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Abstract: Cancer is the second deadliest disease listed by the WHO. One of the major
causes of cancer disease is tobacco and consumption possibly due to its main component,
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). A plethora of studies have been conducted
in the past aiming to decipher the association of NNK with other diseases. However, it is strongly
linked with cancer development. Despite these studies, a clear molecular mechanism and the impact
of NNK on various system-level networks is not known. In the present study, system biology tools
were employed to understand the key regulatory mechanisms and the perturbations that will happen
in the cellular processes due to NNK. To investigate the system level influence of the carcinogen, NNK
rewired protein–protein interaction network (PPIN) was generated from 544 reported proteins drawn
out from 1317 articles retrieved from PubMed. The noise was removed from PPIN by the method of
modulation. Gene ontology (GO) enrichment was performed on the seed proteins extracted from
various modules to find the most affected pathways by the genes/proteins. For the modulation,
Molecular COmplex DEtection (MCODE) was used to generate 19 modules containing 115 seed
proteins. Further, scrutiny of the targeted biomolecules was done by the graph theory and molecular
docking. GO enrichment analysis revealed that mostly cell cycle regulatory proteins were affected
by NNK.

Keywords: NNK; cancer; systems biology; protein–protein interaction network; topological analysis;
gene ontology
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1. Introduction

Cancer is one of the major non-communicable diseases [1] and is accountable for millions of
deaths per year worldwide. According to the World Health Organization (WHO), cancer is the second
major cause of morbidity, with an estimate of 9.6 billion deaths in 2018 [2]. Cancer is a multistage
process caused by aberrations in the cellular processes. Cancer is not only caused by mutation in any
single gene but also by the accumulation of mutations in multiple genes, a phenomenon described
as ‘oncogene addiction’ [3]. According to the WHO, there are mainly three reasons that lead to these
aberrations, with tobacco consumption heading the list, which is single-handedly responsible for
around 22% of deaths by cancer globally [4].

Currently, we have immense information on how tobacco consumption has direct implications
in cancer, specially lung, head and neck, stomach, liver, and pancreatic cancers [5,6].
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the main components in
tobacco that plays a major role in the causation of cancer [6]. NNK and its derivative,
4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), binds with the DNA and forms DNA adducts,
the resultant of which may lead to genetic mutations followed by the deregulation of normal cellular
processes [6,7].

NNK is not just responsible for causing cancer but also holds serious implications in other diseases
as well. Earlier studies have shown that NNK has significant impact on steatohepatitis [8], Alzheimer’s
disease [9], and tuberculosis [10], for example.

In this study, attempts have been made to exploit the system biology approach for an investigation
of the overall impact of tobacco-generated carcinogen NNK on molecular systems.

Systems biology is an interdisciplinary field, which is a combination of mathematics, computer
science, and biology [11]. Systems biology holds importance as it helps in getting a holistic view of the
connections of biomolecules. It provides an anti-reductionist approach towards the involvement of
different biomolecular components in a variety of biological systems. It focuses on the development of
interactome of the affected targets and then analyzing it by using mathematical models [12]. Graph
theory is the core assessment tool for the topological analysis of the interactome that aims to identify
hub biomolecular targets based on their clustering coefficients, degrees, and betweenness centralities.
Whereas, clustering and gene ontology (GO) enrichment analysis categorize the biomolecules on the
basis of functions to procure more promising insight into complex networks. This study aims to
find the most probable biomolecular targets of tobacco-associated carcinogen NNK along with its
interactions and associated pathways that get perturbated by various cellular mechanisms and lead
to cancer development. The most probable key targets of NNK are identified on the basis of their
bottleneck scores and based on their thermodynamic interactions with NNK calculated by molecular
docking simulations.

2. Materials and Methods

The full methodology scheme is mentioned in Figure 1.



Genes 2019, 10, 564 3 of 22

Genes 2019, 10, 564 3 of 21 

 

length, average clustering coefficient, betweenness centrality, and closeness centrality, were also 
analyzed. 

2.3. Protein Interaction Network Modular Analysis and Pathway Enrichment 

Clusters or modules are closely connected nodes in a network that come together and form a 
dense sub-network [19]. The analysis of clusters or modules helps in attaining detailed information 
about PPIN. Molecular COmplex DEtection (MCODE) is a plug-in available in the Cytoscape 
software program, which was used for the cluster analysis. The clusters are scored on the basis of size 
and density—a high score means a big and dense cluster—while gene ontology (GO) serves the 
purpose of validating the cluster that belongs to a specific function [20]. Thus, the enrichment of 
clusters helps in enriching the pathways by providing an additional number of external genes that 
are not present in the dataset. GO analysis provides detailed information about the biological process 
underneath that cluster. For GO functional enrichment analysis, ClueGO (version 2.5.1) plug-in of 
Cytoscape software was used [21]. The analysis was done using a threshold p value <0.05. A two-
sided hypergeometric test was used for the statistical analysis along with the Bonferroni correction 
method, in case applied. 

2.4. Molecular Docking Analysis 

Molecular docking is one of the most preferred methods to find the orientation of two molecules 
when they form a complex. Docking simulation also explores the thermodynamic stability of the 
complexes by providing information regarding the binding energy and inhibition constant (Ki) value 
and helps in finding the best binding modes or orientations of a ligand with its biomolecule. The 
docking parameters used were based on the studies published by [22]. Autodock 4.0 MGL suite [23] 
was used for docking simulations. The simulations were performed on AMD E1-6015 APU processor, 
CPU 1.4 GHz and 4 GB RAM of Hewlett-Packard (HP) machine. 

 

Figure 1. Schematic diagram of the adopted methodology. 
Figure 1. Schematic diagram of the adopted methodology.

2.1. Construction and Visualization of Protein–Protein Interaction Network

In total, 544 biomolecular targets were found to be affected by NNK in approximately 1320 studies
using PubMed. A protein–protein interaction network was developed using the STRING database
version 10.5 [13]. The network was evidence-based and developed with the highest confidence level
score of 0.9, having 50 interactors in the first as well as second shell.

2.2. Protein–Protein Interaction Network (PPIN) Analysis

The Cytoscape Software (version 3.6.1) program [14] was used for the analysis of the protein–protein
interaction network (PPIN) to generate protein interaction networks. Network analyzer, an in-built
plugin of Cytoscape, was used to analyze the topological properties of an NNK modulated
PPIN [15]. The topological properties of any network provide a deep insight into complex biological
networks [16,17]. The topological analysis also helps in reducing noise in the data and offers reliable
information regarding the network [18]. Node properties, like degree distribution, shortest path length,
average clustering coefficient, betweenness centrality, and closeness centrality, were also analyzed.

2.3. Protein Interaction Network Modular Analysis and Pathway Enrichment

Clusters or modules are closely connected nodes in a network that come together and form a
dense sub-network [19]. The analysis of clusters or modules helps in attaining detailed information
about PPIN. Molecular COmplex DEtection (MCODE) is a plug-in available in the Cytoscape software
program, which was used for the cluster analysis. The clusters are scored on the basis of size and
density—a high score means a big and dense cluster—while gene ontology (GO) serves the purpose of
validating the cluster that belongs to a specific function [20]. Thus, the enrichment of clusters helps in
enriching the pathways by providing an additional number of external genes that are not present in
the dataset. GO analysis provides detailed information about the biological process underneath that
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cluster. For GO functional enrichment analysis, ClueGO (version 2.5.1) plug-in of Cytoscape software
was used [21]. The analysis was done using a threshold p value < 0.05. A two-sided hypergeometric
test was used for the statistical analysis along with the Bonferroni correction method, in case applied.

2.4. Molecular Docking Analysis

Molecular docking is one of the most preferred methods to find the orientation of two molecules
when they form a complex. Docking simulation also explores the thermodynamic stability of the
complexes by providing information regarding the binding energy and inhibition constant (Ki) value
and helps in finding the best binding modes or orientations of a ligand with its biomolecule. The
docking parameters used were based on the studies published by [22]. Autodock 4.0 MGL suite [23]
was used for docking simulations. The simulations were performed on AMD E1-6015 APU processor,
CPU 1.4 GHz and 4 GB RAM of Hewlett-Packard (HP) machine.

3. Results

3.1. Construction of the Network

In total, 544 biomolecular targets were found to be affected by NNK interaction through a literature
survey. A protein–protein interaction network (PPIN) was developed using the STRING database
version 10.5. The network developed at the 0.9 confidence level score and 50–50 interactors in the
first and second shell comprised of 534 nodes and 2909 edges. The average node degree was 10.09
and average local clustering coefficient was 0.501. The PPI enrichment p value was <1 × 10−16.
Figure 2 represents the NNK rewired protein–protein interaction network having 534 nodes and 2909
edges. Figure 3A,B depicts the number of biomolecular targets involved in various processes and
pathways, respectively.
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3.2. Topological Properties of the Network

The protein–protein interaction network developed was further analyzed using Cytoscape
software. The topological properties of the PPIN calculated with the help of Network Analyzer plug-in
were the shortest path length average, neighborhood connectivity distribution, clustering coefficient,
node degree distribution, betweenness centrality, closeness centrality, etc. The shortest path length
in any network depicts the shortest communication mode between two nodes. Figure 4 shows a
graphical representation of path length distribution 2971. This means that at the 2971-unit path length,
the information is being passed on at the highest frequency. The degree of a node describes the
connectivity of a node with other nodes; it is the total number of links, which are either reaching or
starting from that node [24]. The node degree distribution (Figure 5) is one of the most important
topological properties of a network. It fits a power law that indicates the presence of hubs in the
network [25]. The nodes, which lie close to the power line and have a higher degree, can be considered
as the hubs. The average neighborhood connectivity distribution stands for the average number
of neighbors, which was observed as 15,940 in this study (Figure 6). Figure 6 shows the average
connections of each node with its neighbors. The above parameter helps in understanding the density
of a network. The clustering coefficient of a network depicts the tendency of a graph to be divided into
clusters [26]. The local clustering coefficient is the number of edges around a particular node, whereas
the average clustering coefficient is the clustering coefficient of the whole network [25], and in this
study, the average clustering coefficient in this network was found to be 0.597 (Figure 7).
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3.3. Clustering and GO Enrichment Analysis

For modular analysis and pathway enrichment, the MCODE plug-in of the Cytoscape was used.
Modules or clusters were created from the network and were scored on the basis of their size and
density. A high score depicts a denser and tighter cluster. Formation of clusters also helps in the
reduction of the noise and getting a better understanding of the genes involved in the clusters. Figure 8
shows the clusters generated by MCODE. The nodes in red color represent the seed proteins, and the
yellow nodes are the connectors. The seed proteins are the proteins that were reported earlier to get
either upregulated or downregulated by the action of NNK and connector proteins are the proteins
that are associated with the seed proteins in the transfer of information, but are not reported to have
any direct relation with NNK. The seed proteins were checked in all the clusters and are presented in
bold in Table 1, while the remaining proteins (non-highlighted) are the connectors. The cluster that was
ranked first had the highest score of 29,862, with 30 nodes and 433 edges. Moreover, during analysis,
it was found that cluster 1 had 19 seed proteins and 11 connectors and the overall analysis of the entire
cluster found 115 seeds and 88 connectors.
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Table 1. Generated clusters with MCODE scores, seeds (bold letters), and connector (non-bold
letters) proteins.

Cluster Score Nodes Edges Seeds Connectors Node IDs

1 29.862 30 433 19 11

PLK1, CASC5, BUB3, CDCA8, STAG1, BUB1B, CCNB2,
CCNB1, BUB1, ESPL1, CENPF, KIF2C, CDCA5, MAD2L1,
CDK1, PDS5B, WAPAL, APITD1, SKA2, RAD21, SMC1A,

KNTC1, CDC20, CENPA, CENPE, SMC3, STAG2, MAD1L1,
AURKB, INCENP

2 19.3 41 386 22 19

CDKN1A, FBXO31, CDC6, CDK2, RNF144B, KLHL42,
CCNA1, DBF4, CDC7, MCM4, POLA2, PRIM2, CDC34,

POLA1, SKP2, ORC3, MCM2, MCM5, ORC2, ORC6, MCM6,
MCM3, ORC4, CHEK1, AURKA, PTTG1, CDC45, PRIM1,

MCM10, CDT1, ORC1, HUWE1, ORC5, RBBP6, NEK2, MCM7,
ANAPC16, ANAPC13, CDKN1B, RPA1, CCNA2

3 14.652 47 337 9 38

ERCC2, E2F1, FBXO5, CDC23, ANAPC5, FANCE, FANCC,
FANCG, BLM, ANAPC4, ANAPC1, BRCA1, RB1, FANCF,

FANCL, C17orf70, CCNE1, C19orf40, FANCD2, FANCI,
ANAPC10, FANCM, FANCB, GTF2H5, CCND2, FZR1, CDC26,
RMI1, TOP3A, FANCA, GTF2H4, ANAPC11, CDC27, ANAPC2,
GTF2H2, ANAPC7, GTF2H1, STRA13, CDC16, CCNH, C1orf86,

ERCC3, ATM, CCND3, BARD1, GTF2H3, CCND1

4 10.762 22 113 13 9

FAS, RIPK1, CASP8, IKBKG, BID, HDAC1, TNFRSF10B,
TRADD, TP53, TFDP1, TRAF2, TNFSF10, FADD, FASLG,

TNFRSF10A, CASP10, E2F2, TOPBP1, IKBKB, CDK4, CCNE2,
CDK6

5 7 7 21 7 0 BBC3, BCL2A1, BCL2L11, BCL2, MCL1, PMAIP1, BCL2L1

6 5 5 10 2 3 IGFBP1, LGALS1, IGFBP4, QSOX1, IGFBP5

7 4.333 7 13 5 2 NCKAP1, WASF2, CYFIP2, PRKCA, PTK2, PRKCB, BCAR1

8 4 4 6 4 0 H1F0, HMGA2, ASF1A, HIRA

9 4 4 6 1 3 KIAA1429, WTAP, CBLL1, ZC3H13

10 3.333 4 5 3 1 EAF2, GTF2H2C, CDK7, MNAT1

11 3.333 4 5 4 0 OAS1, IFI27, OAS2, IFIT3

12 3.333 7 10 5 2 STAG3, CEP70, FKBP6, SMC1B, NEDD1, HSP90AA1, TPX2

13 3 3 3 3 0 MAP3K5, TRAF1, BIRC3

14 3 3 3 3 0 PSMC3IP, MND1, DMC1

15 3 3 3 3 0 OIP5, MIS18A, NPM1

16 3 3 3 3 0 TNFRSF11A, TNFRSF12A, TNFSF11

17 3 3 3 3 0 RHOB, RHOC, CDC25C

18 3 3 3 3 0 SDCBP, PYCARD, CPPED1

19 3 3 3 3 0 FGF2, FGFR3, FGF9

Nodes in “bold text” represent the seed proteins and the nodes in “normal” text represent the connector proteins.

The seed proteins were identified in each cluster. Thereafter, the PPIN was generated using the
STRING database with 0.9 confidence level, where 50 interactors in the first and another 50 in the
second shell were recorded. The PPIN generated now was further enriched using the ClueGO plug-in.
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3.4. PIN Construction and Topological and GO Analysis of Final Selected Seed Proteins

After the modularization process, 115 seed proteins were obtained, and used to further create a
PPIN (Figure 9) with 100 connectors using the highest confidence level score of 0.9. The PPIN generated
had 213 nodes and 2509 edges, with an average node degree 23.6 and average clustering coefficient of
0.761. The PPI enrichment p-value was less than 1 × 10−16.
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Figure 9. Protein–protein interaction network (PPIN) of final seed proteins.

The network generated was analyzed using Cytohubba, a plug-in of Cytoscape [27]. Moreover,
cytohubba analysis of each node of the network was performed and scored based on various parameters,
like the degree, closeness centrality, clustering coefficients, betweenness, bottleneck, and stress. The
proteins were first sorted on the basis of the clustering coefficient and then on the basis of bottleneck.
The proteins with a clustering coefficient less than 0.5 were selected. The proteins having a clustering
coefficient more than 0.5 were rejected as this depicts that these proteins were highly clustered and
have no further spaces for the attachment of other molecules. The nodes with a clustering coefficient
less than 0.5 and high degrees were found to be highly significant. A high degree and clustering
coefficient less than 0.5 depict that the nodes are important in various connecting networks and they
also have binding spaces available on their surface for other molecules to bind to. Once the nodes were
sorted on the basis of clustering coefficients, the next most important parameter was the bottleneck.
The proteins with high bottleneck were considered the most critical proteins in any PPIN. The median
of the bottleneck scores of selected proteins was calculated which came out to be 3. All the proteins
with bottleneck more than or equal to 2 were finally selected. Table 2 enlists the final selected proteins,
which were sorted on the basis of bottleneck, with clustering coefficients less than 0.5. CHEK1, showing
the highest bottleneck score of 29, was ranked in first position followed by TP53 with a bottleneck of
27. These were also analyzed with ClueGO for the pathway enrichment analysis. Figure 10 shows the
pie chart representation of the enriched pathways in the form of groups. In Figure 10, the cell cycle is
occupying the maximum area (43.64%) of the pie chart. From this, we can say that the cell cycle is the
most enriched pathway, having the maximum number of biomolecules (a detailed graph displaying the
sub-pathways in each group along with the number of genes present in it and the proteins involved in
each group is enlisted in Table 3, also depicted in Supplementary Figure S1). Figure 11 shows that the
maximum number of genes are associated with the cell cycle followed by the cellular macromolecule
metabolic process.
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Table 2. Key proteins with their bottleneck, clustering coefficient, and degree scores.

Name Betweenness Bottleneck Closeness Clustering Coefficient Degree

CHEK1 835.45994 29 116.61667 0.36501 52

TP53 8007.14223 27 126.41667 0.19394 55

BRCA1 2686.48081 23 127.45 0.26346 65

CDK1 3705.28949 19 140.41667 0.32157 85

CDK4 935.26901 14 112.66667 0.42521 35

HSP90AA1 3657.32532 13 101.66667 0.27273 22

RPA2 1523.40238 9 125.78333 0.33978 64

ATM 1803.73545 8 115.36667 0.33718 40

TFDP1 426.33754 6 111.78333 0.46702 34

CDKN1B 1218.04331 4 120.41667 0.44245 50

CASP8 1842.98595 4 90.11667 0.44853 17

PYCARD 796 3 62.18333 0.33333 3

CCNA1 894.78122 3 125.2 0.39548 60

CCNB1 1208.39103 3 127.26667 0.40665 69

RPA1 1657.28981 2 126.45 0.33269 65

CDK2 1887.40725 2 134.2 0.34035 76

CHEK2 126.13416 2 95.95 0.3619 15

BID 577.03969 2 90.78333 0.4269 19

RB1 608.84911 2 107.66667 0.44138 30

PLK1 1284.13385 2 121.25 0.49545 56

CDK7 488.15015 2 108.78333 0.49733 34
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Table 3. Pathway enrichment of the modulated seed proteins using ClueGO.

Function Groups Group Genes

Cell cycle Group12

ANAPC1|ASF1A|ATM|AURKA|AURKB|BARD1|BBC3|
BCAR1|BCL2|BCL2A1|BCL2L1|BCL2L11|

BIRC3|BRCA1|BUB1|BUB1B|BUB3|CASP8|CCNA1|CCNA2|
CCNB1|CCNB2|CCNE2|CDC20|CDC25C|

CDC34|CDC45|CDC6|CDC7|CDCA5|CDCA8|CDK1|CDK2|CDK6|CDKN1A|
CENPA|CENPE|CENPF|CEP70|CHEK1|CYFIP2|DBF4|DMC1|E2F1|E2F2|EAF2|

FANCC|FANCD2|FAS|FASLG|FBXO31|FBXO5|FGF2|
FGF9|FGFR3|FKBP6|H1F0|HDAC1|HIRA|HMGA2|HSP90AA1|HUWE1|KIF2C|

KNTC1|LGALS1|MCL1|
MCM2|MCM4|MCM5|MCM6|MCM7|MDM2|MIS18A|MNAT1|MND1|NEDD1|

NEK2|NPM1|OIP5|
PDS5B|PLK1|PMAIP1|POLA1|PRKCA|PRKCB|PSMC3IP|PTK2|PYCARD|

RBBP6|RHOB|RHOC|RNF144B|SDCBP|SKA2|STAG1|STAG3|TFDP1|TNFRSF10A|
TNFRSF10B|TNFRSF10C|TNFRSF12A|TOPBP1|TP53|TRAF1

Cellular senescence Group06

ANAPC1|ASF1A|ATM|BBC3|BCL2|BCL2L1|BCL2L11|BIRC3|BRCA1|CASP8|CCNA1|
CCNA2|CCNE2|CDC20|CDC25C|CDCA5|CDK1|CDK2|CDK6|CDKN1A|CHEK1|E2F1|

E2F2|FAS|
FASLG|FGF2|FGF9|FGFR3|H1F0|HDAC1|HIRA|HMGA2|HSP90AA1|MAP3K5|

MCL1|MDM2|PMAIP1|PRKCA|PRKCB|PTK2|TFDP1|TP53|TRAF1

DNA conformation
change Group07

ASF1A|ATM|BBC3|BCL2L11|BIRC3|CASP8|CCNB1|CDC45|CDCA5|CDK1|CENPA|
CENPE|CENPF|

DMC1|FANCC|FAS|FBXO5|H1F0|HDAC1|HIRA|HMGA2|HSP90AA1|KNTC1|MCM2|
MCM4|MCM5|

MCM6|MCM7|MDM2|MIS18A|MNAT1|NPM1|OAS1|OIP5|PMAIP1|POLA1|
PRKCA|PTK2|PYCARD|

RHOC|TNFSF11|TP53|TRAF1

DNA metabolic process Group08

ASF1A|ATM|AURKA|AURKB|BARD1|BBC3|BCL2|BCL2A1|BCL2L1|BCL2L11|BRCA1|
BUB1|BUB1B|BUB3|CCNA1|CCNA2|CCNB1|CCNE2|CDC25C|CDC34|CDC45|CDC6|

CDC7|CDCA5|CDK1|CDK2|CDK6|CDKN1A|CENPF|CHEK1|DBF4|DMC1|E2F1|EAF2|
FANCC|FANCD2|FAS|FBXO31|FBXO5|FKBP6|H1F0|HDAC1|HMGA2|HSP90AA1|

HUWE1|KNTC1|MCL1|MCM2|MCM4|MCM5|MCM6|MCM7|MDM2|MIS18A|MNAT1|
MND1|NEK2|NPM1|PDS5B|PLK1|PMAIP1|POLA1|PRKCB|PSMC3IP|PYCARD|RBBP6|

TFDP1|TNFRSF10A|TNFRSF10B|TNFRSF10C|TOPBP1|TP53

DNA repair Group10

ANAPC1|ASF1A|ATM|AURKA|AURKB|BARD1|BBC3|BCL2|BCL2L11|BRCA1|CASP8|
CCNA1|CCNA2|

CCNB1|CCNB2|CCNE2|CDC20|CDC25C|CDC34|CDC45|CDC6|CDC7|CDCA5|CDK1|
CDK2|CDK6|CDKN1A|CENPF|CEP70|CHEK1|DBF4|DMC1|E2F1|E2F2|EAF2|FANCC|

FANCD2|FAS|FASLG|H1F0|HDAC1|
HIRA|HMGA2|HSP90AA1|HUWE1|MAP3K5|MCM2|MCM4|MCM5|MCM6|MCM7|

MDM2|MNAT1|
MND1|NEDD1|NEK2|NPM1|PDS5B|PLK1|PMAIP1|POLA1|PRKCA|PRKCB|RBBP6|

TFDP1|TNFRSF10A|TNFRSF10B|TNFRSF10C|TOPBP1|TP53|TRAF1

G2/M checkpoints Group04

ASF1A|ATM|AURKA|AURKB|BARD1|BBC3|BCL2|BCL2A1|BCL2L1|BCL2L11|BRCA1|
CCNA1|CCNA2|

CCNB1|CCNB2|CCNE2|CDC25C|CDC34|CDC45|CDC6|CDC7|CDCA5|CDK1|CDK2|
CDKN1A|CENPF|

CHEK1|DBF4|DMC1|E2F1|FANCC|FANCD2|FBXO31|FKBP6|H1F0|HDAC1|HMGA2|
HSP90AA1|HUWE1|MCL1|MCM2|MCM4|MCM5|MCM6|MCM7|MDM2|MIS18A|
MNAT1|MND1|NEK2|NPM1|PDS5B|PLK1|PMAIP1|POLA1|PSMC3IP|PYCARD|

RBBP6|TFDP1|TOPBP1|TP53

Immune system Group01

ANAPC1|BCL2|BCL2L1|BIRC3|CASP8|CDC20|CDC34|CDK1|CDKN1A|CENPE|
CPPED1|CYFIP2|FASLG|

FBXO31|FGF2|FGF9|FGFR3|HSP90AA1|HUWE1|IFI27|IFIT3|KIF2C|MCL1|OAS1|
OAS2|PRKCB|PTK2|

PYCARD|QSOX1|RBBP6|RNF144B|SDCBP|TNFRSF11A|TNFRSF12A|TNFSF11|TP53

Measles Group00 BBC3|CCNE2|CDK2|CDK6|FAS|FASLG|OAS1|OAS2|TNFRSF10A|TNFRSF10B|
TNFRSF10C|TP53

Resolution of sister
chromatid cohesion Group11

ANAPC1|ATM|AURKA|AURKB|BARD1|BBC3|BCL2|BCL2L11|BIRC3|BRCA1|BUB1|
BUB1B|BUB3|CASP8|CCNA1|CCNA2|CCNB1|CCNB2|CCNE2|CDC20|CDC25C|CDC34|

CDC6|CDC7|CDCA5|CDCA8|CDK1|CDK2|CDKN1A|CENPA|CENPE|CENPF|CEP70|
CHEK1|CYFIP2|DMC1|E2F1|FANCD2|FAS|FASLG|FBXO31|FBXO5|FKBP6|HMGA2|
HSP90AA1|HUWE1|IFI27|KIF2C|KNTC1|MAP3K5|MDM2|MNAT1|MND1|NEDD1|

NEK2|NPM1|PDS5B|PLK1|PMAIP1|PRKCA|PRKCB|PSMC3IP|PTK2|PYCARD|RBBP6|
RNF144B|SDCBP|SKA2|STAG1|STAG3|TFDP1|TNFRSF10A|TNFRSF10B|TOPBP1|TP53
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Table 3. Cont.

Function Groups Group Genes

Cellular macromolecule
metabolic process Group02

ANAPC1|ASF1A|ATM|AURKA|AURKB|BARD1|BBC3|BCL2|BCL2L11|BIRC3|BRCA1|BUB1|
BUB1B|BUB3|CASP8|CCNA1|CCNA2|CCNB1|CCNE2|CDC20|CDC25C|CDC34|CDC45|

CDC6|CDC7|CDCA5|CDCA8|CDK1|CDK2|CDK6|CDKN1A|CENPE|CENPF|CHEK1|
CPPED1|CYFIP2|DBF4|DMC1|E2F1|E2F2|EAF2|FANCC|FANCD2|FAS|FASLG|FBXO31|
FBXO5|FGF2|FGF9|FGFR3|FKBP6|H1F0|HDAC1|HIRA|HMGA2|HSP90AA1|HUWE1|

IFI27|LGALS1|MAP3K5|MCM2|MCM4|MCM5|MCM6|MCM7|MDM2|MIS18A|MNAT1|
MND1|NEK2|NPM1|OAS1|OAS2|PDS5B|PLK1|PMAIP1|POLA1|PRKCA|PRKCB|PSMC3IP|
PTK2|PYCARD|QSOX1|RBBP6|RNF144B|SDCBP|STAG1|TFDP1|TNFRSF10A|TNFRSF10B|

TNFRSF10C|TNFRSF11A|TNFSF11|TOPBP1|TP53|TRAF1|WTAP

Nuclear division Group09

ANAPC1|ATM|AURKA|AURKB|BRCA1|BUB1|BUB1B|BUB3|CCNA1|CCNA2|CCNB1|
CCNE2|CDC20|

CDC25C|CDC6|CDCA5|CDCA8|CDK1|CDK2|CENPE|CENPF|CHEK1|DMC1|FANCD2|
FBXO5|FKBP6|

KIF2C|KNTC1|MND1|NEK2|PDS5B|PLK1|PSMC3IP|STAG1|STAG3

Protein–DNA complex
assembly Group03

ASF1A|ATM|AURKA|AURKB|BBC3|BCL2|BCL2L11|BIRC3|BRCA1|CASP8|CCNB1|CDC20|
CDC34|CDC45|CDK1|CDK2|CENPA|CENPE|CENPF|CEP70|DMC1|FANCC|FAS|FBXO5|
H1F0|HDAC1|HIRA|HMGA2|HSP90AA1|KNTC1|MCM2|MCM7|MDM2|MIS18A|MNAT1|
NEDD1|NEK2|NPM1|OAS1|OIP5|PLK1|PMAIP1|PRKCA|PTK2|PYCARD|RHOC|SDCBP|

STAG1|STAG3|TNFSF11|TP53|TRAF1

Regulation of cell cycle
G2/M phase transition Group05

ANAPC1|ATM|AURKA|AURKB|BARD1|BRCA1|BUB1B|BUB3|CCNA1|CCNA2|CCNB1|
CCNB2|CDC20|

CDC25C|CDC7|CDK1|CDK2|CDK6|CDKN1A|CENPF|CEP70|CHEK1|FBXO5|HMGA2|
HSP90AA1|MDM2|MNAT1|NEDD1|NEK2|NPM1|PLK1|PRKCA|PRKCB|TOPBP1|TP53
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3.5. Molecular Docking Simulation of NNK with Key Proteins

Autodock 4.0 was used for docking the final 30 target proteins with NNK. CDK7 showed the
highest binding energy of −5.93 Kcal/Mol followed by CCNA1 (−5.6 Kcal/Mol). The binding energies
of the proteins with NNK will further help in refining the results in the selection of the best-suited
target proteins of NNK. The more negative the binding energy, the stronger the interaction between
the ligand and the protein. The binding energies, Ki values, and the H-bonds formed along with their
distances for all the 20 target proteins are listed in Table 4. Figure 12 shows the top three interactions
of NNK with its target biomolecules, namely CDK7, CCNA1, and CDKN1B. Table 5 shows the key
biomolecular targets of NNK and their role in cell cycle regulation.
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Table 4. Final 22 target proteins docked with NNK.

S.No Protein Ligand
Binding
Energy

(Kcal/Mol)
Ki Binding Residues H-Bond Distance

1. CDK7 NNK −5.93 45.31 µM

Leu18, Val26, Ala39,
Lys41, Ile75, Phe91,

Asp92, Phe93, Met94,
Glu95, Thr96, Asp97,

Leu144, Asp155

CDK7:MET94:N - :NNK:O7 2.86224

2. CCNA1
(connector) NNK −5.60 79.09 µM

Cys97, Gly98, Gln99,
Gly100, Val164, Asp165,
Thr166, Gly167, Thr168,
Leu169, Lys170, Leu173,

Tyr218

:GLY98:H - :NNK:O7
:GLY167:H - :NNK:N10
:THR168:H - :ASP165:O
:LYS170:H - :NNK:N14
:LYS170:H - :NNK:O15
:NNK:N14 - :THR168:O

1.83311
1.98057
2.11393
2.36928
1.99807
3.02246

3. CDKN1B NNK −5.42 106.27 µM
His573, Lys574, Pro575,
Leu576, Glu581, Trp582,

Gln583, Glu584

CDKN1B:GLN583:N - :NNK:N14
CDKN1B:GLN583:N - :NNK:O15
:NNK:N14 - CDKN1B:GLN583:O

2.84311
2.79833
2.96186

4. CASP8 NNK −5.35 119.75 µM

Lys2224, Tyr2226,
Gln2227, Asp2308,
Gly2350, Lys2351,
Pro2352, Asp2398,
Arg2471, Lys2472

CASP8:LYS2351:HZ1 -
:NNK:N10

CASP8:ARG2471:HH21 -
:NNK:N2

CASP8:ARG2471:HH21 -
:NNK:N14

CASP8:ARG2471:HH21 -
:NNK:O15

CASP8:LYS2472:HZ1 - :NNK:O7

1.9527
2.48624
2.19123
2.25672
1.82255

5. CHEK2
(connector) NNK −5.35 120.25 µM

Ser228, Gly229, Ala230,
Cys231, Gly232, Val234,
Lys249, Leu301, Thr367,

Asp368

CHEK2:CYS231:N - :NNK:N10
CHEK2:GLY232:N - :NNK:N10
CHEK2:LYS249:NZ - :NNK:N14
CHEK2:ASP368:N - :NNK:O15

3.11295
3.11412
3.20168
2.86381

6. PLK1 NNK −5.21 152.98 µM
Lys413, Trp414, Val415,

Asp416, Leu490,
Asn533, Lys540

PLK1:TRP414:N - :NNK:O7
PLK1:ASP416:N - :NNK:N14
PLK1:ASP416:N - :NNK:O15

PLK1:ASN533:ND2 - :NNK:N10

2.97424
2.94596
2.71702
3.10323

7. BID
(connector) NNK −5.13 174.27 µM

Leu21, Phe24, Gly25,
Gln28, Leu39, Asp40,
Leu42, Gly43, Arg86,
Ala89, Arg90, Phe173

:NNK:N14 - BID:GLN28:OE1
BID:PHE24:HA - :NNK:O15
BID:ARG86:HA - :NNK:N10
:NNK:C3 - BID:GLN28:OE1

:NNK:C1 - BID:LEU39:O
:NNK:C11 - BID:ARG86:O

:NNK:O15 - BID:PHE24
:NNK:N14 - BID:GLN28:OE1
BID:PHE24:HA - :NNK:O15
BID:ARG86:HA - :NNK:N10
:NNK:C3 - BID:GLN28:OE1

:NNK:C1 - BID:LEU39:O
:NNK:C11 - BID:ARG86:O

:NNK:O15 - BID:PHE24

3.29101
2.94776
2.82375
3.41587
3.00214
3.32997
3.70686
3.29101
2.94776
2.82375
3.41587
3.00214
3.32997
3.70686

8. HSP90AA1 NNK −5.10 183.46 µM

Leu48, Asn51, Ser52,
Ala55, Asp93, Ile96,

Gly97, Met98, Asn106,
Phe138, Thr184, Val186

HSP90AA1:ASN51:ND2 -
:NNK:N14

HSP90AA1:ASN51:ND2 -
:NNK:O15

HSP90AA1:THR184:OG1 -
:NNK:O7

3.12471
2.99653
2.69827

9. BRCA1 NNK −5.08 187.68 µM

Val1654, Ser1655,
Gly1656, Leu1657,
Thr1658, Pro1659,
Phe1662, Thr1700,
Leu1701, Lys1702

BRCA1:SER1655:OG - :NNK:N14
BRCA1:GLY1656:N - :NNK:O7
BRCA1:LEU1657:N - :NNK:O7

BRCA1:LEU1701:N - :NNK:O15
BRCA1:LYS1702:N - :NNK:O15

:NNK:N14 - BRCA1:SER1655:OG

3.19252
2.75464
2.77131
3.00037
2.75018
3.19252

10. CDK1 NNK −5.00 217.06 µM
Lys88, Leu91, Asp92,
Ile94, Pro95, Pro96,

Glu196, Lys200

CDK1:LYS200:NZ - :NNK:N14
CDK1:LYS200:NZ - :NNK:O15

:NNK:N14 - CDK1:ILE94:O

3.0124
2.96559
2.89466

11. CDK2 NNK −4.90 255.02 µM
Val29, Glu81, Phe82,
Leu83, His84, Ile135,

Asn136, Thr137

CDK2:PHE82:N - :NNK:N10
CDK2:HIS84:N - :NNK:N14
CDK2:HIS84:N - :NNK:O15

CDK2:HIS84:ND1 - :NNK:N14
:NNK:O15 - CDK2:ILE135:O

2.88593
2.95506
2.76842
3.18956
2.91961
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Table 4. Cont.

S.No Protein Ligand
Binding
Energy

(Kcal/Mol)
Ki Binding Residues H-Bond Distance

12. CCNB1 NNK −4.86 274.97 µM

Ile253, Lys256, Tyr257,
Glu285, Leu289, Phe294,
Gly295, Leu296, Gly297

CCNB1:TYR257:N - :NNK:N10
CCNB1:LEU296:N - : NNK:N14
CCNB1:LEU296:N - : NNK:O15
CCNB1:GLY297:N - : NNK:O15
: NNK:N14 - CCNB1:PHE294:O

3.14377
2.86319
2.81795
2.91169
3.10697

13. CHEK1 NNK −4.80 303.50 µM
Val23, Val37, Ile39,

Glu55, Asn59, Leu82,
Phe149

CHEK1:ILE39:N - :NNK:N10
CHEK1:ASN59:ND2 - :NNK:N14
CHEK1:ASN59:ND2 - :NNK:O15
CHEK1:PHE149:N - :NNK:O15

:NNK:N14 - CHEK1:GLU55:OE2
:NNK:O15 - CHEK1:GLU55:OE2
:NNK:O15 - CHEK1:PHE149:N

2.8265
2.71952
3.02158
3.15867
3.05383
2.67183
3.15867

14. RPA2
(connector) NNK −4.70 358.90 µM

Cys49, Thr50, Ile76,
Val77, Asp96, Met97,

Tyr125, Phe155, His158,
Ile159

RPA2:VAL77:N - :NNK:O15
:NNK:O15 - RPA2:CYS49:O
:NNK:O15 - RPA2:VAL77:O

:NNK:O15 - RPA2:HIS158:NE2

3.09031
3.06724
3.18087
2.98064

15. ATM NNK −4.48 523.49 µM

Thr2059, Ala2062,
Gly2063, Ile2065,

Gln2066, Gln2069,
Leu2077, Tyr2080,
Leu2081, Leu2084,
Glu2094, Leu2095,

Leu2098

ATM:GLN2066:N - :NNK:O7 3.06063

16. CDK4 NNK −4.35 650.98 µM

Val44, Leu54, Pro55,
Thr58, Val59, Val62,
Ala63, Arg66, Val82,

Ile92, Val94

CDK4:PRO55:CD - :NNK:O15
CDK4:VAL59:CA - :NNK:O7

2.9883
2.92285

17. TFDP1 NNK −4.20 833.96 µM Val264, Phe285, Asn286,
Phe287, Phe291

TFDP1:PHE287:N - :NNK:O15
:NNK:O15 - TFDP1:PHE287:O

2.78538
3.08744

18. TP53 NNK −4.14 927.72 µM
Gln136, Leu137, Ala138,
His179, Cys182, Asp184,
Asn239, Cys275, Ala276

TP53:LEU137:N - :NNK:O15
TP53:ASN239:ND2 - :NNK:N14
TP53:ASN239:ND2 - :NNK:O15

:NNK:O15 - TP53:CYS275:O

2.93164
3.07617
2.87469
2.82627

19. RB1 NNK −4.02 1.14 mM

Val434, Gly435, Gln436,
Cys438, Asn505,

Leu506, Asp507, Ser508,
Gly509, Thr510

RB1:GLN436:HN - :NNK:O15
RB1:SER508:HN - :NNK:O7
RB1:GLY509:HN - :NNK:O7

1.93726
2.36625
1.90514

20. RPA1
(connector) NNK −3.67 2.03 mM

Val375, Asn402, Pro403,
Ala408, Tyr409, Arg412,

Gly413

RPA1:ARG412:NH1 - :NNK:N14
:NNK:O15 - RPA1:ALA408:O

3.06161
2.78707Genes 2019, 10, 564 16 of 21 
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Table 5. Key proteins and their roles in cell cycle regulation.

S.No Protein Role in Cell Cycle References

1. CDK7
Catalytic subunit of CAK complex which activates the

cyclin-associated kinases CDK1, CDK2, CDK4, and CDK6 by
threonine phosphorylation, thus regulating cell cycle progression

[28,29]

2. CCNA1 Controls the cell cycle at the G1/S (start) and G2/M (mitosis)
transitions [30]

3. CDKN1B
Important regulator of cell cycle progression. Acts either as an

inhibitor or an activator of cyclin type D-CDK4 complexes
depending on its phosphorylation state and/or stoichometry.

[31]

4. CASP8 Responsible for the positive and negative regulation of apoptosis
and inflammation [32]

5. CHEK2 required for checkpoint-mediated cell cycle arrest in response to
p53 defects [33]

6. PLK1 Regulates entry and exit from mitosis and cytokinesis. Regulates
DNA replication [34]

7. BID induces apoptosis on interaction with BCl2 family proteins [35]

8. HSP90AA1 regulates the function of ATM in sensing and repairing the DNA
damages [36]

9. BRCA1 Has role in DNA damage repair, cell cycle control and
transcriptional regulation [37]

10. CDK1 Promotes G2-M transition and regulates G1 progress and G1-S
transition via association with multiple interphase cyclins. [38]

11. CDK2 Essential for transition of cell cycle from G1 to S phase and then
from S to G2 phase. [39,40]

12. CCNB1 Essential for the control of the cell cycle at the G2/M (mitosis)
transition [41]

13. CHEK1 required for smooth cellular proliferation by inducing the
degradation of cdc25a [42]

14. RPA2 Binds and stabilizes single-stranded DNA intermediates. Controls
DNA repair and DNA damage checkpoint activation. [43,44]

15. ATM Activates checkpoint signaling upon double strand breaks (DSBs),
apoptosis. May function as a tumor suppressor. [45,46]

16. CDK4
Hypophosphorylates RB1 in early G1 phase. Cyclin D-CDK4

complexes are major integrators of various mitogenic and
antimitogenic signals.

[47]

17. TFDP1 Can stimulate E2F-dependent transcription induces growth arrest. [48]

18. TP53 Prevents CDK7 kinase activity when associated to CAK complex
in response to DNA damage, thus stopping cell cycle progression. [49,50]

19. RB1
Key regulator of entry into cell division that acts as a tumor

suppressor. Promotes G0-G1 transition when phosphorylated by
CDK3/cyclin-C.

[51]

20. RPA1 controls DNA repair and DNA damage checkpoint activation [52]

4. Discussion

Cancer is a global inflammable problem, which pathologically occurs due to the accumulation
of mutations in one or many genes, a phenomenon known as “oncogene addiction”. The loss of
fidelity during the replication of DNA or the repair of damaged DNA leads to a cell becoming
cancerous. Tobacco consumption has a major influence on these aberrations due to its main component,
NNK, which has been strongly related with various cancers, mainly lung cancer [53,54]. NNK binds
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with various proteins involved in several cellular processes and leads to cancer. Hence, it is vital
to fully understand the precise mechanism of the disease development caused by NNK and the
interactome analysis of biomolecular target genes/proteins for attaining an overview of the highly
complex functional interdependency of these targets for the efficient performance of the cell.

Systems biology is an interdisciplinary field that facilitates an understanding of complex biological
network systems. These networks can be metabolic networks, gene regulation network, cell signaling
network, or protein–protein interaction network [55]. With the help of system biology, we can
analyze huge real-time networks precisely. Significantly, the huge amount of data from research being
conducted globally were collected and statistically analyzed to uncover the functions of individual
genes and proteins. The results may then be integrated to provide higher-level information [56].
Mathematical modeling and computational simulations help in understanding the internal dynamics
of the system or the process and thus help in predicting the future of the process [57]. The networks
created represent the genes or proteins with the nodes and their relations or physical connections with
the edges [58]. The biological systems are immensely huge and complex networks depicting how one
protein is connected with other proteins and how a slight impact on a gene or protein will affect the
whole interactome [59]. These highly complicated and tightly packed networks, which govern all
biological processes, are also referred to as protein–protein interaction networks (PPINs). All these
graphs and networks work on the principle of graph theory. In the current study, we focused on NNK
rewired PPIN to identify its bio-molecular targets that regulate the various cellular processes and
cause cancer.

To construct PPIN, a literature survey was performed on PubMed database using keywords,
like NNK, and around 544 genes extracted from 1317 research articles. The STRING database was
used for the generation of the PPIN as it gives freedom to the users to choose the active interaction
sources for their network. For this study, we used experimental data sources, like BIND, IntAct, etc.,
and pathway database interaction sources, like KEGG and reactome. The network generated had 534
nodes, including 100 connectors, at the highest confidence level score of 0.9. It contained 2909 edges
that depicted that all the reported nodes were well connected with each other, which were further
confirmed by the topological parameter, i.e., the average node degree, which was found to be 10.9.
The degree of a node gives the information about the connection of the node with other nodes or simply
the number of edges that either enter a node or leave it. All the biological systems are undirected and
scale-free so the node degree depicts the average connectivity of each node with other nodes present
in the network. The identification of key nodes in any network is not possible just by calculating its
degree, hence various other parameters require evaluation, like the betweenness centrality, closeness
centrality, and bottleneck scores [60]. Nodes with clustering coefficients less than 0.5 are key nodes
because lesser clustering coefficients depict that the protein still have space for interaction with other
molecules. The average neighborhood connectivity details provide the information about the density
of the network. The shortest path length is important as it gives details about the minimum number of
the edges between the two nodes and how fast information can pass on from one node to another node.

The network generated was then divided into modules. Modularization is an important step
as it helps in reducing the noise of the data. On modularization, 19 clusters were obtained and each
cluster contained seed proteins. Finally, 115 seed proteins were procured from the initial list of 534
proteins. Again, a PPIN was generated using these 115 seed proteins and 100 connectors at the first
and second shells, and we obtained 213 nodes and 2509 edges. In addition, 100 connectors were done
in order to include some more relevant proteins, which were possibly missed in the above procedure.
The topological analysis was done on the basis of clustering coefficient and bottleneck scores. We used
the bottleneck score as our final selection criteria as bottlenecks are the significant proteins, which
have great functional and dynamic significance in a network [61]. To find the statistically significant
cut-off for the proteins to be selected as key targets, the median was calculated on the bottleneck score,
which came out to be 2. The enrichment analysis was done to find the pathways and processes that are
enriched in the process of the PPIN generation. On the GO enrichment analysis, it was found that
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most of the seed proteins fall under the pathways that are related to cell cycle regulation and these
results were also reflected on the final selected seed proteins that had a bottleneck score of 2 or more
than 2. The cell cycle is a tightly regulated and a precisely timed event that is divided into phases and
is monitored by checkpoints [62]. It is a highly orchestrated event, which ensures the integrity and
stability of the genome. NNK binds to various receptors and hampers various pathways, leading to
the cell becoming cancerous [63]. It not only binds with the receptors but also targets many important
genes and proteins, like CDKs and cyclins, that are crucial for cell cycle processes [6]. Table 3 and
Figure 10, Supplementary Figure S1, and Figure 11 clearly depict that most of the pathways that were
enriched fall under cell cycle regulation at different phases.

Finally, docking studies were performed for the target proteins using NNK as a ligand. Molecular
docking is the key tool to check whether the binding of ligand and protein is thermodynamically
possible or not. The binding energies of these docking results further helped in refining the targets
for NNK. The major targets of NNK found were CDK7, CCNA1, CDKN1B, CASP8, CHEK2, PLK1,
BID, HSP90AA1, BRCA1, CDK1, CDK2, CCNB1, CHEK1, RPA2, ATM, CDK4, TFDP1, TP53, RB1, and
RPA1, with their binding energies ranging from −5.93 to −3.67 Kcal/Mol. PYCARD and QXOS1 were
excluded from this screening because of their low degree and 0 clustering coefficient. In addition to
the above key proteins, our present study also revealed five connector proteins, which can be proven
as putative biomolecular targets of NNK. These proteins are CHEK2, CCNA1, BID, RPA1, and RPA2.
From these docking results, we can easily conclude that a majority of the key targets of NNK belong to
the cell cycle regulatory proteome. CDKs and cyclins are the key regulatory proteins of the cell cycle
that control the various phases of the cell. Different CDK/cyclin complexes are required for a smooth
transition of the cell cycle. Other proteins, like ATM, RB1, and TP53, may act as tumor suppressor
proteins and signaling proteins for DNA damage. Table 5 enlists the final key biomolecular targets of
NNK and their role in the cell cycle.

5. Conclusions

In conclusion, a NNK rewired PPIN, with the help of various systems biology tools, was
explored for the identification of potential targets involved in tobacco induced cancer development.
The biomolecules that were suspected for being the most probable targets of NNK were further screened
using functional enrichment techniques and then using molecular docking techniques. The results of
this study show that the maximum proteins that are the most probable targets of NNK are involved in
cell cycle regulation. With these, we can conclude that NNK has a major impact on the biomolecules
of the cell cycle regulatory proteome. The present study opens future possibilities to identify new
biomarkers for the cancers associated with NNK. This can also help in the pre-symptomatic diagnosis
of diseases and in the development of precision medicines.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/8/564/s1,
Figure S1: Graph of GO enriched pathways depicting the involvement of genes under various sub-graphs.
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