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isodeoxyelephantopin, a 
Sesquiterpene Lactone induces 
RoS Generation, Suppresses nf-κB 
Activation, Modulates LncRnA 
expression and exhibit Activities 
Against Breast cancer
Sumit S. Verma1, Vipin Rai1, nikee Awasthee1, Anupam Dhasmana2, Dhanya S Rajalaksmi3, 
Mangalam S. nair3 & Subash c. Gupta1*

the sesquiterpene lactones, isodeoxyelephantopin (iDet) and Deoxyelephantopin (Det) are known 
to exhibit activities against some cancer types. the activities of these lactones against breast cancer 
and the molecular bases is not known. We examined the efficacy of lactones in breast cancer preclinical 
model. Although both lactones exhibited drug like properties, IDET was relatively effective in 
comparison to Det. iDet suppressed the proliferation of both invasive and non-invasive breast cancer 
cell lines. iDet also suppressed the colony formation and migration of breast cancer cells. the assays 
for Acridine orange (Ao)/propidium iodide (pi) staining, cell cycle distribution, phosphatidylserine 
externalization and DnA laddering suggested the apoptosis inducing potential of iDet. the treatment 
with IDET also induced an accumulation of cells in the sub-G1 and G2/M phases. The exposure of 
breast cancer cells to the lactone was associated with a depolarization in mitochondrial membrane 
potential, and cleavage of caspase and pARp. the lactone induced reactive oxygen species (RoS) 
generation in breast cancer cells. further, the use of n-acetyl cysteine (nAc) suppressed iDet induced 
RoS generation and apoptosis. the nf-κB-p65 nuclear translocation induced by okadaic acid (OA) was 
suppressed by the sesquiterpene. iDet also suppressed the expression of nf-κB regulated tumorigenic 
proteins, and induced the expression of proapoptotic gene (Bax) in cancer cells. While the expression of 
oncogenic lncRnAs was suppressed, the tumor suppressor lncRnAs were induced by the sesquiterpene. 
collectively, the modulation of multiple cell signaling molecules by iDet may contribute to its activities 
in breast cancer cells.

The long non-coding RNAs (lncRNAs) containing equal to more than 200 nucleotides constitute a major class 
of non-coding RNAs. The lncRNAs play crucial role in multi-steps of tumor development1. The preclinical and 
clinical studies suggest the diagnostic, prognostic and therapeutic potential of lncRNAs2. The lncRNAs are often 
dysregulated in a variety of cancer types including breast cancer3.

The lncRNAs can cross talk with other cancer associated molecules such as nuclear factor kappa B (NF-κB), 
p53, and signal transducer and activator of transcription 3 (STAT3)4. Originally identified in the mid-1980s in 
response to pathogens and viruses5, NF-κB is frequently dysregulated in the breast cancer patients. NF-κB is 
also involved in the development of breast cancer chemoresistance6. Under physiological conditions, the heter-
otrimeric NF-κB (consisting of p65, p50 and IκBα) is localized in the cytoplasm. For NF-κB to be activated, the 
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IκBα must undergo phosphorylation, ubiquitination and degradation. The p65-p50 subunit is then released and 
translocate from the cytoplasm to the nucleus. NF-κB can modulate multiple cancer related genes and promote 
the breast cancer growth7. During recent years, an association between NF-κB activation pathway and lncRNAs 
has been reported8. Some of the NF-κB associated lncRNAs include antisense non-coding RNA in the INK4 locus 
(ANRIL)9, HOX transcript antisense RNA (HOTAIR)10, Lethe11, Metastasis Associated Lung Adenocarcinoma 
Transcript 1 (MALAT1)12, NF-κB interacting lncRNAs (NKILA)13 and H1914.

Because of their crucial role during tumorigenesis, lncRNAs has been targeted therapeutically by the 
approaches such as antisense oligonucleotides and RNAi technology. However, the studies on the pharmacological 
intervention of lncRNAs are limited. Since cancer is a multigenic disease, promiscuous drugs with ability to mod-
ulate multiple targets are preferred. The agents derived from nature offer potential because of their multi-targeting 
nature. Approximately 50% of the anticancer drugs approved between 1940 and 2014 were either natural products 
or drugs derived directly from natural products15. Elephantopus scaber Linn (family Asteraceae) is a small herb 
mainly distributed in Africa, Asia, Australia and Europe16. The extract from this plant has been shown to exhibit 
analgesic, anti-asthamatic, anti-diabetic, anti-inflammatory, anti-microbial, anti-oxidant, anti-platelet, hepato-
protective and wound healing activities17. The sesquiterpene lactones such as Isodeoxyelephantopin (IDET) and 
Deoxyelephantopin (DET) are the major constituents from this plant. The sesquiterpenes are known to exhibit 
activities against colorectal cancer18, liver cancer19, lung cancer20 and nasopharyngeal carcinoma21. Previous stud-
ies have demonstrated that IDET exhibit activities against some cancer types. However, its potential in breast can-
cer and the molecular mechanism remains poorly understood. Because breast cancer is an inflammatory disease 
and IDET is known to exhibit anti-inflammatory activities, our hypothesis in this study was that IDET exhibit 
activities in breast cancer by modulating inflammatory pathways. A previous study demonstrated that IDET 
induces cell cycle arrest at G2/M phase in nasopharyngeal carcinoma21. In chronic myeloid leukemia cells, IDET 
can suppress constitutive and inducible NF-κB activation22. Conversely, IDET favored lung cancer cell survival 
through Nrf2-p62-keap1 mediated protective autophagy20.

The aim of this study was to examine the anticancer potential of IDET and DET in breast cancer cells. Whether 
IDET can modulate lncRNAs expression, generation of reactive oxygen species (ROS) and NF-κB activation was 
also investigated.

Material and Methods
experimental procedures. Reagents. IDET and DET was isolated from Elephantopus scaber Linn in 
the laboratory of Dr. Mangalam Nair (CSIR-NIIST, Thiruvananthapuram, India). Doxorubicin hydrochloride 
was purchased from Tokyo Chemical Industry (Tokoyo, Japan). The trypsin-EDTA, streptomycin, penicillin, 
Dulbecco’s Modified Eagle’s Medium (DMEM) and N-Acetyl-L-cysteine (NAC) were obtained from Himedia 
(Mumbai, Maharashtra). The dimethyl sulfoxide (DMSO), crystal violet and 3-[4,5-dimethylthiazol- 2-yl]-2,5-di-
phenyl tetrazolium bromide (MTT) were purchased from SRL Diagnostics (Mumbai, Maharashtra). Acridine 
orange; ethidium bromide; propidium iodide; 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl car-
bocyanineiodide (JC-1); 4′,6-diamidino-2-phenylindole (DAPI); 2′,7′-dichlorodihydrofluorescein diacetate 
(H2DCFDA); Alexa Fluor 488; agarose; Annexin V staining kit and fetal bovine serum (FBS) was obtained from 
Invitrogen (Carlsbad, California). The antibodies for Bcl-xL, Bcl-2, p65, MMP-9 and PARP were obtained from 
Santa Cruz Biotechnology (Santa Cruz, California). The cleaved caspase 7 and cleaved caspase 9 antibodies were 
procured from Cell Signaling Technology (Danver, Massachusetts). The primers for cyclinD1, survivin, Bax, 
ANRIL, lincRNA-Tnfaip3, HOTAIR, GAS5, NKILA, H19 and GAPDH were purchased from Eurofins Genomics 
(Bangalore, Karnataka). Maxima SYBR Green/ROX qPCR Master Mix (2X) was obtained from Thermo Fisher 
Scientific (Baltics, Lithuania).

Cell lines. We obtained breast cancer cell lines (MDA-MB-468, MDA-MB-453, MDA-MB-231, T47D and MCF-
7) from National Centre for Cell Science (NCCS), Pune, India. The cells were cultured in the high glucose DMEM 
medium. The media was supplemented with FBS (10%), streptomycin (100 µg/mL) and penicillin (100 units/mL).

Cell viability assay. The mitochondrial reductase activity23 was estimated to examine the effects of IDET and 
DET on the breast cancer cells viability. In brief, 5,000 cells were seeded in each well of 96 well plate. The cells were 
then treated with different concentrations of agents for 12–72 hrs. Finally, the formation of purple formazan was 
measured using MTT as the substrate.

Clonogenic assay. We performed an assay as reported before with minor modifications24. The cells were first 
treated with IDET for 24 hrs. The agent was then washed off and the cells were allowed to form colonies. After 7 
days, the colonies were stained with crystal violet (0.25%) and counted manually.

Live/dead cell discrimination assay. For this assay, we used acridine orange (AO) and propidium iodide (PI) dual 
staining. AO is permeable to both live and dead cells; it can stain nucleated cells to generate green fluorescence. PI 
can enter and stain only dead cells with compromised membrane integrity to generate red fluorescence. Briefly, 
cells (MCF-7 and MDA-MB-231) were treated with 5–25 µM IDET for 24 hrs, washed and stained with AO/PI 
(100 µg/mL). Finally, we examined the stained cells under fluorescence microscope.

Phosphatidylserine externalization assay. A marker for the early phases of apoptosis is the externalization of 
phosphatidylserine (PS) from the inner surface of the plasma membrane to the outer surface. This results in the 
disruption of membrane symmetry. For this, we used annexin V/PI staining and followed a method as provided 
by the supplier (Invitrogen).

https://doi.org/10.1038/s41598-019-52971-3
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DNA laddering assay. DNA laddering wherein nuclear DNA undergo fragmentation is one of the key features 
of apoptosis. This assay was performed using a previously described method with minor modifications25. In brief, 
the cell lysis was performed at 37 °C for 30 min in a buffer consisting of 20 mM EDTA, 100 mM Tris (pH 8.0), 
RNaseA (500 unit/ml), and 0.8% SDS. The cell lysate was partially deproteinized with proteinase k (20 mg/mL) for 
2 hrs at 55 °C. The DNA was precipitated with chloroform and isopropanol. After washing with 70% ethanol and 
air drying, Tris-EDTA buffer was used to dissolve the DNA. The agarose gel (1.5%) containing ethidium bromide 
was used to electrophorese the DNA. Finally, the gel documentation (BioRad Gel Doc XR+) was used for the 
visualization and imaging of DNA bands.

Cell cycle analysis. The cells were stained with PI to examine if IDET affects different cell cycle phases. After 
treatment with various concentrations of IDET, the cells were washed with PBS and fixed with 70% chilled metha-
nol. The RNaseA was used for the treatment of cells followed by staining with PI. We used flow cytometer to assess 
the percentage of cells and the Cell Quest software (Becton Dickinson) for the analysis.

Measurement of mitochondrial membrane potential (ΔΨ). The effects of IDET on mitochondrial membrane 
potential was examined using a previously described method26. In brief, cells were exposed to 10–50 μM IDET, 
washed and incubated in the dark (at 37 °C for 20 minutes) with 10 μg/mL JC-1. Cells were then washed and 
imaged under fluorescence microscopy. Whereas green fluorescence is an indicator of depolarized mitochondria, 
intact mitochondria produce red fluorescence.

Western blot analysis. The western blot analysis was performed to examine the effects of IDET on the expression 
of tumorigenic proteins27. Briefly, the whole cell lysate was prepared from normal and IDET treated cells. After 
separation on the SDS-PAGE and transferring onto nitrocellulose membrane, the proteins were probed with pri-
mary and secondary antibodies. Finally, the ECL reagent was used for the detection of the protein signals.

Immunocytochemistry for the NF-κB p65 cellular localization. For this, we used a previously described method27. 
Briefly, paraformaldehyde and PBST were used for the fixing and permeabilization of the cells, respectively. After 
probing with antibodies (primary and secondary) and counterstaining with DAPI, the cells were imaged under 
fluorescence microscope.

Cell migration assay. Whether IDET affects cell migration was examined by scratch (wound healing) assay28. 
Briefly, at the 70% confluency, the monolayer cells were wounded with a sterile culture tip. After washing the 
debris, IDET was applied over cells. The wounded area was examined at 0, 9, 24 and 48 hrs by phase contrast 
microscope. The image J software was used to calculate the healed area and wound size at each time point.

Estimation for ROS generation. The potential of IDET to generate ROS in breast cancer cells was examined by 
flow cytometry29. Briefly, the control and treated cells were stained with 10 µM H2DCFDA for 1 hr in the dark. 
We used flow cytometry to examine the stained cells and Cell Quest software (Becton Dickinson) for the data 
analysis.

Semi-quantitative and quantitative RT-PCR. We performed semiquantitative RT-PCR to examine the IDET’s 
effects on the expression of mRNA transcripts of cyclin D1, survivin and Bax. The quantitative real-time PCR was 
performed to examine the IDET’s effects on the lncRNA expression30. Table 1 lists the primer sequences used for 
the amplification of the gene of interest.

The trizol reagent was used for the isolation of total RNA by following the manufacturer’s instructions 
(Invitrogen). The high capacity cDNA synthesis kit was used for reverse transcription.

Gene/lncRNA Forward sequence (5′-3′) Reverse sequence (5′-3′)

Semi-quantitative RT-PCR

Bax CCAAGAAGCTGAGCGAGTGT CCGGAGGAAGTCCAATGTC

Cyclin D1 CTCCACCTCACCCCCTAAAT AGAGCCCAAAAGCCATCC

Survivin GACACTTAGTATGGGAGGGTTG ACCAAGGCACCAGCATATAG

GAPDH GCTCTCTGCTCCTCCTGTTC ACGACCAAATCCGTTGACTC

Quantitative RT-PCR

H19 ATCGGTGCCTCAGCGTTCGG CTGTCCTCGCCGTCACACCG

GAS5 CTTCTGGGCTCAAGTGATCCT TTGTGCCATGAGACTCCATCAG

NKILA TGGATTGTTGGGTATATTTTGGA TGTATGAAGAGGATGCTGAAGGC

lincRNA-Tnfaip3 GGCTCAGTTGCCATAGAGACTC CCCACAGCCTACCAAACATC

ANRIL TGCTCTATCCGCCAATCAGG GGGCCTCAGTGGCACATACC

HOTAIR GGTAGAAAAAGCAACCACGAAGC ACATAAACCTCTGTCTGTGAGTGCC

ACTB CTGTGGCATCCACGAAAC CAGACAGCACTGTGTTGG

5Sr RNA GGCCATACCACCCTGAACGC CAGCACCCGGTATTCCCAGG

Table 1. The sequences of the primers used in the semi-quantitative and quantitative RT-PCR.

https://doi.org/10.1038/s41598-019-52971-3
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We used 1.5% agarose gel for the electrophoresis of the PCR product. The densitometry and ImageJ software 
were used for the quantification of DNA bands. The PCR product for the gene of interest were normalized to 
GAPDH. The Maxima SYBR Green/ROX qPCR Master Mix and Applied Biosystems 7500 Real-Time system was 
used for the quantitative real-time PCR analyses of lncRNA expression. The data analysis was performed using 
a method as described previously31. The values for house-keeping genes (ACTB and 5SrRNA) were used for the 
normalization of the data.

In silico analysis. The drug like properties of IDET (Pub Chem ID: 38359583) and DET (Pub Chem ID: 
6325056) were examined by analyzing Lipinski’s rule of five (http://www.molinspiration.com//cgi-bin/properties)  
and ADMET (absorption, distribution, metabolism, excretion and toxicity)32. SMILE IDs of IDET and DET were 
obtained from Pub Chem database. CORINA 3D server was used to convert the SMILE ID to .pdb files. PDB ID 
1NFI was used to procure 3D structure of NF-κB-p65 (Chain A), NF-κB-p50 (Chain B) and IκBα (Chain E). 
2EVA and 5TQY was used to procure TAK-1 and IKKα, respectively. Auto Dock Tool 4 was used for the identifi-
cation of binding affinities and poses of ligands and proteins33,34.

Statistical analysis. Different end points were performed in control and treated groups. We performed the 
unpaired Student’s t-test for the comparison between the two groups. Statistical significance was calculated at a 
value of P < 0.05.

Results
In this study, we examined the relative potency of IDET and DET in breast cancer cells (Fig. 1A). Preliminary 
experiments were performed with both IDET and DET. However, most experiments were performed with IDET. 
We examined the anti-tumorigenic and anti-inflammatory activities of IDET. Because of availability of multiple 
variants, MDA-MB-231 was used for most experiments. We also used other cell lines such as T-47D and MCF-7 
to examine the IDET’s specificity. The underlying mechanism for the anti-carcinogenic activities of IDET was 
examined.

iDet exhibit stronger anti-proliferative activities in breast cancer cells as compared to Det.  
First, the relative anti-proliferative activities of IDET and DET was examined. We exposed MDA-MB-231 cells 
to 1–100 µM IDET and DET for 12–72 hrs. The mitochondrial reductase activity was measured using the MTT 
substrate. The anti-proliferative activities of IDET was stronger as compared to DET (Fig. 1B). For example, the 
cell proliferation was suppressed by 36% when cells were exposed to 10 µM DET for 72 hrs (Fig. 1C). However, the 
cell proliferation was suppressed by 50% after exposure of cells to 10 µM IDET for 72 hrs. Similarly, a respective 
10% and 27% suppression in cell proliferation was observed after exposure of cells for 12 hrs to 25 µM DET and 
25 µM IDET, respectively.

Whether IDET and DET possess drug like properties was examined by in silico tools. Using Lipinski’s rule of 
five and ADMET analysis, we found that both IDET and DET exhibited similar characteristics (Table 2). The pre-
dicted lipophilicity (log P), topological polar surface area, molecular weight, hydrogen bond acceptor, hydrogen 
bond donor, and rotatable bonds were found to be 2.25, 78.92, 344.36, 6, 0, and 3, respectively. Furthermore, both 
IDET and DET were permeable to blood brain barrier and intestine without any evidence of carcinogenic and 
genotoxic effects.

Because the anti-proliferative activities of IDET was relatively stronger as compared to DET, we used IDET for 
most of the other experiments.

iDet suppresses the proliferation of multiple breast cancer cells. Whether the anti-proliferative 
activities of IDET is specific to one cell line was examined. For this, we used multiple breast cancer cell lines. 
T47D, MCF-7, MDA-MB-468 and MDA-MB-453 cells were treated with 1–100 µM IDET for 72 hrs. The cell via-
bility was decreased in a dose dependent manner (Fig. 2A). Similarly, when cells were exposed to 25 µM IDET for 
24–72 hrs, the viability of cells was suppressed in a time dependent manner (Fig. 2B). These observations suggest 
that the effects of IDET is not cell-type specific.

iDet suppresses the colony formation of breast cancer cells. Whether IDET affects the colony for-
mation of breast cancer cells was examined. We exposed MCF-7 (Fig. 3A) and MDA-MB-231 (Fig. 3B) cells to 
1–25 µM IDET for 24 hrs. The IDET was then washed off and the colony formation was examined after 7 days. At 
a concentration as low as 2.5 µM IDET, a drastic decrease in the colony formation was observed.

Breast cancer cells are sensitized to doxorubicin by iDet. Doxorubicin is a commonly used chemo-
therapy for breast cancer. However, patients develop resistance over time. Whether the sensitivity of breast cancer 
cells to doxorubicin can be enhanced by IDET was examined. We exposed MCF-7 cells to different concentrations 
of IDET before treatment with doxorubicin. Both IDET and doxorubicin suppressed the viability of cancer cells 
(Fig. 3C). However, when cells were pretreated with IDET, the sensitivity of cells to doxorubicin was significantly 
increased. For example, at 0.25 µM doxorubicin, 7% reduction in the viability of cells was observed. However, the 
pretreatment of cells with 1 µM and 10 µM IDET before 0.25 µM doxorubicin reduced the viability by 17% and 
58%, respectively.

iDet induces apoptosis in breast cancer cells. One possibility for the reduction in the viability of cells 
after IDET treatment may be due to induction of apoptosis. A variety of assays were performed to examine the 
apoptosis inducing potential of IDET. First, AO/PI dual staining was carried out to accurately determine the cell 
viability. After dual staining, the live nucleated cells fluoresce green and the dead nucleated cells fluoresce red. An 
increase in the IDET concentration was associated with a decrease in the viability of MCF-7 cells and increased 

https://doi.org/10.1038/s41598-019-52971-3
http://www.molinspiration.com//cgi-bin/properties


5Scientific RepoRtS |         (2019) 9:17980  | https://doi.org/10.1038/s41598-019-52971-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

number of dead cells (Fig. 4A, left). A similar trend in the viability of MDA-MB-231 cells was observed after treat-
ment with IDET (Fig. 4A, right). The membrane blebbing and nuclear condensation, which are characteristics of 
early apoptosis was also observed after IDET treatment. Next, we examined the effects of lactone on the cell cycle 
distribution by flow cytometry. While the percentage of cells in the sub-G1 and G2/M phase was increased, a 
decrease in the population of cells in the G1 and S phase was observed after IDET treatment (Fig. 4B). For exam-
ple, 3.5 folds increase in the sub-G1 population was observed at 25 µM IDET in comparison to control. Similarly, 

Figure 1. IDET is more effective in suppressing the breast cancer cells proliferation as compared to DET. (A) 
The chemical structure of IDET and DET. (B) MDA-MB-231 cells were exposed to different concentrations of 
IDET and DET for 12–72 hrs. The MTT assay was used to examine the proliferation of cells. (C) The relative 
sensitivity of MDA-MB-231 cells to 10 µM and 25 µM concentrations of two agents was examined at 12–72 hrs. 
The values indicate mean ± SE (3 experiments). *Shows the significance level in comparison to untreated group; 
P < 0.05. IDET, isodeoxyelephantopin; DET; deoxyelephantopin.

https://doi.org/10.1038/s41598-019-52971-3
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2 folds increase in the G2/M phase was observed at 25 µM IDET in comparison to control. Overall, these results 
suggest that IDET induces cell cycle arrest at sub-G1 and G2/M phase in MDA-MB-231 cells. A key feature of 
early apoptosis is the PS externalization from the inner surface to the outer surface of plasma membrane that 
disrupts the membrane symmetry. While Annexin V has a high affinity for PS, PI binds to DNA35. Thus, dual 
staining with Annexin V and PI can be used to distinguish cells undergoing early apoptosis and late apoptosis. In 
control group, 1.7% cells were stained with Annexin V. However, 13.1% Annexin V positive cells were observed 
at 10 µM IDET (Fig. 4C). The late stages of apoptosis are associated with cleavage of DNA into 180–200 base pair 
fragments known as DNA ladders. Exposure of cells to IDET induced DNA laddering in a concentration depend-
ent manner (Fig. 4D). Next, we examined if IDET can modulate the expression of tumorigenic proteins. The 
expression of anti-apoptotic (Bcl-xL, Bcl-2) and invasive (MMP-9) proteins was significantly suppressed while an 
induction in caspase and PARP cleavage was observed by IDET (Fig. 4E). The lactone also suppressed the expres-
sion of mRNA transcript of genes involved in cell survival (survivin) and proliferation (cyclin D1) (Fig. 4F). The 

Ligand

Absorption Metabolism

Excretion Toxicity

BBB HIA

P-Glycoprotein CYP-450 substrate CYP-450 inhibitor

Pg-S Pg-I 1/2 2C9 2D6 3A4 1A2 2C9 2D6 2C19 3A4 ROCT AMES Carcinogen

-IDET [Pubchem ID: 38359583; SMIL ID: 
CC1=CC2C(C(CC3=CC(C1)OC3=O)
OC(=O)C(=C)C)C(=C)C(=O)O2]

+ + − −/+ − − − − − − − − − − −

DET [Pubchem ID: 6325056; SMIL ID: 
CC1=CC2C(C(CC3=CC(C1)OC3=O)
OC(=O)C(=C)C)C(=C)C(=O)O2]

+ + − −/+ − − − − − − − − − − −

Table 2. In silico ADMET analysis of IDET and DET. Abbreviation: IDET, Isodeoxyelephantopin; DET, 
Deoxyelephantopin.

Figure 2. IDET suppresses the proliferation of multiple breast cancer cells in a dose- and time- dependent 
manner. Breast cancer cell lines (T47D, MCF-7, MDA-MB-468, MDA-MB-453) were exposed to (A) different 
concentrations of IDET for 72 hrs or (B) 25 µM IDET for 24–72 hrs. The proliferation of cells was assessed by 
measuring the mitochondrial reductase activity. The values indicate mean ± SE (3 experiments). *Shows the 
significance level in comparison to untreated group; P < 0.05. IDET, isodeoxyelephantopin.
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expression of mRNA transcript of proapoptotic Bax was also induced by IDET (Fig. 4F). Collectively, IDET can 
induce apoptosis in breast cancer cells.

iDet disrupts mitochondrial membrane potential and induces RoS generation in breast cancer cells.  
We used the fluorochrome JC-1 to examine if IDET induced apoptosis in breast cancer cells require mitochondria. 

Figure 3. IDET suppresses the colony formation and enhances the sensitivity of breast cancer cells to 
doxorubicin. (A,B) MDA-MB-231 and MCF-7 cells (1000 cells/well) were exposed to different concentrations 
of IDET. After 24 hrs, IDET was washed off and cells were allowed to form colonies for 7 days. After staining 
with 0.1% crystal violet, the colonies were counted manually. IDET reduced the colonies number in a dose 
dependent manner. (C) MCF-7 cells were treated with different concentrations of IDET. After 24 hrs, IDET 
was washed off and cells were treated with different concentrations of doxorubicin for another 24 hrs. The 
combination of two agents significantly suppressed the viability of cells in comparison to individual agents. 
Where shown, the values are mean ± SE (3 experiments). *Shows the significance level in comparison to 
untreated group; P < 0.05. IDET, isodeoxyelephantopin.
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Figure 4. IDET induces apoptosis in breast cancer cells. (A) MDA-MB-231 and MCF-7 cells were treated with 
5, 10 and 25 µM IDET. After 24 hrs, cells were stained with AO/PI, washed and examined under fluorescence 
microscope. (B) Untreated and IDET treated MDA-MB-231 cells were stained with PI, and flow cytometry was 
used to analyze the cells at different phases of cell cycle. (C) IDET induces PS externalization in breast cancer 
cells. MDA-MB-231 cells were exposed to 10 µM IDET for 24 hrs, stained with Alexafluor 488 conjugated 
annexin V antibody and analyzed by flow cytometry. (D) DNA was extracted from control and treated cells and 
electrophoresed on 1.5% agarose gel containing ethidium bromide. (E) The whole cell extract obtained from 
untreated and treated MDA-MB-231 cells was used to examine the expression pattern of cell survival, invasive, 
cleaved caspase, and PARP proteins. The corresponding GAPDH and β-Actin was used for the normalization 
of the data. The fold reduction in the experimental group as compared to the control group is indicated below 
the blot. (F) The RNA was extracted from the untreated and treated cells, reverse transcribed, amplified by PCR, 
electrophoresed on the agarose gel and stained with ethidium bromide. The blots were derived from the same 
gel and the data was normalized using GAPDH as an internal control. IDET, isodeoxyelephantopin.
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In control cells with intact mitochondria, the fluorochrome produces red fluorescence. However, with the depo-
larization of mitochondria and the reduction of the mitochondrial membrane potential, the intensity of the green 
fluorescence is increased. The staining of control cells with JC-1 produced prominent red fluorescence and min-
imal green fluorescence (Fig. 5A). However, the treatment of cells with IDET produced a reduction in the red 

Figure 5. IDET disrupts mitochondrial membrane potential and induces ROS generation. (A) MDA-MB-231 
cells were treated with 1–10 µM IDET. After 24 hrs, the cells were stained with JC-1 and examined under the 
fluorescence microscope. Whereas green fluorescence indicates the cells with depolarized mitochondria, red 
fluorescence shows cells with intact mitochondria. (B) Cells were treated with indicated concentrations of 
IDET without or with pre-treatment of NAC for 1 hr. The cells were then stained with H2DCFDA (10 µM) for 
30 minutes and flow cytometry was used to measure ROS generation. (C) Control and treated cells were stained 
with Alexafluor 488 conjugated annexin V antibody and analyzed by flow cytometry for PS externalization. 
IDET, isodeoxyelephantopin; NAC, N-acetyl-L-cysteine.
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fluorescence and an increase in the green fluorescence (Fig. 5A). Overall, these results suggest that IDET induces 
depolarization in mitochondrial membrane potential.

Whether IDET can induce ROS generation in breast cancer cells was examined. MDA-MB-231 cells were 
exposed to 10 µM IDET for 1 hr and ROS generation was examined by staining the cells with H2DCFDA. 
As shown in Fig. 5B, the treatment of cells with 10 µM IDET produced 2.8 folds increase in ROS generation. 
Furthermore, the use of NAC almost completely suppressed the ROS generation induced by IDET. Similarly, 
the PS externalization induced by IDET was also suppressed by the use of NAC (Fig. 5C). Overall, these results 
suggest that IDET can induce ROS generation, which is required for apoptosis induction in breast cancer cells.

iDet reduces the migration of breast cancer cells. We examined if IDET can suppress the motility of 
breast cancer cells which is required for the invasion and metastasis. MDA-MB-231 cells were wounded at 70% 
confluency and cultured in the presence of IDET for 9–48 hrs. The wound area after 48 hrs in control, 1 µM and 
2.5 µM IDET groups was found to be 14%, 28%, and 40%, respectively (Fig. 6A). Similarly, the wound area was 
significantly healed in the control cells over time. However, IDET significantly suppressed the healing potential 
of cancer cells. For example, the healed area after 48 hrs was found to be 85%, 71%, and 59%, in the control, 1 µM 
and 2.5 µM IDET groups, respectively. In conclusion, IDET can suppress the motility of breast cancer cells.

Figure 6. The breast cancer cells migration is suppressed by IDET. (A) The MDA-MB-231 cells were seeded 
and allowed to grow till 70% confluency. The cells were then scratched using sterile micro tip and exposed to 
different concentrations of IDET. (B,C) The width of the scratched area over a period of time was visualized 
examined under phase contrast microscope. Then, the wound size and healed area (percent) was calculated. 
The migration potential of MDA-MB-231 cells was decreased by IDET. Where shown, the values are 
mean ± SE (3 experiments). *Shows the significance level in comparison to untreated group; P < 0.05. IDET, 
isodeoxyelephantopin.

https://doi.org/10.1038/s41598-019-52971-3


1 1Scientific RepoRtS |         (2019) 9:17980  | https://doi.org/10.1038/s41598-019-52971-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

IDET inhibits NF-κB activation and interacts with NF-κB associated proteins. The pro-inflammatory transcrip-
tion factor, NF-κB plays a crucial role in the survival, proliferation, migration and chemoresistance of breast 
cancer cells. Whether, the lactone can reverse the NF-κB activation induced by okadaic acid (OA) was examined. 
We treated MDA-MB-231 cells either with OA and IDET alone or with IDET followed by OA. The NF-κB p65 
cellular localization was examined by immunocytochemistry. An induction in the p65 nuclear translocation was 
observed after the treatment of cells with OA. IDET alone did not affect the localization of p65. However, by pre-
treatment of cells with IDET, OA induced p65 nuclear translocation was significantly suppressed.

Whether IDET and DET interact with NF-κB associated proteins was examined by in silico tools. The binding 
energies (kcal/mol) and Ki (dissociation constant, µM) values of p65, p50, inhibitor of kappa-B alpha (IκBα), 
transforming growth factor-β-activating kinase-1 (TAK-1) and IκB kinase alpha (IKKα) with IDET were −6.67 
and 12.86, −6.23 and 27.05, −5.19 and 156, −6.25 and 26.22, −6.15 and 30.89, respectively (Table 3). Similarly, 
the binding energies (kcal/mol) and Ki (µM) values of p65, p50, IκBα, TAK-1 and IKKα with DET were in a 
respective order of −6.51 and 16.99, −6.37 and 21.29, −4.46 and 539.25, −6.71 and 12.10, −5.81 and 54.83. 
The affinity of p65 with IDET (binding energy: −6.67 kcal/mol; Ki: 12.86 µM; 3 hydrogen bonds) was stronger 
as compared to DET (binding energy: −6.51 kcal/mol; Ki: 16.99 µM; 2 hydrogen bonds) (Fig. 7B,C). A similar 
pattern was observed for IκBα and IKKα. However, TAK-1 exhibited higher affinity for DET as compared to 
IDET (Table 3).

iDet modulates the lncRnAs expression in breast cancer cells. The lncRNAs are known to mod-
ulate multiple steps of tumor development. Some lncRNAs such as NKILA and H19 can also cross talk with 
NF-κB. Whether the expression of lncRNAs is modulated by IDET was examined. The lactone up-regulated 
the expression of growth arrest specific 5 (GAS5), NKILA, ANRIL, tumor necrosis factor α-induced protein 3 
(lincRNA-Tnfaip3) and HOTAIR in a concentration dependent manner (Fig. 8). For example, the expression of 
GAS5 was induced by 1.3 folds, 2.3 folds and 3.2 folds at 1, 2.5 and 5 µM IDET, respectively. Similarly, a respective 
4.7 folds, 5.1 folds and 7.5 folds increase in NKILA expression was observed by 1, 2.5 and 5 µM IDET, respectively. 
Conversely, H19 expression was reduced by IDET in a concentration dependent manner. Collectively, IDET can 
modulate the lncRNAs expression pattern in breast cancer cells.

Discussion
The multigenic breast cancer is the leading cause of cancer associated deaths in women globally. The 
pro-inflammatory NF-κB is known to regulate multi-steps of breast tumor development and chemoresistance. 
Therefore, the suppression of NF-κB activation can prevent or delay the onset of breast tumor development. The 
Mother Nature has been a gold mine for the discovery of anti-cancer agents. Roughly 50% of the anticancer agents 
approved between 1940 and 2014 were derived from Nature. In this study, we examined the activities of sesqui-
terpene lactones such as IDET and DET against breast cancer. The molecular mechanism by which the lactones 
exhibit activities was also examined.

IDET was more effective in reducing the proliferation of breast cancer cells as compared to DET. Both the 
lactones contain α-methylene-γ-lactone which can contribute to their cytotoxic activities36. The γ-lactone ring 

Receptor

Binding Energy 
(kcal/mol) Ki (µM) Binding residues H-Bonds

Distance 
(Å) H-Bonds

Distance 
(Å)

IDET DET IDET DET IDET DET IDET DET

p65 (PDB: 
1NFI) −6.67 −6.51 12.86 16.99

Lys37, Pro87, Glu89, 
Gln119, Cys120, 
Val121, Lys122, 
Arg124, Asp125, 
Gln128, Ala129, 
Arg133

Tyr36, Lys37, Glu89, Gln119, 
Cys120, Val121, Lys122, 
Arg124, Asp125, Gln128, 
Ala129, Gln132, Arg133

CYS120:N-IDET1:O 3.15151 LYS122:N-DET:O 2.63244

ARG124:NH1-IDET1:O 2.84434

ARG124:NH2-DET:O 3.17358
ARG124:NH2-IDET1:O 2.96715

p50 (PDB: 
1NFI) −6.23 −6.37 27.05 21.29

Gly266, Trp295, 
Gly297, Phe298, 
Asp300, Lys315, 
Thr316, Pro317, 
Lys318

Thr264, Gly266, Glu296,
Gly297, Phe298, Gly299, 
Asp300, Thr316, Pro317,
Lys318

PHE298:N-IDET:O 2.71851 PHE298:N-DET:O 3.19342

LYS318:N-IDET:O 2.92484 LYS318:N-DET:O 2.93974

IkBα (PDB: 
1NFI) −5.19 −4.46 156.00 539.25

Ser191, Ile192, 
His193, Gly194, 
Tyr195, Leu227, 
Asn229

Glu153, Asn180, Asn182,
His184, Leu189, Ile192,
His193, Leu223, Leu227

ASN229:ND2-IDET:O 3.16329
ASN182:ND2-DET:O 2.85601

ASN182:ND2-DET:O 3.20524

TAK-1 (PDB: 
2EVA) −6.25 −6.71 26.22 12.10

Val42, Gly43, Arg44, 
Gly45, Ala46, Val50, 
Ser111, Tyr113, 
Asn114, Pro160, 
Asn161, Asp175

Val42, Gly43, Arg44, Gly45, 
Val50, Gly110, Ser111, 
Tyr113, Asn114, Pro160,
Leu163

SER111:OG-IDET:O 2.84141 GLY45:N-DET:O 3.00685

SER111:OG:B-IDET1:O 2.82763 ASN114:ND2:B-
DET:O 3.06489

IKKα (PDB: 
5TQY) −6.15 −5.81 30.89 54.83

Glu118, Leu122, 
Asn309, Leu310, 
Lys311, Ile312, 
Val313, His314, 
Met383

Glu118, Leu310, Lys311,
Ile312, Val313, His314,
Met383

ILE312:N-IDET:O 3.15137 ILE312:N-DET:O 3.11097

HIS314:N-IDET:O 2.73251 ILE312:N-DET:O 2.8978

MET383:N-IDET:O 3.10888 HIS314:N-DET:O 2.75596

Table 3. Molecular docking analyses of IDET and DET with major proteins of NF-κB signaling pathway. 
Abbreviation: IDET, Isodeoxyelephantopin (PubChem ID: 38359583); DET, Deoxyelephantopin (PubChem ID: 
6325056).
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oxygen atom at C-2 is in β-orientation and α-orientation in DET and IDET, respectively. The presence of C11-C13 
exocyclic methylene in conjugation with γ-lactone can contribute to the cytotoxicity of both IDET and DET. In 
agreement with these observations, Helenain, a sesquiterpene lactone with reactive α, β-unsubstituted cyclopen-
tenone ring has been reported to exhibit potent cytotoxicity in cancer cell lines37. Why IDET is more potent than 
DET remains to be elucidated.

Apoptosis and necrosis are two common modes of cell death. While apoptosis is programmed mode of cell 
death, necrosis may result in inflammation which is a precursor to several chronic diseases including cancer38. 
Therefore, agents with potential to selectively induce apoptosis in cancer cells are preferred39. The presence of 
membrane blebbing, nuclear condensation, phosphatidylserine externalization and DNA laddering by IDET sug-
gest the potential of this lactone in inducing apoptosis in breast cancer cells. We observed that IDET suppresses 
the expression of cell survival (Bcl-xL, Bcl-2) and invasive (MMP-9) proteins. Furthermore, an induction in 
caspase cleavage was observed by IDET. Additionally, the lactone reduces the expression of mRNA transcripts 

Figure 7. IDET suppresses nuclear translocation of NF-κB-p65 and interacts with NF-κB-p65. (A) Cells 
were treated with 10 µM IDET. After 6 hrs, IDET was removed and cells were cultured in the presence of 
100 nM okadaic acid for 4 hrs. Immunocytochemistry was used to examine localization of NF-kB p65. Note a 
suppression in OA induced p65 nuclear translocation after IDET treatment. (B,C) Molecular docking for the 
interaction of p65 with IDET and DET.
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of genes involved in survival (survivin) and proliferation (cyclin D1). The lactone also induces the expression of 
proapoptotic gene, Bax. The early phases of apoptosis is associated with phosphatidylserine externalization, dis-
ruption of mitochondrial membrane potential (ΔΨ), insertion of proapoptotic proteins into the membrane and 
the cytochrome c release from mitochondria to the cytoplasm40. The ability of IDET to induce loss in ΔΨ suggest 
that the mitochondria is involved in the apoptosis induction by this lactone. NF-κB is known to regulate the 
expression of over 500 tumorigenic genes and proteins. The inhibitory effects of IDET on the tumorigenic genes 
and proteins may be due to the negative regulation of NF-κB activation pathway by this lactone. The mechanism 
of NF-κB inactivation by IDET in breast cancer cells was not examined. However, a previous study demonstrated 
the inhibitory effects of IDET on IKK, a central kinase in the NF-κB signaling pathway22. It is likely that the reduc-
tion in the NF-κB activity by IDET in breast cancer cells is due to its inhibitory effects on IKK activity.

Cancer cells are normally characterized by dysregulation in cell cycle41. Thus, targeting cell cycle could be a 
potential strategy for breast cancer therapy. We observed an accumulation of cells in the G2/M phase. Similar to 
these observations, IDET has been demonstrated to induce G2/M cell cycle arrest in A549 lung carcinoma cells42. 
Previous studies have demonstrated that Cdc2/Cyclin B1 complex regulate G2/M cell cycle arrest under oxidative 
stress43. IDET was found to induce ROS generation in breast cancer cells that was reversed by NAC. The chemo-
therapeutic agents and phytochemicals work through generation of ROS44. The mechanistic association between 
ROS generation and G2/M cell cycle arrest by IDET remains to be elucidated.

The cancer cell migration is an important step prior to the invasion and metastasis. The majority of the breast 
cancer deaths are because of the potential of the tumor to metastasize to other organs. In our observations, IDET 
significantly reduced the migration of MDA-MB-231 cells. Consistence with these observations, the expression of 
MMP-9, an invasive protein regulated by NF-κB was also suppressed. The reduction of NF-κB activation by IDET 
may be responsible for the suppression in MMP-9 expression and the inhibition of migration of MDA-MB-231 
cells.

Dysregulation in the lncRNAs expression plays a crucial role in several human malignancies including breast 
cancer45. An increase in the GAS5 and NKILA expression was observed after IDET treatment. Originally iden-
tified in breast cancer and located in the cytoplasm, NKILA masks the phosphorylation motifs of IκB by inter-
acting with p65-IκB subunits thereby suppressing NF-κB activation46. While NKILA is abundantly expressed 
in the normal breast epithelia, its low expression associates with breast cancer metastasis and poor patient 
prognosis. Further, the gene silencing of NKILA results in significant phosphorylation and degradation of IκB 
leading to enhanced NF-κB activation46. An up-regulation in NKILA expression by IDET may suppress IκB 
phosphorylation and NF-κB activation. Similar to these observations, the anti-invasive activities of TGF-β47 and 
anti-carcinogenic activities of baicalein48 are mediated through NKILA.

Figure 8. The lncRNA expression in breast cancer cells is modulated by IDET. MDA-MB-231 cells were 
exposed to indicated concentrations of IDET for 24 hrs. RNA was isolated, cDNA was synthesized and the 
lncRNAs expression pattern was assessed by quantitative RT-PCR. The oncogenic H19 expression was reduced 
while the tumor suppressive lncRNAs (GAS5, NKILA) expression was increased. *Shows the significance level 
in comparison to untreated group; P < 0.05.
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GAS5 is known to function as tumor suppressor in a number of cancer types49. This lncRNA can also induce 
apoptosis and reduce the tumor cells proliferation50. GAS5 is frequently decreased in the breast cancer tissues as 
compared to the adjacent non-tumor tissues51. The chemo-resistant breast cancer cells also exhibit significantly 
lower expression of GAS551. The development of chemoresistance by tumor cells is a major roadblock to cancer 
therapy. In our observations, IDET enhanced the breast cancer cells sensitivity to doxorubicin. While GAS5 expres-
sion was low under normal conditions in breast cancer, its expression was significantly upregulated by IDET. The 
upregulation in GAS5 expression by IDET may be responsible for its anti-proliferative, apoptosis inducing and 
chemosensitization activities. The chemosensitization properties of IDET are significant as the breast cancer cells 
develop resistance to chemotherapeutic drugs over time. Similar to these observations, downregulation in GAS5 
expression decreases the therapeutic effects of dendrosomal curcumin in breast cancer cells52. Similarly, gambogic 
acid induced GAS5 expression can produce pro-apoptotic effects in bladder cancer cells53. The oncogenic H19 is 
constitutively expressed in multiple cancer types including breast cancer28,54. H19 expression also correlate with 
NF-κB activation54 and paclitaxel resistance55. The suppression in H19 expression by IDET may be another possi-
bility for the inhibition of NF-κB activation and sensitization of breast cancer cells to doxorubicin. The oncogenic 
role of ANRIL and HOTAIR is reported in the breast cancer model56. An upregulation in the expression of ANRIL 
and HOTAIR by IDET may be a compensatory mechanism in response to the suppressed expression of other onco-
genic lncRNAs and upregulation of tumor suppressor lncRNAs. Although the lincRNA-Tnfaip3 is an early response 
gene controlled by NF-κB in murine macrophages57, its role in the breast cancer model remains to be elucidated.

The In Silico data revealed the drug like properties of both IDET and DET. The Lipinski’s ‘rule of five’ suggest 
that most drug-able compounds have molecular weight ≤500, LogP ≤ 5, number of hydrogen bond donors ≤5, 
and number of hydrogen bond acceptors ≤1058. Both IDET and DET obeyed these rules. The pharmacokinetics 
analyses revealed that both lactones can cross the blood brain barrier and have better intestinal absorption. The 
lack of any evidence for carcinogenic and genotoxic properties further support that both lactones can be good 
drug candidate.

In conclusion, IDET exhibit anti-carcinogenic, pro-apoptotic and anti-proliferative activities in breast can-
cer cells. Further, IDET is potent as compared to DET. The NF-κB inactivation and the modulation in lncRNA 
expression may be underlying mechanism for the anti-carcinogenic activities of IDET. However, whether NF-κB 
regulate lncRNA expression or later regulate the former in response to IDET is unclear. Whether the micromolar 
concentrations of IDET used in the current study are physiologically relevant remains to be elucidated. However, 
a previous study demonstrated that IDET exhibit anti-inflammatory activities only in cancer cells but not in nor-
mal lymphocyte59. Future studies should examine the activities of the lactone in the breast cancer animal model. 
The thorough pharmacokinetics and pharmacodynamics studies in animal models should also be performed 
before IDET can be tested in humans by clinical trial.
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