar but there are differences. It is found that the con-
servation law Ha[u] (see equation 3.1) of the nonlinear quartic Camassa-Holm
equation is much more complicated than F(u) of the CH equation (see equation
(2.1) in [8]). Therefore, the stability issue of the peaked solitons of the QCHE
is more subtle in both the periodic and non-periodic cases. Let us first state
our main results below, and then the proof is followed in the remaining sections.

Theorem 1.1. Let X =R or S, where R and S are referred to the real field and
the unit circle. For all € > 0, there is a § > 0 such that if u € C([0,T); H*(X))
is a solution to (1.3) with

[u(-,0) — @llm ) <6, (1.6)
then
u(-t) = o(- = @)y <& (1.7)

where t € (0,T) and &(t) € X is an extreme point where the function u(-,t)
attains its maximum. Therefore, the peakons (or periodic peakons) are orbitally
stable.

2. Peakons and periodic peakons

In this section, we will consider the Cauchy problem for the QCHE (1.3) on
both the line and the unit circle:

{mt+(i(u2—ui)2+u(u2—ui)m)r:O, t>0, reX=RorS, (2.1)

w(0,2) = up(x), M =1u— Uy, x€X.

Substituting the formula m = uw — u,, into equation (2.1) produces the
following integral-differential equation:

1 1
up + (u2 - 3ui) uug + (1 —02)~1 (3uui)

+ 0, (1037t (u4 + gu%i - 112u;’;> =0. (2.2)



Due to m = u — uy,, u is able to be rewritten as
u=(1-9*" m=pxmor Gxm, (2.3)
cosh(—fer[x])

2 smh( ; )
for the periodic case, and * stands for the convolution product on X,

(f * 9)a /f

This formulation allows us to define the weak solution as follows.

where p(z) = % e71°l is for the regular peakon case, while G(z) =

Definition 2.1. Given the initial data ug € W'3(X) and the function u €
L>(]0,T), WH3(X)) is said to be a weak solution to the initial-value problem
(2.1) if it satisfies the following identity:

1 1
/ /m/w e b st b px (w4 Sutd - )0y

3(p>kuu )w] dmdt+/x o(@)¥(x,0) da = 0, (2.4)

for any smooth test function (x,t) € C°([0,T] x X). If u is a weak solution
on [0,T) for every T > 0, then it is called a global weak solution.

In the following two subsections, we will prove that (1.4) and (1.5) are weak
solutions of Eq. (1.3) in the case of X = R and X =S, respectively.

2.1. Peakon solutions

In the subsection, we just verify that (1.4) is a weak solution to Eq. (2.4)
for X =R.

Theorem 2.1. For any a # 0, the peaked functions of the form

e 2
w(z,t) =a e " where ¢= 3 a®, (2.5)

is a global weak solution to (2.1) in the sense of Definition 2.1.

Proof. Apparently, for all t+ € R*, the following formulation
ug(z,t) = —sign(x — ct)u(z,t), (2.6)

is true in the sense of distribution S’'(R).
Let us define u, o(z) := u(0,z) for z € R. Then

Timn [ £) oo ().« = 0. (2.7)



As shown in (2.6), we have

ug(x,t) = ¢ sign(z — ct)u(x,t) € L®(R) for all t > 0. (2.8)

Hence, using (2.6), (2.7), (2.8), and integration by parts, we are able to arrive
at the following result

/OJFOO/R (th + iu‘l% + ;UU§¢> dxdt + /R u(@, 0)¢(z,0) dz

+o0 1
—/ / (ut + wdu, — uui) Y dxdt
0 R 3
+o0 2
= —/ / sign(z — ct)u (c - u3> Y dadt, (2.9)
0 R 3

where ¢(z,t) € C([0,+00) x R) is an arbitrary test function.
On the other hand, casting Eq. (2.3) into

/+°°/ {(1 - 927! (u + §u2ui - 1% m> Yy — 7(1 — %) Y(uu )14 dadt

+ee 3 1 1
/ / { LD * <u2u2 - uui) + p* (3uui —|—4u3ux>} ¥ dxdt,

(2.10)

yields
1 1 13
guui + dudu, = —3 sign®(z — ct)u® — 4 sign(x — ct)u* = E(u4)x,

“+o0
/ / [ (1-0%)" (u + u2u2 1121/;) Yy — %(1 — 03wy | dedt

+o00
/ / { LD * ( uu? — %uz—i—%u >} ¥ dadt. (2.11)

Furthermore, Eq. (2.6) implies 9,p(z) = —3 sign(z)e~*l for 2 € R. There-
fore, the kernel function in Eq. (2.11) can explicitly be computed and split into



the following three parts:

1/3c\"? [t
=3 <QC> /_OO sign(z — y)e 1oVl

3 1 13
X < sign®(y — ct) — — sign®(y — ct) + 12) e~ ty=etl gy,

2 12
4/3 +oo
:_< > (/ / / )s1gnas—) —|z—y|
3 13
X (2 sign®(y — ct) — E sign®(y — ct) + 12) —Hy=etl gy
=11+ Ir+Is.

Some lengthy computations lead I, I, I3 to the following results.

4/3  pct
=3¢ / 5 p=@=w) lu=ct)) gy
2\ 2 o \2
4/3 4/3
_ 503N\ e /Ct v gy - L3\ e
= Yy = e .
1\ 72 - 1\ 2

1
- _= e~ (@) o—4y—ct) } 4
(7)) G )

5
- __ G 4Ct) e 3Y d
SF) y

3¢
2

3¢
2

3
12

7N

32> ( (ct—x) 764(@%))7

4/3 400
1 /3¢ )
— (2= 2 ox—y) —4(y—ct)
w3 (5) [ Geme)w
4/3 400 4/3
— _§ E 6(z+4ct) / 675y dy _ 1 ﬁ 64(51571)'
1\ 72 . 4\ 2

Plugging (2.13)-(2.15) into (2.12) generates

(2.12)

(2.13)

(2.14)

(2.15)

3 1 13 2 (3c\"?
3xp*<2u2u2 ~ gl L Tk 4) (x,t) = 3 (;) (64(“71’) — e(Ctﬁ“’)> ,x > ct.

(2.16)



When z < ct, we split the right hand side of (2.12) into the following three
parts

1
Dup * (3u2u§ — U+ 3u4) (1)

4/3 T ct +o0
1
= (5) (L[ )
1

3 . .4 13 —4|y—ct|
X (2 sign (y Ct) 19 si1gn (y Ct) + 12) e dy
=:J1 + Jo + Js, (2.17)

where Jp, Ja, J3 can be worked out in the following formulas through some com-
putations similar to the case of x > ct:

4/3
1 /3¢ 5
__L1/3¢c 2 —(z—y) 4(y—ct)
S 2 ( 2 > /40 (2 ‘ ‘ ) w

i N 4/3
5(3c a(dc

_ 5 —(a-+4ct) 5 gy = —— [ 2= Az—ct) 2.18
4 ( 2 ) ‘ /_oo oY 4 ( 2 ) ‘ B

4/3 ct
elz—det) / eV dy

4/3
_ 5 (3 c) (e(x—ct)_e4($—0t))_ (2.19)

(3 0)4/3 /+oo <5 (x—y) —A4(y— t))
- — e\® e ¢ dy
2 ct 2
4/3 +o0 4/3
(320> e(m+4ct)/ e dy = i (320> elr=et) (2.20)
ct

and

On the other hand, we have

(2,6)"/3 (etlet=o) — elet=2)) | g > t,

SV

2
sign(z — ct)u <c — 3u3) =

(82)"° (etla=et) — ela=et)) | g < ct.

wiN



This along with (2.16) and (2.21) yields

3 9 9 1, 13 4 . 2 4 -
Ozp * (2u Uy ~ 5l + T (x,t) + sign(x — ct)u | ¢ U (z,t) =0,
(2.22)
which completes the proof of Theorem 2.1. O

2.2. Periodic peakon solutions
In this subsection, let us verify that (1.5) is a solution to Eq. (2.4) for X = S.

Theorem 2.2. For any b # 0, the peaked functions in the form of
1
u(z,t) =bcosh(¢), (= 3~ (x —ct) + [z — ct], (2.23)

is a global Weak solution to (2.1) in the sense of Definition 2.1, where b satisfies

b = (2co<h2( )+1)cosh( )

Proof. Obviously, for all t € ST,
ug(x,t) = —bsinh((), u(x,t) = acsinh(¢), (2.24)

hold in the distribution sense. Define u,.(x) := u(0,z) for x € S. Then, we
have

T [u(-,) = o)l =0, (2.25)

and

/+oo/ 1 . 1 .
<u1/)t + —ut, + uuxw) dxdt + /u(x, 0)y¥(x,0) dx
0 s 4 3 S

+oo 1
—/ / (ut + wlu, — uui) Y dxdt
0 s 3

+oo
- / / [bcsmh (¢) — b* cosh (¢) sinh (¢) — %b‘* cosh (¢) sinh® (g)} Y dadt.
0 S
(2.26)

where ¢(z,t) € C°([0,+00) x S) is an arbitrary test function. On the other
hand, employing integration by parts leads to the following formulation:

+oo 1

/ /[G*(u + uquﬁ T>1/}IG*(’LLU )w]dzdt
o 0. G L G Lo 43 dxdt
/ /{ *( uu 12 .)+ *(3uuw—|— uul>}w T

= [ [[ow= (6t com s (©) + 0% con ) sinh ) ) - .

/*W/{ ( " sinh” (¢) + 1;b4sinh4 (C))} W dadt. (2.27)



Noticing for the periodic case, we have the following three identities:

0,G(x) = _sinhQ(;r;lgg;; [x]) 7

T €S,

Ga) « (0" cosh (Q)sinl (€ + 40" cost® (€ s () ) (2.1
_QSirfi(%)/Scosh G(xy)ﬂxy])
%cosh (; —(y—ct)+y— ct]) sinh’ (; —(y—ct)+y— Ct])

+ 4 cosh® (; —(y—ct)+[y— ct]) sinh (; —(y—ct)+ [y — ct]) ]dy,

(2.28)

_ —mj);(%)/ssinh (; —(z—y)+ [x—y]> Bsinhz (; —(y—ct)+ [y—ct]>
i % sin? (; —(y—ct)+[y— ct]) ]dy. (2.29)

When x > ct, the right hand side of (2.28) can be split into the following
three parts:

Gl) * <Z1)’b4 cosh (¢) sinh® () + 4b* cosh® (¢) sinh (g)) (2, 4)
QSirll);i(é) (/00t+/;+/$1> cosh <;(xy)+[scy])
oo (5= r—et) +ly—et) ) s (5 = (=) + [y — et

+ 4 cosh® (; —(y—ct)+[y— ct]) sinh (; —(y—ct)+[y— ct}> ]dy

b4
Zeinh (1) (2.30)

=: (III, + III, + I1I5)

where I11y, I11; and I1]5 are calculated in details in Appendix A. So, we arrive



at

G(x) * <;b4 cosh (¢) sinh® (¢) 4 4b* cosh® (¢) sinh (C)) (z,1t)

b 13 3 13 5
-7 h x4 det ) — =2 cosh 2 — 4z + 4(t
2sinh (3) [360COS (2 v C) 360 °° <2 v ()>

11 1 11
+ 36 cosh < — 2z + 2015) ~ 35 cosh (2 — 2 + 2ct)

(2.31)

A similar way sends Eq. (2.29) to the following form

G (z) ( bt sinh? (¢) + L;b‘lsmh‘l (g)) (z,t)

- 251nh% (/ / /)Smh(— (&~ )+[x—y])

X gsinh2 (; —(y—ct)+[y— ct]) + gsinh4 (; —(y—ct)+ [y—ct})]dy
b4
= IV +1IVo+1V3)—— 2.32
( 1+ 2+ 3)231nh(%)7 ( )

where (I'V] + IV, + I'V3) are computed in details in Appendix B. Thus, we have
3,4 . 12 17,4 . 14
Gy(x) * ib sinh” (¢) + ﬁb sinh® (¢) | (=, )
bt 17 5 17 3
= h 4x + 4ct | — ——= cosh | = — 4 + 4ct
2sinh (3) [36000S (2 v C) 360 (2 v C)
1 3 1 1
+ 36 cosh ( — 2z + 2ct) ~ 36 cosh (2 — 2z + 2ct>
—|—1—7cosh §—ﬂc—i—ct —L?cosh §—x+ct
360 2 360 2

1 1 1 3
+%cosh (—2 —x+ct> - %cosh (2 —x+ct> (2.33)

10



Combining Eq. (2.31) with Eq. (2.33) yields
+o00 1
/ / [G*(u—&— uuQ—E )wx—G*(uu)w}dxdt
e 4 2 1y . 1
b sinh cosh sinh | — —x +ct
2 2
1 1 2 1 1
4 Ly . 1 _dyq 931 1
+b cosh<2) smh<2 x+ct) 3b sinh (2 :1:+ct> cosh(2 erct)
4 . 1 1
— b sinh §—x+ct cosh §_$+Ct

On the other hand, when = < ct, the right-hand side of (2.28) can be split
into the following three parts:

Pdudt (2.34)

G(x) * <;b4 cosh (¢) sinh® (¢) 4 4b* cosh® (¢) sinh (g)) (z,t)

ZSmh% (/ / />005h<—(1’— )+[x—y])
. [; cosh @ —-e)+ly- Ct]) sinh” (; ~(y—c)+[y- ct])

1 1
+ 4 cosh® <2 —(y—ct)+y— ct]) sinh (2 —(y—ct)+[y— ct}) 1dy
b4
= WV+V+V3)— 2.35
V ? 3) 2sinh (%) ( )
and the right-hand side of (2.29) can be split into the following three parts:

G (z) * (‘;b‘* sinh? (¢) + %754 sinh* (g)) (z,t)

ey ([ [

x gsinh2 (; —(y—ct)+ [yct]) +gsm4 (; - (yct)Jr[yct])]dy
b4
i () (2.36)

= (VIl + VIQ + VIg)

According to the computations in Appendix C and Appendix D, we arrive

11



at

G <;b4 cosh () sinh? (¢) +4b* cosh® (¢) sinh (¢ >) (x,t)
bt 13 5 13 )
= m l360 cosh <—2 —4x + 4ct) ~ 360 cosh <—2 — 4z + 4(t)>

11 1
+ 36 cosh <—2 — 2z + 2015) — %cosh <—2 —4x + 4ct)

+Ecosh §7 +ct fEcosh 3 +ct
360 )T 36 g 1T

11 1 1
+ 36 cosh < —x+ ct) . % cosh <—; —z+ ct) (2.37)
and
3,4 12 17,4 . 24
Gy(z) * ib sinh (O+Eb sinh® (¢) | (z, 1)
—L —1—7cosh §—ac—i—ct —|—1—7(zosh §—ac—&—ct
~ 2sinh (1)| 360 2 360 2
1 1 1 3
—%cosh (2 —x—i—ct) —|—%cosh (—2 —m—i—ct)
1 1 17 5
+ %Cosh (—2 — 2z + 2ct> ~ 360 cosh (—2 — 4z + 4ct>
17 3 1 3
+ 360 cosh (—2 —4x + 4ct) ~ 35 cosh (—2 -2z + 20t> ] . (2.38)

Combining (2.37) with (2.38) yields

+oo 1
/ / {G*(u—l— —u?u? -t )zpl—G*(uu)w]dxdt
264 sinh? <1> cosh <1> sinh (1 +x— ct>
3 2 2 2

DL —ct) = 26%sinh® (£ 42 —ct ) cosh (= +a—ct
sin g ta—c zb"sin 5 Te—ct)cosh{o+a—c
+

T — ct) cosh (; +x— ct) ]wdxdt. (2.39)

\
8

12



Meanwhile, combining (2.34) with (2.39) leads to

/+Oo/ G (ut+ 3wz - Lo zp—lG*( 3| dedt

| A U 2u U, 12% v 73 U, T
too 2 1 1 1

:/ / “b*sinh? | = ) cosh | = | sinh (¢) 4 b* cosh ( = | sinh (¢)
o Js|3 2 2 2

— §b4 sinh® (¢) cosh (¢) — b*sinh (¢) cosh (¢) |pdadt. (2.40)

So, by (2.26) and (2.40), we obtain

e L 4 1 3 4,3 9290 1 4
{uz/}t + —u Yy + zuup + G (u + —uui — —uz>3m1/1
o Js 4 3 2

_ %G * (uui)w} dxdt + /Suo(a:)w(x, 0) dx

1+ 2cosh® (3 1
= (—bc + JrL(z)bzl cosh ()) sinh(()
3 2
0

=0, (2.41)

which completes the proof of the theorem. O

3. Stability

3.1.  Stability of peakons

In the subsection, we first prove the orbital stability of peakons. Eq. (1.3)
has the following three conservation laws

Hoylu] = / udz, Hi[u :/ (v +u2) dz,
X X
1
Hslu] = / (u5 + 2uu? — uui) dz,
X 3

which will play a key role in proving the orbital stability of the peakon solutions
and the periodic peakon solutions. Replacing u by ¢(z) = ¢/3¢e~ 17l leads H; [u]
and Ha[u] to

(3.1)

3 902

Milel = [ (¢ + ) do =2{/

1 8¢ 5/9¢2?
Hsp] = / <<P5 +20°p2% — Swi) dz = g\g/ -
R

Next, let us consider the expansion of the conservation law H; around the
peakon ¢ in the H'(R)-norm.

(3.2)

13



Lemma 3.1. For allu € H'(R) and € € R,

Hful ~ Hile) = (-~ sy + 4o (u@) - Z) (3

Proof. Apparently, we have
Ju—o(-— 5)”%{1(11{)

:Hl[U]+H1[<p]—2/R

e (@) — €) dz — 2 / u(@)p(z — €) da
+oo

£
= Hifu] + Hy[g] - 2 / e (2) 0 — E)di — 2 /f o ()0 (x — )

-2 — &)dx. 3.4
| u@yeta = s (3.0
Due to
3 3
| w@eata -0t = {Fuo - [ wwee-gd 65
and
+00 Foo
[ et -gde= {{Fu© - [ u@et- 9z 60
3 €
we obtain
s/3c [ 5/3
= (=€) sy = Hal) ~ Hafg] + 4% ( - u<5>> .67
which completes the proof of the lemma. O

Lemma 3.2. For 0 < u(z) € H*(R), s > 5, let M = maxer{u(z)}. Then

Hau] < §M3H1 [u] — §M5. (3.8)

Proof. Assume u(z) attains the maximum at £ € R. Then M = u(§). Define

{ w(@) —ug(z), 2 <E,

g(z) = (3.9)

u(z) +ug(x), = >¢,

Then, we have

14



Next, let us define

ud(z) — 2P (2)ug(z) — Ju(z)ui(z), =<,

Then, we have

/Rh(m)g2(x)dm

¢ 2 1
= / (u3 — Sufu, — uui) (u — uy)? da
o 3 3

“+oo 2 9 1 5 9
—|—/ (u3 + —ufu, — uux> (u+ ug)” dx
¢ 3 3

5 320 1 4 8 [¢ 4 8 [T 4
= u’ + 2utuy — guux dr — 3 u uzdr + 3 U U dx
R —00 &

Employing the Young’s inequality leads to
2 1
h(z) = u®(x) + qu(x)uw(x) - guui(m) <ud(z) 4+ su(x) < M3,
Therefore, we obtain
4
/ h(z)g*(x)dx < M3 / g% (z)dzx. (3.11)
R 3 R
Combining the above three relations (3.10) and (3.11) reveals
4 8
Hylu) < gM?’H1 [u] — 3M5,

which is desired in Lemma 3.4. O

Lemma 3.3. For all u € H*(R), s > 2, if ||u — ¢||gn < & with § € (0,1), then

|Hi[u] — Hip]] < (144/¢) 4, (3.12)
and
|Ha[u] — Ha[p]| < B(c)s, (3.13)
where
B(c) = ? (1 F 4+ 125’/?2) (1 F a4+ V 1&:2) +3c(1+490)

+\1/2§<32C)3+\?(1+2\%)\/m

3

15



and A > 0 is a constant depending only on the norm ||ul

Hs (R) .

Proof. See Appendix E.
Lemma 3.4. For all u € H*(R), s > 2, let M = max,cp{u(z)}. If

|Hi[u] — Hilp]| < (1+4/c)o
and
|Ha[u] — Ha[p]| < B(c)d
for some 6 € (0,1), then

|M — i/% < 65\J % (; +2¢c+ 312862> 2 (1+43/c) + B(c). (3.14)

Proof. See Appendix F.
Now, let us come to the Proof of Theorem 1.1 for X = R. Since H;[u],
Hj[u] are both conserved by Eq. (1.3), we have

Hl[u(-,t)] = Hl[UQ], Hg[u(-,t)} = HQ[UO], te (O,T) (315)

Applying Lemma 3.3 to ug with 0 < § < 1 leads the hypotheses of Lemma
3.4 to hold for u(,t) due to (3.15). Then, we obtain

3/ 3¢

u(€(®),0) - /5

gﬁd > <;+2%+ 3” 1862>2 (1+4{/¢) + B(c). (3:16)

6c 2

Combining (3.3) with Lemma 3.3 yields
lu(-8) = o = £ I @)
3c 3c
= Hi[u] - Hilp] + 44 5 (3 > —U(fvt)>

3/ 3¢

< |[Hilu] = Hlgl| + 44/

L 12802> 2 (1+4/¢) + B(c)

lo

(520 52 ave 0o

16



Therefore, for any € > 0, let us choose

L2

1 V/18¢2 :
§=¢ | (1+4Vc) + 65c<2+2\%+ 280> (1+4Yc)+B(o)|

then |lu(-,t) — (- — f(t))H%p(R) < €. Thus, we complete the proof of Theorem
1.1 for X =R. O

3.2.  Stability of periodic peakons

This subsection is devoted to proving the stability of periodic peakons for
Eq. (1.3). Let us first give some basic properties of periodic peakons. It is
obvious that the periodic peaked function

u(z,t) = p(x — ct),

can be extended to the whole line, where (z) is given for = € [0, 1] by

1 3c

¢(z) = bcosh (2 - ac> , b= \3/(200sh2 @) + oo (3] cosh (; — a:> )

Let us still use S with the interval [0,7") and treat all functions on S as
periodic functions with the period 7" on the entire line.
As we know, Eq. (1.3) has the following three conservation laws

1
Hylu] = /udm, Hylu] = / (u® +u2) dz, Halu] = / <u5 + 2ulu? — 3uui) dx.
s s s
(3.17)
For an integer n > 1, let H™(S) be the Sobolev space of all square integrable
functions f € L?(S) with distributional derivatives 9. f € L*(S) for i = 1,...,n.
These Hilbert spaces are endowed with the inner product

)i =3 / (0 1)(x) (01.9) () da. (3.18)
i=0 VS

A function u € C([0,T]; HX(S)) is referred to a solution to the QCHE (1.3)
on [0,T] with the period T' > 0 if the equation holds in the distribution sense.
Apparently, the functionals H;[u],i = 0,1, 2, defined in (3.17) are independent
of t € [0,T].

Note that ¢ is continuous on S with a peak at z = 0. A simple calculation
yields

1 1
M, = ¢(0) = bcosh <2> , My =@ <2> =b. (3.19)

Moreover, ¢ is smooth on (0,7), where T' = 1. This reveals, as ., (z) =

¢(z) on (0,1), that the integration-by-parts formula [ ¢g.fdz = — [ ¢, fodz,

17



holds with ¢..(z) = ¢(z) — 2bsinh(1)d(z). Here, § denotes the Dirac delta
distribution. For simplicity, let us adopt the notation by writing integrals, and
then we have

1
Hyly] = /0 b cosh <; - :c> dx = 2bsinh <;) , (3.20)

Hilg] = /SW + @2)dx = /SW’ — PPz)d

= / (@2 —p (gp — 2bsinh (1> 5)) dx
s 2
. 1
= 2bsinh 3 M., (3.21)
and

. 1
Halp] = /S <<P5 +20°p% — SWi) dz
3 ) 1
(cosh5 (z) + 2 cosh®(z) sinh?(z) — 3 cosh(:v)sinh4(m)> dx
=0 [6 cosh? <1) sinh <1> + 4 sinh <1> cosh? <1>
) 2 2 15 2 2
8 . (1\ 2 . (1
—+ T5 Slnh <2) — T5 Slnh (2> ‘| . (322)
Lemma 3.5. For allu € H(S) and £ € S,
. 1

Proof. Due to ¢, (z) = ¢(z) — 2bsinh(1)d(z), we have

i — o = )2,
— Hylu] + Hilg] 2 /§ o (@) — €) diz — 2 /S u(@)p(x — €) de

— Hyfu] + Hlg] +2 /S ul(z + ) e (x)d — 2 /S u(z + €)p(a)da
— Hi[u] + Hy[] — 4bsinh (;) ()

— Hi[u] — Hy[g] + 4bsinh (;) (M, — u(€)).

which completes the proof of this lemma. O

18



Lemma 3.6 For any positive u € H(S), let
F,:{(M,m)eR?*: M >m >0} - R (3.24)

be the function defined by

Fu(M,m)
M+ vVM? —m?
_<§M3+§Mm2) [Hl[u]+2m21n< * m >
m

—OM/ M2 —m?2 — m?

+m*Ho[u] — Hy[u].

1
+ <1§M2—|— §m2> (M? = m?) VM2 —m?

Then, we have
Fu(Muamu) Z 07

where M, = maxgzes{u(z)} and m, = minges{u(z)}.

Proof. Note that the periodic peakon ¢ satisfies the following differential rela-

tions
—,/ch—mi, 0<z< %,

o = (3.25)

\/ P —m2, i<z<l

Let u € HYS) C C(S) be a positive function and write M = M, =
maxze. {u(z)} and m = m, = minges{u(z)}. Let £ and n be two extreme
points such that w(§) = M and u(n) = m. Define the real function g(z) as

follows
Uy +Vuz —m2, E<x<mn,
g(z) = (3.26)
Uy —VuZ —m?2, n<z<E+1,

and extend it periodically to the whole real line. Then, we have

/Sg2(ac)dgc:/;7 (uz—f— u2—m2>2dx+/n

=92m?In <M+ M? = m?
m

E+1 2
(um —Vu? — m2) dx

>—2M M2 —m2 —m? + H[u]

Next, define the function h(z) as follows

w4 Buu P = b bum?, € <<,
h() = (3.27)
u? — B — dud 4 um?, n <o <€
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and extend it periodically to the whole real line as well. Then, we obtain
/h(a:)g2(x)dx
S

n 2 1 2

— / <u3 + guux\/ uZ —m? — guui + um2> (uz +vu? — m2> dx
§
£+1 2 1 2
—I—/ <u3 — guuﬂ/ uZ2 —m? — guui + um2> (ui —Vu? — mz) dx.
n

A direct calculation leads to

K 2 1
/ (u3 + guum\/ u2 —m?2 — —uu? + um2> (ui + 2uV/u2 — m2 4+ u? — m2> dx
3

3

n . 1 8 [ .
= / <u5 + 2ulu? — Suui) de+ = | uwdugvu? —m2dz
3 3

3
4 U 7
+ gmz/ uuzV u? — m2dr — m4/ udx (3.28)
3 13

and

§+1 2 1
/ (u3 + guuw\/ u? —m? — guui + um2> (ui + 2uz v u2 —m?2 +u? — m2) dx

7

&+1 ) 1 ] &t
= / <u5 + 2udu? — Suui) dx — 3 / uug\/u2 — m2dx
n n

£+1

4 §+1
- ng / uty vV u? —m2dx — m4/ udz. (3.29)
n "
Since

d 1
- (—15(M —m)(M 4+ m) (3M? +2m*) VM2 — m2) = wduy v/ M2 —m?

(3.30)
and

i (-3 =ML m) VA=) = /A, (33)

we arrive at

2 _ 16 2 8 2 2 2 2 2
/Sh(a:)g (z)dx =Hs[u] — <15M + £m > (M? —m?) vV M? —m
— m*Hy[u].

Adopting the Young’s inequality generates

(3.32)

h(z) = u®(x) + guux(x) u?(x) —m? — %uui(m) + wm?

<ud(z) + < (u¥(z) — um?) + um? (3.33)

20



Since

we arrive at

4 2 M +/M? = m?
0< (3M3 + MmQ) lHl[u} +2m?In ( i m )
m

3

8
(15M2+ 3 2) (M2—m2) M2 —m?

— M\ M2 —m2 —m?| +

+ m4H0[u} — Ha[ul,

which completes the proof of lemma. O

Lemma 3.7. The peaked function ¢ satisfies the following relations:

O0F,
Fy(My,my) =0, M (M o) =0,
oF, 82F
T (M ») =0, 6M8 (Myp,my) =0,
0%F, B s a1\ 344, 32 .
aM? 5 (Mg, mp) = _7b inh (2) 15 0 sin h(z) B ISSinh(%)b ’

0*F, 16,5 o1\ . 1 5 . 1
W(Mwmw) = —gb cosh (2) sinh (2> — 8b° sinh (2> .

Proof. Verification with a lengthy computation for each equation is done in
Appendix G.

Lemma 3.8. Suppose f € H'(S), then

cosh (%)
e (0)] <[ B s (334

Here, “equal” holds if and only if f = ¢(- — ) for some £ € R, that is, f is a
peakon.

Proof. For z € S, we have

(=2, F i) = /S (ol — )1 () + &' (v — ) F' () dy
= /(so — ")y —x)f(y) dy

S

_ /Sstinh (;) 5(y — ) f(y)dy = 2bsinh (;) (z).
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Since

1y . 1
il = ol = 2 cosh (5 ) s (3 )

we have
f@) = (o — ), Prngs) < =l I/
= 2bsinh (1) 7 JIS) = o ginh (L) 1P @ TS
3.35
_JeehG) gy Y
~\/ 2sinn (1) HER

where “equal” holds true if and only if f and (- — x) are proportional. Taking
the maximum of (3.35) over S completes the proof of the lemma. O

Lemma 3.9. Ifu € C([0,T); H'(S)), then My 1y = maxzes u(r,t) and my ) =
mingegs u(z,t) are continuous functions of t € [0,T).

Proof. By Lemma 3.8, for t,s € [0,T), we have

M — M, = t) —
| u(t) u(s)| |r;1€a§<u(x, ) rggg{u(a},sﬂ

< _
< max |u(z, t) — u(z, s)|

cosh (l)
<y | ——2Llu z,t) —u(z,s 1(S)s
which implies that M, ) is continuous. The continuity of m,, ) is evident since
Ma(t) = —Mou()- -

Lemma 3.10. Let u € C([0,7); H'(S)) be a solution of (1.3). Given a small
neighborhood U of (M, m,) in R?, there is a § > 0 such that

(My(ty, my@y) €U for t €[0,T) if ||u(-,0) — @l|a1(s) <. (3.36)

Proof. Suppose H;[u] = H;[p] +¢€;, i =0,1,2. Then, we have

Fy(M,m) = F,(M,m) + <§M3 + ;Mm2) g1 +mrey — 2. (3.37)
So, I, is a small perturbation of Fi,. The effect of the perturbation near the
point (M, m,) can be made arbitrarily small by choosing a small &’. Lemma
3.7 says that Fi,(M,, m,) = 0 and that F, has a critical point with negative
definite second derivative at (M,,, m,). By continuity of the second derivative,
there is a neighborhood around (M, m,,), where F, is concave with curvature
bounded away from zero. Therefore, after a small perturbation, the set where
F, > 0 near (M,, m,) will be contained in a neighbor-hood of (M, m,,).
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Let U be the neighborhood given as in the statement. Shrinking I/ if neces-
sary, we infer the existence of a ¢’ > 0 such that for u

Hilu] — Hi[g] < o', i=0,1,2, (3.38)

which reveals that the set where F;, > 0 near (M,,m,,) is contained in U, and
U is surrounded by a set where F, < 0. Lemmas 3.9 and 3.6 say that M,
and my, () are continuous functions of t € [0,T), and Fy (M), My ) > 0 for
t € [0,7T). Thus, for the u satisfying (3.38), we have

(Myey, mu@y) €U for t€[0,T) if (My), mu)) €EU. (3.39)

However, the continuity of the conserved functionals H; : HY(S) — R, i =
0, 1,2, shows that there is a § > 0 such that (3.38) holds for all u with

[u(-,0) = @l < 6. (3.40)
Moreover, by Lemma 3.8, taking a smaller §, we may cast

(My(0y, muoy) €U if [|u(-,0) — @lla1(s) <6,

which completes the lemma. O

Now, let us come to the Proof of Theorem 1.1 for X = S. Let u €
C([0,T); H*(S)) be a solution of (1.3) and suppose we are given an € > 0. Pick
a neighborhood U of (M., m,) small enough such that |M — M| < ma

Sin b
if (M, m) € U. Choose a § > 0 as in Lemma 3.10 so that (3.36) holds. Taking
a smaller ¢ if necessary, we may place

1
|Hilu] = Hilg]| < 5e,
if |u(-,0) = @llmr(s) < 6.
From Lemma 3.7, we conclude that

= o — €)1 = Hilu] — Hy[g] + 4bsinh (;) (M, — M) <& (3.41)

where £(t) € R is any point where u({(t),t) = My ). This completes the proof
of the theorem for X =S. ]
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Appendix A

In this Appendix, we will show some basic properties of the hyperbolic func-
tion. We list some formulas for hyperbolic functions.

sinh(2z) = 2sinh(z) cosh(z),
cosh(2x) = 2sinh?(x) + 1,
sinh(3x) = 3sinh(x) + 4sinh®(z),
cosh(3z) = 4 cosh®(x) — 3 cosh
cosh(4zx) = 8sinh®(x) cosh(z) + 4sinh

x),

(
() cosh(x)

and
cosh(z 4 y) = cosh(z) cosh(y) + sinh(x) sinh(y),
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From the above formula, we can get the detailed calculations of 1117, 1115 and

II13.
1 1 1
3cosh< 5 y+ct) sinh® (2 y+ct)

ct
IIIlz/ cosh <1x+y)
O 2

1 1
+ 4 cosh® (—2—y+ct> sinh <—2 —y—|—ct>

dy

= Ecosh <—5 —4x + 4ct> + E cosh (—3 —4x —|—4ct>

240 2 144 2
11 1 11 3
+ ﬂcosh (2 x+20t> + ﬁcosh <2 +x+2ct>
E sh § +ct E sh 1 +ct
520 S | 5~z e 57 €% 5 —Tte
11 3 13 3
— cosh 2 - _ 2 cosh (-2 - 42
=g €08 (2 x—i—ct) e < 5 az:—&—ct)7 (3.42)

v 1 1 1 1
Hb:/ct cosh<2—x+y> 3cosh(2—y+ct>sinh3 <2—y+ct>

1 1
+ 4 cosh® (2 —y+ ct) sinh (2 —y+ ct)

= 71—3 cosh <3 —4x + 4ct) — 1—3 cosh (5 —4x + 4ct)

dy

240 2 144 2

11 3 11 1
~ “cosh (2 204+ 2ct) — —cosh (= —2z+2

24:cos (2 T + ct) 72cos <2 T+ ct)
+ o3 cosh (—2 —atet) + o cosh (S —ztet

50 <% 5 —ate gpcosh (g —z+e

11 1 13 )
+ = cosh (—2 —z+ ct) + i cosh (2 —z+ ct) (3.43)
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and

1
1113 :/ cosh (—; —x—i—y)

1 1
+ 4 cosh® (2 —y+ ct> sinh <2 —y+ ct)

1 1 1
3 cosh (2 —y+ ct> sinh® (2 —y+ ct)

dy

13 5 13 5
—— cosh ( —dx + 4ct> — —— cosh (—2 +x + 4ct)

~ 240 2 240

+ % cosh <3 —4x + 4ct> — % cosh <—2 —x+ 4ct)

+ ;—i cosh <1 — 2z + ZCt) + % cosh (3 — 2x + 2ct)

_ % cosh (—; —x+ 20t> — % cosh (—g + x4+ 20t> . (3.44)
Appendix B

In this Appendix, we can get detailed calculations for IVy, IV, and IV;3
similarly.

ct 1 1 1 1
Ivlz—/o sinh<2—x+y> 2sinh2<—2—y+ct)+1;smh4 (—2—y+ct)

17 5 17 3 7 1
= %cosh (—2 +x—|—4ct> — %cosh (—2 —x +4ct> — ﬁcosh (—2 —|—x>

dy

1 3 1 1 7 1
+M4cosh( 2+x+20t> — 4—8(:osh (2 x+2ct) +3—2cosh ( x+ct>
—&—icosh —§—x—|—ct —icosh §—a:—&—ct

576 2 144 2

17 5 1
— %cosh (2 —x+ ct) + @cosh (—2 —x+ ct) ) (3.45)

dy

o 1 3 1 17 1
IVQZ—/Ct Sinh(Q—m—i—y) asinh2 (2—y—|—ct> —i—ﬁsmh4 (—y—i—ct)

= 1—7cosh §74:1:+40t — Ecosh §74z+4¢:t +lcosh 1
576 2 960 2 32 2

1 1 1 3 7 1

— —cosh|=—-2 2 —cosh [ = —2 2 — —cosh | = —
144cos (2 T+ ct)+48c05 ( T+ ct) 32COb (2 x—|—ct>
17 h 0 +ct |+ h L +ct
576(:os 5 r+c 144(:05 5 A
17 3 1 3

+ 960 cosh (—2 —z+ ct) T cosh (2 —z+ ct) (3.46)
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and

1
1
IV3:—/ sinh<2m+y)
17 5 17 3 7 1
= 960 cosh (2 —4x + 4ct) ~ 576 cosh (2 —4x + 4ct) + 32 cosh (—2 + :c)
1 1 7 1 17 5
~ 18 cosh (2 —2r + 20t> ~ 33 cosh (—2) — %cosh <—2 + x4+ 4ct>

+ Ecosh (3 —z+ 4ct> — i cosh <g +x+ 2015)

3. . 5(1 17 . 4 /(1
ismh (2y+ct>+1251nh <2y+ct> dy

576 2 144
1 1 1 3
—cosh [ —= — 2 —cosh | = —2 2 . 4
—&—48005 ( 5 x4 ct>+144cos (2 x + ct) (3.47)
Appendix C

In this Appendix, we calculate Vi, V5 and V3 in detail.

¢ 1 1 1 1
V1:/0 cosh<2z+y) 3cosh(2y+ct>sinh3(2y+ct)

1 1
+ 4 cosh® <—2—y+ct) sinh (—2—y+ct> dy

1 5 13 3
= —— cosh (—2 —4x + 4ct) + mcosh (—2 —4x + 4ct>

11 1 11 3
+ ﬂcosh <2 x+20t> + Ecosh <2 +z+2¢:t)
E sh § +ct E sh 1 +ct
5a0 SO | 5~ te 57 €% 5 —Ete
11 3 13 3
_ cosh2— ~ =2 cosh [ —2 = 4
=g €08 (2 x+ct> a1 €% ( 5 :c—i—ct), (3.48)
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ot 1 1 1 5 (1
ng/z cosh<2—x+y) 3c0sh<2—y+ct>sinh (2—y+ct)

1 1
+ 4 cosh? <2 — y+ct> sinh (2 — y+ct>

dy

1 1
= —3 cosh (3 —4x + 4ct) — —3 cosh (2 —4x + 4ct)

240 2 144

11 3 11 1
~ 5 cosh <2 — 2 + QCt) — cosh (2 —2r + 2ct>
B osh (<2 —aget) 4 2 h§—+t

24Ocos 3 z+c 24cos z+c

11 1 13 5

—cosh [ —= — ——cosh | = — 4
+72c05 ( 5 x+ct>+144cos (2 x+ct>, (3.49)

and

1 1 . X ”
VS:/ct cosh(—Q—l’-l-y) 3008h<2—y+0t)sinh (2—y+ct>

1 1
+ 4 cosh® ( —y+ ct) sinh (2 —y+ ct)

dy

% cosh (g — 4z + 4ct> - % cosh (—; +x+ 4Ct)

+ % cosh ( —4x + 4ct) - % cosh (—; -+ 4Ct>

+ % cosh (1 — 2z + 20t> + 7—; cosh (3 — 2 + 2ct>

— % cosh (; —r+ 2ct) - % cosh (2 +x+ 20t> , (3.50)
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Appendix D

In this Appendix, we calculate similarly VI, VI, and V3.

v 1 3 1 17 1
Vi :—/0 Sinh<2—x+y> gsinh2 <—2—y—|—ct> —|—ﬁsinh4 (—2—y+ct> dy
17 5 17 3 7 1
= 960cosh(—2+x—|—40t> —%cosh <—2—m+4ct) —‘r?)QCOSh(Q—x—FCt)
1 1 7 1 17 5
— 4—8cosh (—2 —x+2ct> — 3—2cosh (—2 +x) ~ 960 cosh (2 —m—i—ct)
+1—7cosh f§fx+ct ficosh §f;v+ct +icosh 717x+ct
576 2 144 2 48 2
bt cosh (=3 4 n 400 (3.51)
g S\ Ty TET A ) '
ct
B ) 1 3. .9/(1 17 . 4 /1
VI, = /x sinh (2 x—i—y) 5 sinh <2 y+ct> + 15 sinh (2 y+ct) dy
17 5 17 3 7 1
=76 cosh (2 —4dx + 4ct) — %cosh (2 —4dx + 4ct) + 39 cosh (2>
1 1 17 3 7 1
—mcosh <2—2x+20t) —&—%cosh (—2—x+ct> —3—2cosh <2—x+ct>
,i h ?7 +ct Jri h 717 +ct fi h §* +ct
Frgeosh| g —zte Taa °% 5 %t oSkl —ate
+ L cosh (2~ 924 20t (3.52)
18 b {5 x+ 2c .
and
1
1 1 1 1
VIP,:—/Ct sinh <—2—x+y> gsinh2 (2—y+ct> —|—1—;sinh4 <2—y+ct> dy
17 5 17 3 7 1
= 960 cosh (2 — 4z + 4015) ~ 576 cosh (2 — 4z + 4ct) ~ 33 cosh (—2)
1 3 1 1 7 1
+ 1 cosh (2 — 2z + 2015) — 4—8005h (2 — 2z + 20t> + 3—2cosh (—2 —|—x>
1 1
- 79670 cosh (2 +z+ 4ct> + 75776 cosh (2 -z + 4ct)
1 3 1 1
— ——cosh | —= 2 —cosh | —= — 2ct | . .
T ( 5 +x+ ct) + 13 8 ( 5 x+ ct) (3.53)
Appendix E

The proof of Lemma 3.3 is presented below.
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Identity (3.10) shows that for all v € H'(R),

1 V2
sup |v(z)| < iHlM = —||UHH1 (3.54)
z€R

Equality holds if and only if v is proportional to atranslate of . Note that

[Hi[u] = Hy @]l = [([[ullar + el g) (lellzr =M@l gl
< (llw = @llgn + 2@l ) 1w = ol g

§5<5+2\/§3 3;)

<5+2\/§3 3;) < (1+4¥e). (3.56)

(3.55)

Since § € (0,1), then

Hence (3.10) proved to be successful. Similarly,

|H[u] — Ha[g]]

. 1 1
/R(u5+2u3u§3uu >dx/R(<p5+2903g023g0i> dx
’/ U —@)(u +2u)dx

‘/(pwu— )dz| + ’/ i dx

= J1+Jo+J3+ Js.

For the term J; and term Jy, we obtain

J1§2/|u2+ugp+g@2‘|u—<p| (u® +u2) do
R

@ (U +2u? — * — 2<pi) dz

2
<2 (llu— @l + 3l = gl e +3 1ol ) llu = ol / (w* + u?) du

2
V2 3c 3c\?
5 (= el +3vE{ = ol 46 (5) ) = el 1l

S% (52+3\f 5+6<3C> )((1+4%)5+W)

IN

2

and

3c
JzSE

/R ((u — )’ +2(us — 02) 4 20 (u— @) + 4y (ug — %)) dx

2
< 3¢ (lu = ¢l + 2 lell Il = elln)

< 3¢ <5+2x/§3 3;)
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For the sake of simplicity, we make the following estimates:

2
3
62 +3v2¢ ?’;5+6<?’;> <1+ 4Yec+12V2. (3.57)

Using (3.10) and (3.57), we get

i+ Jy <8 [\f (1+4\%+12€/Z2) (1+4\3/E+ @) +3€(1+4\%)1

On the other hand, for the term J3, we have

4
1 V2 (3¢ *®
<glu—vli= [otar < (5) 0
R

1 4
J3—3‘/R<Pm(U—SD)dx =79 \ 9

4
where fR pidr = % (%) 3. By Holder inequality, we can get

Jy =

—

3 /JRU (ui + ‘Pi) (uz + 9030) (uz — g)dx

= %HUHLM (/R (w2 + @2)” (us + ) dx)1/2 (/R (uz — ¢2)° da;) v

For convenience, we denote
2
K= / (u2 4+ ¢2)" (ug + 02)? dx
R
= / (uS + 2udp, + Bupp? + dudd) + 3ulpl + 2u, 05 + @0 )da.
R

It is inferred from Young’s inequality with exact exponents respectively that K
can be estimated as follows:

K§8</u2dx+/g02dx>.
R R

Since u € H*(R) C H*(R), s > 35, [ual 1o r) is bounded by [ul|#r) due to the
following Gagliardo-Nirenberg inequality:

2/3 1/3
el o < C llugel[25 [l }s

with C' > 0 independent of u. Hence, it follows from ||<pw||i6 = 2¢% that

KSG(A—l—cZ),
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where the constant A > 0 depends only on the norm |lu|/g-. Therefore, we
obtain

V2
Ja < =g (lu =l + el ) K2l = o]l
< s (s vaify) vare
< ?5 (1+2¥c) VA+

In view of , we conclude that
|Ha[u] — Ha [pc]| < Ju+ J2 + J5 + Ju < B(c)d.

Hence, we end the proof of the lemma. O

Appendix F

The proof of Lemma 3.4 is given below.
In view of (3.8) in Lemma 3.4, the following inequality holds:

4
Hjlu] — §M3Hl [u] + §M5 <0. (3.58)

Define the polynomial P by
4 3 8 5
P(y) = Ha[u] — 3Y Hi[u] + Y (3.59)
Using (3.2), P(y) takes the form

4 8
Po(y) = Halp] — §y3H1 [¢] + 53/5

A2 g d \2 (3.60)
:% 3y<y—|—332> —|—<32) Y+ 3¢ (y—332> .
We calculate from (3.59) and (3.60) that
Po(M) = P(M) + 5M* (Halu] ~ Halgl) — (Holu] — Fol]), (361

3
which along with (3.55) and (3.57) yields

e (M -3 Z) < M3 (Hiful — Hilg]) — (Flu] — Halel) . (3:62)
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By (3.62) and the relation

,3/ 2
0<M?< H;[“] < % +29c+ 1280 : (3.63)

we obtain

3c
M- =
ERE

<\ S Hf] ~ Hulel] + ol — Holg]

3
1o, Vi8e2\® ‘
< 43 5<+2\%+ S¢ ) (1+4¥c) + B(c).
6c \ 2 2
Hence, we end the proof of Lemma 3.4. (]

Appendix G
This Appendix is devoted to proving Lemma 3.7.
Since
My, + /M2 —m?2
1 » 1
\/ M2 —m2 = asinh <2) , In mww 7 = 3 (3.64)
we have
Fo(Mg,my)
M, + /M2 —m?2
4 2 ¥ @ [}
= (3M3 + SM(’Dm?p) [Hl [¢] + 2mi In o
IM... | M2 2 2 EMQ § 2 M2 2 M2 2
— 2My g —Mmp—my| + 15 <P+5mw ( w_mcp) e~ Moy

+myHolg] — Halp] = 0.

On the other hand, differentiation gives

F, 2 M + /M? —m?
0 “—(4M2+3m2) (Hl[u]+2m21n( i m )—QM M2—m2—m2>
m

oM

4 3 2 9 2m2 (1+\/%> 2M2
+=M>+-Mm o/ M2 —m2 -
<3 3 > M+ M?2 —m?2 M2 — m2
2 3 1 24
+?—5M(M27m2)2 + (56M3+5Mm2> M? —m?2.
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Since

My + /M2 —m?
Hi[y) +2miln —2Myy /M2 —m? -m2 | =0

©
My

and

om? (1 + ) ,
; W : 202 1
=L g /M2 —m2 - — _4asinh <) ,
M, + /M2 —m2 N 2

we get
oF,

S (Mg, my,) = 0.

Similarly, we have

F, 4 M+ VMZ—m?
OF, 4y, Hy[u] +2m?In + T2 ) oM/ M2 —m? - m?
om 3 m
4 2 M+ VMZ—m2
(EmB 4 Zvm?) (dmin | 22 ) —om
3 3 m
16 16 24
+zm (M? m?)*? _ <5M2m + 5m3> VM2 —m? + 4m?®Hy[u]

Since (3.64) and

16 16 24
Do (2 =) = (2arzm, + ) \[ME =+ am ol =0,

we obtain
oF,

om

In a similar manner, we obtain

T (M, my,) = 0.

O°F, 4
OMOm 3

M+ VM2 —m?2
+ (4M2+ §m2> <4mln< + m ) —2m)
m

1 1 1 2 Mm?
f—GMm M2 —m2 (L ) - BMT
M2 —m2 \3 3 M2 —m?

m <H1[u] +2m?1In <M+ Z2 —m2>

—2M M2—m2—m2>
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By (3.64) and

1 4 4 2 8M, m?
I e (g ag ) -
’ MZ—m2 \3 T3 M2 — m?
1 16 1\ .., /(1 s a1
= m [ — ?a cosh (2) sinh (2> + —a° cosh 3 (3.65)

8 1 1
+ ga?’ cosh (2) — 8a® cosh (2> ] ,
we have

0*F,
OMom

(M, m,) = 0.

In the same way, we get

2 2 _ 2
Z';F; ng <H1[u]+2m2ln<M+m> —2M\/W—m2>
m m

<M+m> 2m>

+ §Mm <4mln

4 . 2
M3 4 S Mm?
+<3 +3 m>

()
n —

m M2 _m2
4 IM?2m?2 — am? IMm2
(M2 —m2) (M + W) (M2 —m?2)(M + \/W)
2Mm? 1 3 96
e ) - M2_ 2 5 _ 7 2 M2— 2
+(M2,m2)g+ +5( m”) 5 m
EM2m2+%m4
5 5 _ _ 2 2
M2—m2 < ) m —|—12m Ho[ ]
and
2F, M+ VM2 —m2
gM; =8M (Hl[u] +2m? ln< m ) —9M 2 _ ;2 _m2>
8M2+m2> M2—m2 P
( 3 M+\/7m2 M2 — 2
4 2m? 2m?
+ M3+Mm2> —
<3 3 (M2 —m?2)3 (M + /M? —m?) (M2 —m2)
6M 2M3 32 4
S (M*— M*/M 2
M?—m2+(M2m2)Z] 5 (M —m)E 4 "

BM 4+ 2M2m? (16
+ —m
M? —m? 5 5



By (3.61), (3.65) and

2M?m? — 4m? 2Mm? n 2Mm?
(M2 —m?2)3(M + VM2 —m2) (M2 —m2)(M + VM2 —m2) (M2 —m2)?
- 4m?
VM2 = m2(M + M2 —m?2)’
we have
0?F, 16 1 1 1
8T;’(Mw,mw) = —§b3 cosh? (2) sinh <2> — 8b%sinh (2> .
Since
2m? 2m? 6M N 2M3
(M2 —m2)3(M + VM2 —m?) (M2—-m?) /M2 —m? (M2—m?)3
. —4AM
M2 —m2’
we get
0°F, 272 1 344 1 32
— (M =—"""psinh® [ = | — =—=b3sinh ( = | - ———b°.
gazz Me-me) = =5 bsin (2) 15 ""\2) 7 15simh (3)
Consequently, we have established the lemma. O
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