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A FAMILY OF U(1)-INVARIANT PEAKON EQUATIONS
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Abstract. The Cauchy problem for a unified family of integrable U(1)-invariant peakon equa-

tions from the NLS hierarchy is studied. As main results, local well-posedness is proved in Besov

spaces, and blow-up is established through use of an L
1 conservation law.
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1. Introduction

In the past thirty years, the remarkable Camassa-Holm (CH) equation [6]

mt + umx + 2uxm = 0, m = u− uxx (1.1)

has attracted much attention in the literature on nonlinear systems. The CH equation can be

derived from the Hamiltonian structure of Euler’s equations through an approximation modelling

the shallow water scenario. In particular, it describes the propagation of water waves over a

flat bottom in shallow water [6, 27]. It was also implied as a very special case in the work of

Fuchssteiner and Fokas [24] on hereditary symmetries.

The CH equation is a completely integrable system possessing a bi-Hamiltonian structure with

an infinite number of conservation laws [6,24], and is able to be solved by the inverse scattering

method [5, 12, 14, 18, 20, 30]. One of the main features of interest in the CH equation is the

following peaked wave solution

u(x, t) = c e−|x−ct|, c ∈ R, (1.2)

called a peakon. These waves are weak solutions which are orbitally stable in the energy space [19,

21]. The CH equation also possesses multi-peakon weak solutions given by a linear superposition

of peaked waves having time-dependent amplitudes and speeds, where the individual peakons

retain their shape after interactions. Another main feature of the CH equation is the phenomena

of blow-up [8–11, 13, 33] in which certain initial data for strong solutions evolves such that the
1
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slope of the wave becomes unbounded in a finite time while the wave profile remains bounded.

There are also global weak solutions that persist after the blow up [6, 41].

In addition, the CH equation has several interesting geometrical aspects. It describes geodesic

flows in the volume-preserving diffeomorphism group of the line (or circle) [16,28,29,41], as well

as non-stretching curve flows in centro-equiaffine planar geometry [38]. Moreover, it possesses

algebro-geometric solutions on a symplectic submanifold [36].

The CH equation has a close relationship with the Korteweg-de Vries (KdV) equation ut +

uux + uxxx = 0 which itself is a well-known integrable equation. Both of these equations have a

quadratic nonlinearity and have one Hamiltonian structure in common [2,3]. More importantly,

the CH equation is a negative flow in the AKNS hierarchy of integrable equations containing

the KdV equation, and they are connected to each other by a reciprocal transformation. An

interesting related feature is that the bi-Hamiltonian structures of the CH equation and the KdV

equation are connected by a tri-Hamiltonian splitting method [35].

There are three similarly related pairs of integrable equations that have a cubic nonlinearity.

The best known pair is the modified KdV equation (mKdV) ut+u2ux+uxxx = 0 and its peakon

counterpart

mt + (m(u2 − u2
x))x = 0, m = u− uxx, (1.3)

called the Fokas-Olver-Rosenau-Qiao (FORQ) equation which was derived independently in

Ref. [22, 23, 35, 37]. This pair has the same remarkable features as the KdV equation and the

CH equation. For this reason, the FORQ equation is also known as the modified CH equation

(mCH). Its peakon solutions are given by

u(x, t) = ±
√

3
2
c e−|x−ct|, c ∈ R

+, (1.4)

which are unidirectional (in contrast to the CH peakon solutions). A large amount of work has

been done on the mCH equation, studying the Cauchy problem, the formation of singularities,

wave-breaking mechanism, and peakon stability (see, e.g., [25, 26] and references therein).

The other two pairs of integrable equations are U(1)-invariant extensions of the mKdV–mCH

pair which have been derived recently [1] by the tri-Hamiltonian splitting method.

One pair is given by the complex mKdV equation ut + |u|2ux + uxxx = 0 which is also known

as the Hirota equation, and the Hirota-type peakon equation [1, 40]

mt + ((|u|2 − |ux|2)m)x + (ūux − uūx)m = 0, m = u− uxx. (1.5)

Another pair consists of the NLS equation iut + |u|2u+ uxx = 0 and its peakon counterpart [1]

imt + ((ūux − uūx)m)x + (|u|2 − |ux|2)m = 0, m = u− uxx. (1.6)

Both this NLS-type peakon equation (1.6) and the Hirota-type peakon equation (1.5) are negative

flows in the AKNS hierarchy of integrable equations containing the NLS and Hirota equations [1].

They are also a special case of 2-component peakon systems studied in recent work [39,40] (when

the components therein are complexified and U(1)-invariance is imposed, combined with t → it

in the case of the NLS-type peakon equation). The real reduction of the Hirota-type peakon
2



equation is given by the FORQ/mCH equation. In contrast, the NLS-type peakon equation has

no real reduction.

Very recently, the NLS-type and Hirota-type peakon equations have been unified into the

following one-parameter family of integrable U(1)-invariant peakon equations [3]

mt + (Re (eiθ(u+ ux)(ū− ūx))m)x − i Im (eiθ(u+ ux)(ū− ūx))m = 0, m = u− uxx (1.7)

where θ ∈ [0, π) is the parameter. Note that θ = 0 yields the Hirota-type peakon equation (1.5),

and that θ = π/2 yields the NLS-type peakon equation (1.6). A Lax pair and bi-Hamiltonian

structure for the family is presented in Ref. [3].

A straightforward computation using the method of Ref. [1] shows that the peakon weak

solutions of the peakon equation family (1.7) have the form of oscillatory peaked waves

u = aeiφeiωt−|x−ct| (1.8)

with the amplitude a, speed c, and frequency ω satisfying

c = 2
3
a2 cos θ, ω = 2

3
a2 sin θ. (1.9)

(Equivalently,
√
c2 + ω2 = 2

3
a2 and ω/c = tan θ.) These peakons (1.8) reduce to the mCH peakon

multiplied by a constant phase in the Hirota case θ = 0, whereas in the NLS case θ = 1
2
π, they

become a stationary breather.

In the present paper, we will establish local well-posedness and blow-up results for strong

solutions of the peakon equation family (1.7).

Local well-posedness will be proved for the Cauchy problem in Besov spaces, extended to the

setting of U(1)-invariant norms. Compared to Sobolev spaces, one advantage of working with

Besov spaces is that the proof of the blow up criterion is insensitive to the regularity index. The

blow-up mechanism will utilize a transport equation method [25] similar to how blow-up has

been proven for the FORQ/mCH equation. However, the FORQ/mCH blow-up analysis relies

on having a global sign condition on the initial data m0(x) = m(0, x). It is possible to replace

this condition by a local-in-space condition involving the initial slope of the velocity field u2−ux
2

in addition to the initial data for m. This is made possible by using the transport equation for m

to show that the L1 norm m is conserved [7]. The same approach will be used here. Specifically,

the L1 norm m will be shown to be conserved for initial-value solutions to the peakon equation

family (1.7), and this global conservation will then be used to establish a local-in-space blow

up condition that involves the initial slope of the velocity field Re (eiθ(u+ ux)(ū− ūx)) and the

initial data for m.

As we will see in the analysis, the initial-value solution for the peakon equation family (1.7) in

general has oscillatory-in-time properties along the characteristic of the velocity field, whereas for

the FORQ/mCH equation (1.3) it does not. Consequently, any global-in-space sign conditions

on initial data for m are not a priori preserved in time. This interesting feature may indicate

some essential difference between the dynamics in the U(1)-invariant peakon equation compared
3



to the FORQ/mCH equation, since the U(1)-invariant peakon equation is intrinsically a two-

component coupled system. The oscillatory-in-time dynamics has not been seen previously in

other two-component peakon systems.

The rest of the paper is organized as follows.

In Section 2, the main results are stated. Proofs of the local well-posedness Theorem 2.1 and

the L1 conservation Theorem 2.2 for the peakon equation (1.7) are provided in Section 3 and

Section 4, respectively. In Sections 5 and 6, the precise blow-up criterion Theorem 2.3 and the

main blow-up result Theorem 2.4 are presented, respectively. Finally, some concluding remarks

are made in Section 7.

The basic aspects of Besov spaces and the corresponding linear transport theory needed for

the main results are summarized in the Appendix.

2. Main Results

We begin by stating some preliminaries that will be needed for the main results.

It will be convenient to introduce the expression

Q = (u+ ux)(ū− ūx) = |u|2 − |ux|2 + 2iIm (ūux) (2.1)

so that the peakon equation family (1.7) can be written succinctly as

mt + (Re (eiθQ)m)x − i Im (eiθQ)m = 0, m = u− uxx. (2.2)

The transport form of this equation is given by

mt + Jmx = Km (2.3)

with

J = Re (eiθQ), (2.4)

K = iIm (eiθQ)− Re (eiθQx), (2.5)

where

Qx = (u+ ux)m̄− (ū− ūx)m = Re (ūxm)− 2iIm (ūm). (2.6)

Since equation (2.2) is invariant under the U(1) group of constant phase rotations

m → eiφm, φ ∈ R,

it will be natural to work with U(1)-invariant norms. For a complex function f = f1 + if2 on

R, we define

‖f‖Lp(R) =

(
∫

R

|f1(x) + if2(x)|pdx
)

1
p

=

(
∫

R

(|f1|2 + |f2|2)
p
2dx

)
1
p

=

(
∫

R

(f f̄)
p
2dx

)
1
p

(2.7)

which is manifestly invariant under f → eiφf . This U(1)-invariant norm for complex functions

is equivalent to the standard norm

‖(f1, f2)‖Lp(R) = ‖f1‖Lp(R) + ‖f2‖Lp(R)

4



for corresponding pairs of real functions, as shown in the Appendix. Consequently, the Besov

norms

‖m‖Bs
p,r(R) = ‖m1 + im2‖Bs

p,r(R) (2.8)

and

‖(m1, m2)‖Bs
p,r(R) = ‖m1‖Bs

p,r
+ ‖m2‖Bs

p,r(R)

on the complex peakon momentum variable m = m1 + im2 are equivalent. Moreover, for any

constant C ∈ C,

‖Cm‖Bs
p,r(R) = |C|‖m‖Bs

p,r(R).

We will now state the main theorems. Hereafter, all norms will refer to the U(1)-invariant

versions (2.7) and (2.8).

We begin with the statement of local well-posedness in Besov spaces.

Theorem 2.1. (Well-posedness) Let 1 ≤ p, r ≤ ∞ and s > max(1
2
, 1
p
). Then for any initial

data m0 ∈ Bs
p,r(R), the peakon equation (1.7) has a unique solution

m ∈







C([0, T ∗);Bs
p,r(R)) ∩ C1([0, T ∗);Bs−1

p,r (R)), if r < ∞
Cω([0, T

∗);Bs
p,∞(R)) ∩ C0,1([0, T ∗);Bs−1

p,∞(R)), if r = ∞
(2.9)

for 0 ≤ t < T ∗, where the maximal existence time satisfies

T ∗ ≥ C

‖m0‖2Bs
p,r(R)

(2.10)

for some constant C > 0. Moreover, the solution m depends continuously on the initial data m0.

Next we state the L1 conservative law.

Theorem 2.2. (L1 Conservation) For initial data m0 ∈ Hs(R)∩L1(R), with s > 1
2
, let T ∗ be

the maximal existence time of the corresponding solution m to the peakon equation (1.7). Then,

for 0 ≤ t < T ∗,
d

dt

∫

R

|m(t, x)|dx = 0, (2.11)

and hence ‖m‖L1(R) = ‖m0‖L1(R).

In addition to this conservation law, both of the Hamiltonians in the bi-Hamiltonian structure

[3] for strong solutions are conserved:

d

dt

∫

R

(

sin θRe (ūm) + cos θIm (ūxm)
)

dx = 0,

d

dt

∫

R

(

1
4
(|u|2 − |ux|2)(sin θRe (ūm) + cos θIm (ūxm))

+ 1
2
Im (ūux)(sin θIm (ūxm)− cos θRe (ūm))

)

dx = 0.

The first conservation law reduces to conservation of the U(1)-invariant H1 norm of u when

θ = 1
2
π.
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Now we state the precise blow-up criterion for the peakon equation (1.7), which comes from

transport theory.

Theorem 2.3. (Blow-up criterion) For initial data m0 ∈ Hs(R), with s > 1
2
, let T > 0 be

the maximal existence time of the corresponding solution m to the peakon equation (1.7). Then

m blows up in finite time if and only if

lim sup
t↑T

inf
x∈R

Re (eiθ((u+ ux)m̄− (ū− ūx)m)) = −∞. (2.12)

Combining this blow-up criterion and the L1 conservation law, we can obtain the following

blow-up result.

Theorem 2.4. (Blow-up) Let m0 ∈ Hs(R) ∩ L1(R), with s > 1
2
, such that there exists some

x0 ∈ R and some constant C0 > 0 for which

Re (eiθQx(x0)) ≤ −
√

2C0|m0(x0)| < 0 (2.13)

with Qx given by expression (2.6). Then the corresponding solution m to the peakon equation

(1.7) blows up at the finite time

T ∗ =
|Re (eiθQx)(x0)| −

√

|Re (eiθQx(x0))|2 − 2C0|m0(x0)|
C0|m0(x0)|

> 0. (2.14)

We will prove Theorems 2.1, 2.2, 2.3, and 2.4 in sections 3, 4, 5, and 6, respectively.

3. Local well-posedness

The local well-posedness of the peakon equation (1.7) in Theorem 2.1 can be established by

means of a standard Picard scheme using Littlewood-Paley decomposition theory in Besov spaces

(see the Appendix for details), applied to the equation in transport form

mt + Jmx = Km, m|t=0 = m0. (3.1)

There are three main steps, which are proved in the subsequent three subsections. Hereafter,

all spaces will be understood to have the domain R, and we assume s > max{1
2
, 1
p
}.

To establish uniform boundedness of the approximate solutions in the Picard scheme, we work

in the space Bs
p,r. Convergence of these solutions is then proved in the space Bs−1

p,r , which is a

weaker space than Bs
p,r because of the embedding relation Bs

p,r →֒ Bs−1
p,r .

3.1. Uniform boundedness of the approximate solutions. Consider the linear transport

system

m
(k+1)
t + J (k)m(k+1)

x = K(k)m(k), m(k+1)|t=0 = Sk+1m0, k ∈ N (3.2)

with smooth data m0, where Sq is the low frequency cut-off operator (see Remark A.3). We

start from u(0) = m(0) = 0, and assume that, for all 0 ≤ t < T ,

m(k)(t, x) ∈ Es
p,r :=







C([0, T );Bs
p,r) ∩ C1([0, T );Bs−1

p,r ), if r < ∞
Cω([0, T );B

s
p,∞) ∩ C0,1([0, T );Bs−1

p,∞), if r = ∞
. (3.3)

6



Our goal in this subsection will be to show that (3.3) holds for m(k+1).

From linear transport theory, the solutionm(k+1) of equation (3.2) satisfies the a priori estimate

(see Lemmas A.8 and A.9)

‖m(k+1)‖Bs
p,r

≤ eCα(k)(t)‖Sk+1m0‖Bs
p,r

+

∫ t

0

eC(α(k)(t)−α(k)(τ))‖K(k)(τ)m(k)(τ)‖Bs
p,r
dτ (3.4)

where C is some positive constant, and where

α(k)(t) :=















∫ t

0
‖∂xJ (k)(τ)‖

B
1/p
p,∞∩L∞

dτ, s < 1 + 1
p
,

∫ t

0
‖∂xJ (k)(τ)‖Bs−1

p,r
dτ, s > 1 + 1

p
, r > 1; s = 1 + 1

p
, r = 1

∫ t

0
‖J (k)(τ)‖Bs+1

p,r
dτ, s = 1 + 1

p
, r > 1

.

Each term on the right-hand side of (3.4) can be controlled in terms of ‖m(k)‖Bs
p,r

and ‖m0‖Bs
p,r

as follows.

First, we have

‖Sk+1m0‖Bs
p,r

≤ C0‖m0‖Bs
p,r

(see Remark A.3) for some positive constant C0.

Next, since u(k) = (1 − ∂2
x)

−1m(k) where the symbol of the operator (1 − ∂2
x)

−1 is (1 + ξ2)−1

which is an S−2-multiplier, then by Lemma A.5(viii)) we have

‖u(k)‖Bs
p,r

= ‖(1− ∂2
x)

−1m(k)‖Bs
p,r

≤ C‖m(k)‖Bs−2
p,r ≤ C‖m(k)‖Bs

p,r

‖u(k)
x ‖Bs

p,r
= ‖(1− ∂2

x)
−1m(k)

x ‖Bs
p,r

≤ C‖m(k)‖Bs−1
p,r

≤ C‖m(k)‖Bs
p,r
.

Hence we obtain

‖u(k) ± u(k)
x ‖Bs

p,r
≤ C‖m(k)‖Bs

p,r
.

To proceed, we use the properties that Bs
p,r is an algebra and obeys the embedding Bs

p,r →֒
Bs−1

p,r →֒ Bs−2
p,r , whereby

‖ReK‖Bs
p,r

= ‖J (k)
x ‖Bs

p,r
≤ ‖Q(k)

x ‖Bs
p,r

≤ C1

∥

∥Q(k)
∥

∥

Bs+1
p,r

≤ 4C1‖m(k)‖2Bs
p,r

(3.5)

and

‖ImK‖Bs
p,r

≤ ‖Q(k)‖Bs
p,r

≤ 4‖m(k)‖2Bs
p,r

(3.6)

where C1 is some positive constant. Then we have the bounds

Cα(k)(t) ≤ C2

∫ t

0

‖m(k)(τ)‖2Bs
p,r

dτ,

C(α(k)(t)− α(k)(τ)) ≤ C2

∫ t

τ

‖m(k)(τ)‖2Bs
p,r

dτ,

where C2 = 4C1C is a positive constant.

Hence, for the two terms on the right-hand side of (3.4), we obtain

eCα(k)(t)‖Sk+1m0‖Bs
p,r

≤ C0e
C2

∫ t
0 ‖m(k)(τ)‖2

Bs
p,r

dτ‖m0‖Bs
p,r

7



and
∫ t

0

eC(α(k)(t)−α(k)(τ))‖K(k)(τ)m(k)(τ)‖Bs
p,r

dτ ≤ 4(1 + C1)

∫ t

0

e
C2

∫ t
τ ‖m(k)(t′)‖2

Bs
p,r

dt′‖m(k)(τ)‖3Bs
p,r

dτ.

Combining these terms, we get the estimate

‖m(k+1)‖Bs
p,r

≤ C0e
C2

∫ t
0 ‖m(k)(t′)‖2

Bs
p,r

dt′‖m0‖Bs
p,r

+4(1+C1)

∫ t

0

e
C2

∫ t
τ ‖m(k)(t′)‖2

Bs
p,r

dt′‖m(k)(τ)‖3Bs
p,r

dτ.

(3.7)

Now we want to control the terms on the right-hand side of (3.7) strictly in terms of ‖m0‖Bs
p,r
.

We will use the an induction argument.

Fix a T > 0 such that

1− C̃‖m0‖2Bs
p,r
T > 0 (3.8)

for some C̃ > 0. Suppose that, for a.e. t ∈ [0, T ] and k ∈ N, m(k)(t) obeys the bound

‖m(k)(t)‖Bs
p,r

≤
Ĉ‖m0‖Bs

p,r
√

1− C̃‖m0‖2Bs
p,r
t

(3.9)

where Ĉ > 0 will be suitable chosen. Clearly, this bound is valid when k = 0, since m(0) = 0.

To show that the bound (3.9) holds for m(k+1)(t), we first note that

∫ t

τ

‖m(k)(t′)‖2Bs
p,r

dt′ ≤ Ĉ2

C̃
ln

(

1− C̃‖m0‖2Bs
p,r
τ

1− C̃‖m0‖2Bs
p,r
t

)

,

and thus

e
C2

∫ t
τ ‖m(k)(t′)‖2

Bs
p,r

dt′ ≤
(

1− C̃‖m0‖2Bs
p,r
τ

1− C̃‖m0‖2Bs
p,r
t

)a

where a = C2Ĉ
2/C̃. Then we use the estimate (3.7) to obtain

‖m(k+1)‖Bs
p,r

≤ (1− C̃‖m0‖2Bs
p,r
t)−a

(

C0‖m0‖Bs
p,r

+ 4(1 + C1)Ĉ
3‖m0‖3Bs

p,r

∫ t

0

(1− C̃‖m0‖2Bs
p,r
τ)a−3/2 dτ

)

=
(

C0 − 8
1−2a

(1 + C1)(Ĉ
3/C̃)

)

‖m0‖Bs
p,r
(1− C̃‖m0‖2Bs

p,r
t)−a

+ 8
1−2a

(1 + C1)(Ĉ
3/C̃)‖m0‖Bs

p,r
(1− C̃‖m0‖2Bs

p,r
t)−1/2

= 8
1−2a

(1 + C1)(Ĉ
3/C̃)

‖m0‖|Bs
p,r

√

1− C̃‖m0‖2Bs
p,r
t

if (1 + C1)(Ĉ
3/C̃) = 1−2a

8
C0 > 0. This will establish the bound (3.9) for m(k+1)(t) if (1 +

C1)(Ĉ
3/C̃) ≤ 1−2a

8
Ĉ. Hence, we need the positive constants Ĉ and C̃ to satisfy C2Ĉ

2 < 1
2
C̃,

Ĉ ≥ C0, and Ĉ2(1 + C1) ≤ 1
8
(C̃ − 2C2Ĉ

2). It is sufficient to let

C = max(4(1 + C1), C2, C0)

and choose C̃ = 4C3 and Ĉ = C, which can be readily verified to satisfy the preceding three

inequalities.
8



The induction step is now proved, and therefore, {m(k)(t)}k∈N in L∞([0, T ];Bs
p,r) is uniformly

bounded by the positive constant

CT :=
C‖m0‖Bs

p,r
√

1− 4C3‖m0‖2Bs
p,r
T
. (3.10)

By Lemma A.11, we see that the sequence {mk}k∈N is bounded in Es
p,r(T ).

3.2. Convergence and regularity of the solutions. Our next goal will be to prove that

{m(k)}k∈N is a Cauchy sequence in C([0, T ];Bs−1
p,r ). Consider

m(k+1,l) := m(k+l+1) −m(k)

which, from the linear transport system (3.2), satisfies

m
(k+1,l)
t + J (k+l)m(k+1,l)

x = R(k+1,l), R(k+1,l) := (J (k) − J (k+l))m(k+1)
x +K(k+l)m(k+l) −K(k)m(k),

with initial data

m(k+1,l)|t=0 = (Sk+l+1 − Sk+1)m0.

Applying the a priori estimate given by Lemmas A.8 and A.9, and recalling that s > max(1
2
, 1
p
),

we obtain

‖m(k+1,l)(t)‖Bs−1
p,r

≤ eCβ(k+l)(t)‖(Sk+l+1 − Sk+1)m0‖Bs−1
p,r

+ C

∫ t

0

eC(β(k+l)(t)−β(k+l)(τ))‖R(k+1,l)(τ)‖Bs−1
p,r

dτ
(3.11)

where

β(k)(t) :=















∫ t

0
‖∂xJ (k)(τ)‖

B
1/p
p,∞∩L∞

dτ, s− 1 < 1 + 1
p
,

∫ t

0
‖∂xJ (k)(τ)‖Bs−2

p,r
dτ, s− 1 > 1 + 1

p
, r > 1; s− 1 = 1 + 1

p
, r = 1

∫ t

0
‖J (k)(τ)‖Bs

p,r
dτ, s− 1 = 1 + 1

p
, r > 1

(3.12)

It is straightforward to bound β(k)(t), for all t ∈ [0, T ], due to the boundedness of ‖m(k)‖Bs
p,r
.

Specifically, in the first two cases,

‖∂xJ (k)‖Bs−2
p,r

≤ C‖J (k)‖Bs−1
p,r

≤ C‖J (k)‖Bs
p,r

= C‖eiθ(u(k) + u(k)
x )(ū(k) + ū(k)

x )‖Bs
p,r

≤ C‖m(k)‖2Bs
p,r
,

‖J (k)‖Bs
p,r

= ‖eiθ(u(k) + u(k)
x )(ū(k) + ū(k)

x )‖Bs
p,r

≤ C‖m(k)‖2Bs
p,r
.

In the third case, since s > 1/p whereby s+1 > 1+1/p, we have Bs
p,r →֒ L∞ and Bs+1

p,r →֒ B
1+1/p
p,∞

so thus ‖∂xJ‖L∞ ≤ C‖∂xJ‖Bs
p,r

≤ C‖J‖Bs+1
p,r

≤ C‖m‖2Bs
p,r

and ‖∂xJ‖B1/p
p,∞

≤ C‖J‖
B

1/p+1
p,∞

≤
C‖J‖Bs+1

p,r
≤ C‖m‖2Bs

p,r
. This implies

‖∂xJ‖B1/p
p,∞∩L∞

= ‖∂xJ‖B1/p
p,∞

+ ‖∂xJ‖L∞ ≤ C‖m‖2Bs
p,r
.

Hence,

β(k)(t) ≤ C

∫ t

0

‖m(k)(τ)‖2Bs
p,r

dτ ≤ CT . (3.13)
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To control the term in the a priori estimate (3.11) involving the initial data m0, we make the

following direct computation. Firstly, we have

‖(Sk+l+1−Sk+1)m0‖Bs−1
p,r

=
∥

∥

∑

1≤i≤l

∆k+im0

∥

∥

Bs−1
p,r

=
(

∑

j≥−1

2jr(s−1)‖∆j(
∑

1≤i≤l

∆k+im0)‖rLp

)
1
r . (3.14)

Secondly, the sum over j ≥ −1 has only a finite number of non-zero terms, since ∆j

∑

1≤i≤l

∆k+if =

0 for j ≤ k − 1 and j ≥ k + l + 2 by Remark A.3(ii), where f is any tempered distributions in

S ′. Therefore, we obtain

‖(Sk+l+1 − Sk+1)m0‖Bs−1
p,r

=
(

k+l+1
∑

j=k

2−jr2jrs‖∆j(
∑

1≤i≤l

∆k+im0)‖rLp

)
1
r

=
(

k+l+1
∑

j=k

2−jr2jrs‖∆j(Sk+l+1 − Sk+1)m0‖rLp

)
1
r

≤
(

k+l+1
∑

j=k

2−k2jrs‖∆j(Sk+l+1 − Sk+1)m0‖rLp

)
1
r .

(3.15)

Thirdly, we use the inequalities

‖∆j(Sk+l+1 − Sk+1)m0‖Lp = ‖(Sk+l+1 − Sk+1)∆jm0‖Lp

≤ ‖Sk+l+1∆jm0‖Lp + ‖Sk+1∆jm0‖Lp

≤ C‖∆jm0‖Lp.

This yields

‖(Sk+l+1 − Sk+1)m0‖Bs−1
p,r

≤ C 2−k
(

k+l+1
∑

j=k

2jsr‖∆jm0‖rLp

)
1
r

≤ C 2−k
(

∑

j≥−1

2jsr‖∆jm0‖rLp

)
1
r

= C 2−k‖m0‖Bs
p,r
,

(3.16)

which controls the initial data term in the a priori estimate (3.11).

Next, we need to control the term ‖R(k+1,l)‖Bs−1
p,r

in the a priori estimate (3.11). It consists of

three separate parts:

‖R(k+1,l)‖Bs−1
p,r

≤ ‖(J (k) − J (k+l))m(k+1)
x ‖Bs−1

p,r
+ ‖K(k)m(k) −K(k+l)m(k+l)‖Bs−1

p,r

≤ ‖(Q(k) −Q(k+l))m(k+1)
x ‖Bs−1

p,r
+ ‖Q(k)m(k) −Q(k+l)m(k+l)‖Bs−1

p,r

+ ‖Q(k)
x m(k) −Q(k+l)

x m(k+l)‖Bs−1
p,r

10



where

(Q(k) −Q(k+l))m(k+1)
x = ((u(k) + u(k)

x )(ū(k) − ū(k)
x )− (u(k+l) + u(k+l)

x )(ū(k+l) − ū(k+l)
x ))m(k+1)

x ,

(3.17)

Q(k)m(k) −Q(k+l)m(k+l) =
(

(u(k) + u(k))(ū(k) − ū(k)
x )
)

m(k)

−
(

(u(k+l) + u(k+l))(ū(k+l) − ū(k+l)
x )

)

m(k+l),
(3.18)

Q(k)
x m(k) −Q(k+l)

x m(k+l) =
(

(u(k) + u(k))(ū(k) − ū(k)
x )
)

x
m(k)

−
(

(u(k+l) + u(k+l))(ū(k+l) − ū(k+l)
x )

)

x
m(k+l).

(3.19)

Note that Bs−1
p,r is not guaranteed to be a Banach algebra, due to s > max(1

2
, 1
p
). But we still have

a Moser-type inequality ‖fg‖Bs−1
p,r

≤ C‖f‖Bs−1
p,r

‖g‖Bs
p,r

provided by Lemma A.6(ii) which holds

under the conditions s1 ≤ s2, s2 ≥ 1
p
, and s1 + s2 > max(0, 2

p
− 1), satisfied by the regularity

indices s1 = s − 1 and s2 = s. We can then control each part (3.17)–(3.19) by the method of

adding and subtracting terms to produce factors of the form ‖u(k+l) − u(k)‖Bs
p,r

≤ ‖m(k+1,l)‖Bs−1
p,r

or ‖u(k+l)
x − u

(k)
x ‖Bs

p,r
≤ ‖m(k+1,l)‖Bs−1

p,r
.

In expression (3.17), consider the group of terms

(ū(k+1)
x u(k+1)

x − ū(k)
x u(k)

x )m(k+1)
x = (ū(k+1)

x (u(k+1)
x − u(k)

x ) + u(k)
x (ū(k+1)

x − ū(k)
x ))m(k+1)

x .

Hence we have

‖(ū(k+1)
x u(k+1)

x − ū(k)
x u(k)

x )m(k+1)
x ‖Bs−1

p,r
= ‖(ū(k+l)

x (u(k+l)
x − u(k)

x ) + u(k)
x (ū(k+l)

x − ū(k)
x ))m(k+1)

x ‖Bs−1
p,r

≤ C‖u(k+l)
x − u(k)

x ‖Bs
p,r

(

‖u(k+l)
x ‖Bs

p,r
+ ‖u(k)

x ‖Bs
p,r

)

‖m(k+1)
x ‖Bs−1

p,r

≤ C‖m(k+l,k)‖Bs−1
p,r

(

‖m(k+1)‖Bs
p,r

+ ‖m(k)‖Bs
p,r

)

‖m(k+1)‖Bs
p,r

≤ C‖m(k+l,k)‖Bs−1
p,r

(

‖m(k+1)‖2Bs
p,r

+ ‖m(k)‖2Bs
p,r

)

.

The other three groups of terms in expression (3.17) can be estimated in the same way.

This gives

‖(Q(k) −Q(k+l))m(k+1)
x ‖Bs−1

p,r
≤ C‖m(k+l,k)‖Bs−1

p,r

(

‖m(k+1)‖2Bs
p,r

+ ‖m(k)‖2Bs
p,r

)

. (3.20)

Similarly, we can obtain the same estimate for the terms in (3.18) and (3.19):

‖Q(k)
x m(k) −Q(k+l)

x m(k+l)‖Bs−1
p,r

+ ‖Q(k)m(k) −Q(k+l)m(k+l)‖Bs−1
p,r

≤ C‖m(k+l,k)‖Bs−1
p,r

(

‖m(k+1)‖2Bs
p,r

+ ‖m(k)‖2Bs
p,r

)

.
(3.21)

Combining these estimates (3.20) and (3.21), we have

‖R(k+1,l)‖Bs−1
p,r

≤ C‖m(k+l,k)‖Bs−1
p,r

(

‖m(k+1)‖2Bs
p,r

+ ‖m(k)‖2Bs
p,r

)

≤ CT‖m(k+l,k)‖Bs−1
p,r

.
(3.22)

Now we substitute the main estimates (3.16) and (3.22) into the a priori estimate (3.11) and

use the estimate (3.13) for β(k)(t). This yields

‖m(k+1,l)(t)‖Bs−1
p,r

≤ CT

(

2−k +

∫ t

0

‖m(k,l)(τ)‖Bs−1
p,r

dτ
)

.
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Note that, for k = 0,

‖m(1,l)(t)‖Bs−1
p,r

= ‖m(l+1)(t)−m(0)(t)‖Bs−1
p,r

= ‖m(l+1)(t)‖Bs−1
p,r

≤ CT .

Then, by induction on k, we obtain

‖m(k+1,l)(t)‖Bs−1
p,r

≤ CT2
−k

k
∑

i=0

(2CT t)
i

i!

≤ CT

(

2−ke2CT t + 2
(CT t)

(k+1)

(k + 1)!

)

≤ CT

(

2−ke2CT T + 2
(CTT )

(k+1)

(k + 1)!

)

which establishes ‖m(k+1,l)(t)‖Bs−1
p,r

→ 0 uniformly for l ∈ N, as k → ∞.

So far, we have proved that {m(k)}k∈N is bounded in C([0, T ];Bs
p,r) with the bound CT ,

and that {m(k)}k∈N is a Cauchy sequence in C([0, T ];Bs−1
p,r ) and converges to m in the space

C([0, T ];Bs−1
p,r ) ⊂ L∞([0, T ];S ′). Therefore, by Fatou’s lemma (see A.5(vii)), we obtain

‖m‖L∞

T (Bs
p,r) ≤

C2‖m0‖Bs
p,r

√

1− 4C3‖m0‖2Bs
p,r
T

(3.23)

Finally, we can show that m solves equation (3.1) by the following steps.

Return to the linear transport system (3.2) and consider
∫ t

0

(

〈m(k+1), ∂tφ(τ)〉+ 〈m(k+1)(τ)J (k)(τ), ∂xφ(τ)〉+ 〈m(k+1)(τ)J (k)
x (τ)− 〈K(k)(τ)m(k)(τ), φ(τ)〉

)

dτ

= 〈m(k+1)(t), φ(t)〉 − 〈Sk+1m0, φ(0)〉

for any test function φ ∈ C1([0, T ];S). Applying Proposition A.7, we can take the limit as

k → ∞ and examine each term on the left-hand side. For instance, we see
∣

∣

∣

∣

∫ t

0

〈m(k+1)J (k)
x , φ〉dt′ −

∫ t

0

〈mJx, φ〉dτ
∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

〈m(k+1)J (k)
x −mJx, φ〉dτ

∣

∣

∣

∣

≤
∫ t

0

∣

∣〈(m(k+1) −m)J (k)
x , φ〉

∣

∣dτ +

∫ t

0

∣

∣〈m(J (k) − J)x, φ〉
∣

∣dτ

≤ T
(

‖(m(k+1) −m)J (k)‖L∞

T (Bs
p,r)‖φ‖L∞

T (B−s
p′,r′

) + ‖m(J (k) − J)x‖L∞

T (Bs
p,r)‖φ‖L∞

T (B−s
p′,r′

)

)

≤ CT

(

‖m(k+1) −m‖L∞

T (Bs
p,r) + ‖m(k) −m‖L∞

T (Bs
p,r)

)

‖φ‖L∞

T (B−s
p′,r′

) → 0 as k → ∞,

which shows that lim
k→∞

∫ t

0
〈m(k)J

(k)
x , φ〉dτ =

∫ t

0
〈mJx, φ〉dτ . The other terms can be examined by

similar computations. Therefore, for every t ∈ [0, T ], we have
∫ t

0

(

〈m, ∂tφ〉+ 〈mJ, ∂xφ〉+ 〈mJx, φ〉 − 〈Km, φ〉
)

dτ = 〈m(t), φ(t)〉 − 〈m0, φ(0)〉,
12



and consequently m solves equation (3.1). Lemma (A.11) then shows that m belongs to

C([0, T ];Bs
p,r) (respectively Cw([0, T ];Bs−1

p,r )) if r < ∞ (respectively r = ∞).

Noting that mt = Km − Jmx ∈ C([0, T ];Bs−1
p,r ) (respectively L∞([0, T ];Bs−1

p,r )) if r < ∞
(respectively r = ∞), we conclude that m ∈ Es

p,r(T ).

3.3. Uniqueness and continuity with respect to the initial data. Our first goal in this

subsection will be to establish uniqueness.

Let m and m̃ be two solutions to the peakon equation (2.3) with initial data m0 and m̃0:

mt + Jmx = Km, m|t=0 = m0,

m̃t + J̃m̃x = K̃m̃, m̃|t=0 = m̃0.

Taking the difference, we obtain

(m− m̃)t + J(m− m̃)x = (J̃ − J)m̃x +Km− K̃m̃, (m− m̃)|t=0 = m0 − m̃0. (3.24)

By computations similar to the ones in the previous subsection, we can show that, for a.e.

t ∈ [0, T ],

e−Cγ(t)‖(m− m̃)(t)‖Bs−1
p,r

≤ ‖m0 − m̃0‖Bs−1
p,r

+ C

∫ t

0

e−Cγ(τ)‖(J̃ − J)(τ)m̃x(τ) +K(τ)m(τ) − K̃(τ)m̃(τ)‖Bs−1
p,r

dτ

where

γ(t) :=

∫ t

0

‖m(τ)‖2Bs
p,r
dτ.

Estimates similar to (3.20) and (3.21) yield

‖(J̃ − J)m̃x +Km− K̃m̃‖Bs−1
p,r

≤ ‖m− m̃‖Bs−1
p,r

(

‖m‖2
Bs−1

p,r
+ ‖m̃‖2

Bs−1
p,r

)

.

According to Gronwall’s lemma, we see that, for a.e. t ∈ [0, T ],

‖(m− m̃)(t)‖Bs−1
p,r

≤ ‖m0 − m̃0‖Bs−1
p,r

exp

(

C

∫ t

0

(

‖m(τ)‖2Bs
p,r

+ ‖m̃(τ)‖2Bs
p,r

)

dτ

)

≤ ‖m0 − m̃0‖Bs−1
p,r

exp

(

C5T‖m0‖2Bs
p,r

1− 4C3‖m0‖2Bs
p,r
T

+
C5T‖m̃0‖2Bs

p,r

1− 4C3‖m̃0‖2Bs
p,r
T

)

through use of the bound (3.23). This establishes the uniqueness of solution m.

Our final goal will be to prove continuous dependence ofm on the initial data m0. Let E
s
p,r(T

∗)

denote the space (2.9).

For any q ≤ s− 1, since Bs−1
p,r →֒ Bq

p,r, we know

‖(m− m̃)(t)‖Bq
p,r

≤ C‖(m− m̃)(t)‖Bs−1
p,r

. (3.25)
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For s− 1 < q < s, we use the interpolation Lemma (A.1), with q = (s− q)(s− 1) + (q + 1− s)s

where (s− q) + (q + 1− s) = 1 and s− q, q + 1− s ∈ (0, 1), which gives

‖(m− m̃)(t)‖Bq
p,r

≤ ‖(m− m̃)(t)‖s−q

Bs−1
p,r

‖(m− m̃)(t)‖q+1−s
Bs

p,r

≤ (2CT )
q+1−s‖(m0 − m̃0)(t)‖s−q

Bs−1
p,r

e2(s−q)CT T .
(3.26)

These estimates (3.25) and (3.26) ensure the Hölder continuity of the solution map from the

initial data space Bs
p,r to the space Es′

p,r(T ) for any s′ < s. We also need to show that this map

is also continuous from Bs
p,r to Es

p,r. To proceed, we will need to introduce the following lemma

(proved in Ref [31]).

Lemma 3.1. Let 1 ≤ p ≤ ∞, 1 ≤ r < ∞, σ > 1 + 1
p
(or σ = 1 + 1

p
, r = 1, 1 ≤ p < ∞). Denote

N̄ = N ∪ {∞}. Let {vn}n∈N̄ ⊂ C([0, T ];Bσ−1
p,r ). Assume that vn is the solution to

∂tv
n + an∂xv

n = f,

vn|t=0 = v0,

with v0 ∈ Bσ−1
p,r , f ∈ L1(0, T ;Bσ−1

p,r ). Also assume that, for some g ∈ L1(0, T ),

sup
n∈N̄

‖an‖Bσ
p,r

≤ g(t).

If an → a∞ in L1(0, T ;Bσ−1
p,r ) when n → ∞, then vn → v∞ in C([0, T ];Bσ−1

p,r ) when n → ∞.

Now, for all n ∈ N̄, suppose mn ∈ C([0, T ];Bs
p,r) is the solution to equation (1.7) with initial

data mn,0 ∈ Bs
p,r:

∂tmn + Jn∂xmn = Knmn,

mn(t, x)|t=0 = mn,0(x).

Proposition 3.2. For 1 ≤ r < ∞ (or r = ∞), if mn,0 → m∞,0 in Bs
p,r as n → ∞, then

mn → m∞ in C([0, T ];Bs
p,r) (or Cw([0, T ];B

s
p,r)). Here T is a positive number satisfying

4C3 sup
n∈N̄

‖mn,0‖2Bs
p,r
T < 1.

Proof. Let fn = Knmn, and decompose mn = yn + zn such that

∂tyn + Jn∂xyn = f∞,

yn|t=0 = m∞,0,

and

∂tzn + Jn∂xzn = fn − f∞,

zn|t=0 = mn,0 −m∞,0.

When 1 ≤ r < ∞, the bound (3.23) and the uniqueness of the solution to equation (1.7) imply

that

‖mn‖L∞

T (Bs
p,r) ≤ M
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where

M :=
C2 supn∈N̄ ‖mn,0‖Bs

p,r
√

1− 4C3 supn∈N̄ ‖mn,0‖Bs
p,r
T
.

Hence, we seemn ∈ C([0, T ];Bs
p,r). This implies that un ∈ C([0, T ];Bs+2

p,r ) and ∂xun ∈ C([0, T ];Bs+1
p,r ),

and consequently, we have Kn = iIm (eiθQn)− Re (eiθQn,x) ∈ C([0, T ];Bs
p,r). Thus fn = Knmn

is uniformly bounded in C([0, T ];Bs
p,r).

Likewise,

‖Jn‖Bs+1
p,r

= ‖Re
(

eiθ(un + un,x)(ūn − ūn,x)
)

‖Bs+1
p,r

≤ C‖mn‖2Bs
p,r

≤ CM2.

Hence, we have

‖(Jn − J∞)(t)‖Bs+1
p,r

≤ C‖(mn −m∞)(t)‖Bs−1
p,r

.

Since s − 1 < s, the estimate (3.25) gives mn → m∞ in L1(0, T ;Bs−1
p,r ), and therefore Jn → J∞

in L1(0, T ;Bs+1
p,r ). Then by Lemma 3.1 with σ = s+ 1, we obtain

yn → m∞ in C([0, T ];Bs
p,r) as n → ∞. (3.27)

To control zn, we need to estimate fn − f∞:

‖fn − f∞‖Bs
p,r

= ‖Knmn −K∞m∞‖Bs
p,r

≤ C(‖mn‖2Bs
p,r

+ ‖m∞‖2Bs
p,r
)‖mn −m∞‖Bs

p,r
.

Applying Lemmas A.8, A.9 in Appendix, and using computations similar to previous ones, we

have

‖zn‖Bs
p,r

≤ e
C
∫ t
0 ‖mn‖2Bs

p,r
dt′
(

‖mn,0 −m∞,0‖Bs
p,r

+ C

∫ t

0

(‖mn‖2Bs
p,r

+ ‖m∞‖2Bs
p,r
)(‖mn −m∞‖Bs

p,r
)dt′
)

≤ CM2eCM2T
(

‖mn,0 −m∞,0‖Bs
p,r

+

∫ t

0

‖mn −m∞‖Bs
p,r
dt′
)

.

From (3.27), for any ε > 0, we can choose a sufficiently large n such that

‖yn −m∞‖Bs
p,r

< ε.

Thus,

‖mn −m∞‖Bs
p,r

≤ ‖zn‖+ ‖yn −m∞‖

≤ ε+ CM2eCM2T
(

‖mn,0 −m∞,0‖Bs
p,r

+

∫ t

0

‖mn(τ)−m∞(τ)‖Bs
p,r
dτ
)

.

We now use Gronwall’s inequality to get

‖(mn −m∞)(t)‖Bs
p,r

≤ C̃
(

ε+ ‖mn,0 −m∞,0‖Bs
p,r

)

for a.e. t ∈ [0, T ],

for some constant C̃ = C̃(s, p, R,M, T ). This establishes the continuity of (1.7) in C([0, T ];Bs
p,r)

with respect to the initial data in Bs
p,r for r < ∞.
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When r = ∞, by the inequality (3.25), we see that ‖mn −m∞‖L∞

T (Bs−1
p,r ) tends to 0 as n → ∞.

Hence for fixed φ ∈ B−s
p′,1, we have

〈mn −m∞, φ〉 = 〈Sj[mn −m∞], φ〉 − 〈(Id− Sj)[mn −m∞], φ〉
= 〈mn −m∞, Sjφ〉+ 〈mn −m∞, (Id− Sj)φ〉.

Applying Proposition A.7 in the Appendix, we have

|〈mn −m∞, (Id− Sj)φ〉| ≤ 2CM‖φ− Sjφ‖B−s
p′,1

, (3.28)

and

|〈mn −m∞, Sjφ〉| ≤ C‖mn −m∞‖L∞

T (Bs−1
p,r )‖Sjφ‖B1−s

p′,1
. (3.29)

Note that ‖φ − Sjφ‖B−s
p′,1

tends to zero as j → ∞ and that ‖mn − m∞‖L∞

T (Bs−1
p,r ) tends to zero

as n → ∞. Then the right hand-side of (3.28) will be arbitrarily small for j large enough. For

such fixed j, we let n go to infinity so that the right hand-side of (3.29) tends zero. Thus, we

conclude that 〈mn(t)−m∞(t), φ〉 tends to zero as n → ∞ for the case r = ∞. �

4. L1 conservation law

The L1 conservation law (2.11) in Theorem 2.2 is a generalization of the same conservation

law known [7] for the FORQ/mCH equation, and it can be proved by a similar method.

The main idea is to make a change of variables in the L1 norm by means of an increasing

diffeomorphism of R that arises from viewing J in the transport form (2.3) of the peakon equation

(1.7) as a velocity field. Thus, we begin by considering the initial value problem

ht(t, x) = J(t, h(t, x)), 0 < t < T,

h(0, x) = x, x ∈ R,
(4.1)

where J is expression (2.4) for the solution u of the peakon equation with initial data m0 ∈ Hs,

with s > 1
2
, and T is the existence time of u.

From classical results in ODE theory, the following properties of h(t, x) can be readily proven.

Lemma 4.1. The ODE problem (4.1) has a unique solution h ∈ C1([0, T )× R), with

hx(t, x) = exp

(
∫ t

0

Jx(τ, h(τ, x)) dτ

)

> 0. (4.2)

The resulting map h(t, ·) is an increasing diffeomorphism of R for all t ∈ [0, T ).

Proof. For m0 ∈ Hs, we have m ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1) since s > 1
2
, and hence

u ∈ C([0, T );Hs+2)∩C1([0, T );Hs+1). Therefore, J is in C([0, T );Hs+1)∩C1([0, T );Hs), which

is contained in the space of Lipschitz functions C([0, T );C0,1). According to ODE theory, this

implies there is a unique solution h ∈ C1([0, T )× R).

Differentiating (4.1) with respect to x yields

hxt(t, x) = Jx(t, h(t, x))hx(t, x), 0 < t < T,

hx(0, x) = 1, x ∈ R.
(4.3)
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Solving this ODE problem with hx as the unknown function, we obtain (4.2). �

We next show that the solution m to the peakon equation (1.7) along the line defined by

h(·, x) is an oscillatory function of t.

Lemma 4.2. Let m0 ∈ Hs, with s > 1
2
, and let h(t, x) be the solution to the ODE problem (4.1).

Let T > 0 be the existence time of the solution m(t, x) to the peakon equation (1.7). Then for

0 ≤ t < T ,

m(t, h(t, x)) = m0(x) exp

(
∫ t

0

K(τ, h(τ, x)) dτ

)

(4.4)

where K is expression (2.5).

Proof. Differentiating m(t, h(t, x)) with respect to t, and using equations (1.7) and (4.1), we get

d

dt

(

m(t, h(t, x))
)

= mt(t, h(t, x)) +mx(t, h(t, x))J(t, h(t, x))

= K(t, h(t, x))m(t, h(t, x)).
(4.5)

Next we multiply (4.5) by the integrating factor e−
∫ t
0 K(τ,h(τ,x)) dτ and integrate starting at t = 0

with the initial condition m(0, h(0, x)) = m(0, x) = m0(x). This yields (4.4). �

Remark 4.3. Relation (4.4) shows that the solution has temporal oscillatory properties since K

has a non-vanishing imaginary part. It also can be used to establish finite propagation properties

for the peakon equation (1.7).

4.1. Proof of Theorem 2.2. Now we can prove conservation of the L1 norm of m via a change

of variables using the increasing diffeomorphism h(t, ·) for all 0 ≤ t < T .

First, we have

m(t, h(t, x))hx(t, x) = m0(x) exp

(
∫ t

0

K(τ, h(τ, x)) dτ

)

exp

(
∫ t

0

Jx(τ, h(τ, x)) dτ

)

= m0(x) exp

(

i

∫ t

0

Im (eiθQ(τ, h(τ, x))) dτ

)

from relation (4.4) and equation (4.2), combined with expression (2.5). Thus, |m(t, h(t, x))hx(t, x)| =
|m0(x)| by U(1) invariance. This allows the L1 norm to be evaluated as

‖m‖L1 =

∫

R

|m(t, x)|dx =

∫

R

|m(t, h(t, x))hx(t, x)|dx

=

∫

R

|m0(x)|dx = ‖m0‖L1 .

Hence, Theorem 2.2 is proved.
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5. Blow-up criterion

We start by introducing the following blow-up criterion of integral form.

Lemma 5.1. Let m0 ∈ Bs
p,r with 1 ≤ p, r ≤ ∞ and s > max(1

2
, 1
p
). If the maximal existence

time T > 0 of the corresponding solution m to the peakon equation (1.7) is finite, then
∫ T

0

‖m(t)‖2L∞dt = ∞.

Proof. Argue by contradiction. Suppose
∫ T

0
‖m‖2L∞dt < ∞. Noting s > max(1/2, 1/p) > 0 and

applying Lemma A.10, we can obtain, for ∀ t ∈ [0, T ),

‖m(t)‖Bs
p,r

≤ ‖m0‖Bs
p,r

+

∫ t

0

‖Km(τ)‖Bs
p,r
dτ + C

∫ t

0

(

‖m(τ)‖Bs
p,r
‖Jx‖L∞ + ‖m(τ)‖L∞‖Jx‖Bs

p,r

)

dτ.

According to the product laws in Lemma (A.6) (1), we can see that

‖Km‖Bs
p,r

≤ C(‖K‖L∞‖m‖Bs
p,r

+ ‖K‖Bs
p,r
‖m‖L∞),

‖K‖L∞ ≤ C‖m‖2L∞ , ‖K‖Bs
p,r

≤ C‖m‖L∞‖m‖Bs
p,r
,

‖Jx‖L∞ ≤ C‖m‖2L∞ , ‖Jx‖Bs
p,r

≤ C‖m‖L∞‖m‖Bs
p,r
.

Therefore, we have

‖m(t)‖Bs
p,r

≤ ‖m0‖Bs
p,r

+ C

∫ t

0

‖m(τ)‖Bs
p,r
‖m‖2L∞dτ.

Gronwall’s inequality then leads to

‖m(t)‖Bs
p,r

≤ ‖m0‖Bs
p,r

exp

(

C

∫ t

0

‖m‖2L∞dτ

)

< ∞

for all t ∈ [0, T ). Thus we can extend the solution m beyond the maximal T , which is a

contradiction. �

Combining this Lemma and Theorem 2.1, we readily obtain the following pointwise blow-up

criterion.

Corollary 5.2. Let m0 ∈ Bs
p,r with 1 ≤ p, r ≤ ∞ and s > max(1

2
, 1
p
). Let T > 0 be the maximal

existence time of the corresponding solution m to the peakon equation (1.7). Then the solution

blows up in finite time if and only if

lim sup
t↑T

‖m(t)‖L∞ = ∞. (5.1)

5.1. Proof of Theorem 2.3. Now we can prove the precise blow-up criterion stated in Theo-

rem 2.3.

Suppose T is finite, and assume for contradiction that the blow-up criterion (2.12) does not

hold. Then there exists a constant C ∈ R such that

Jx(t, x) ≥ −C, ∀(t, x) ∈ [0, T )× R, (5.2)
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where J is given expression (2.4). This inequality yields the bound

exp

(

−
∫ t

0

Jx(τ, h(τ, x))dτ

)

≤ eCT . (5.3)

Using relation (4.4) in Lemma 4.2, and substituting expression (2.5), we obtain

|m(t, h(t, x))| =
∣

∣

∣

∣

m0(x) exp

(

i

∫ t

0

Im (eiθQ(τ, h(τ, x)))dτ

)

exp

(

−
∫ t

0

Jx(τ, h(τ, x))dτ

)
∣

∣

∣

∣

≤ ‖m0‖L∞ eCT

due to (5.3) and U(1) invariance. The embedding property Hs →֒ L∞ when s > 1
2
then yields

‖m(t)‖L∞ ≤ C1‖m0‖Bs
p,r
eCT

for some positive constant C1. This shows lim sup
t↑T

‖m(t)‖L∞ is finite, and therefore m does not

blow up in finite time according to Corollary 5.2.

Hence, the inequality (5.2) cannot hold if m blows up in finite time, which establishes Theo-

rem 2.3.

6. Blow-up phenomenon

The blow-up phenomenon stated in Theorem 2.4 is obtained from adapting the transport

method used for the FORQ/mCH equation in Ref. [7]. This method relies on the blow-up crite-

rion (2.12) from Theorem 2.3, the L1 conservation law (2.11), and the following basic estimates.

Lemma 6.1. Let m0 ∈ Hs ∩ L1(R) with s > 1
2
. Suppose that T is the maximal existence time

of the corresponding solution m to the peakon equation (1.7). Then for all t ∈ [0, T ):

|u(t, x)| ≤ 1
2
‖m0‖L1, |ux(t, x)| ≤ 1

2
‖m0‖L1 . (6.1)

Proof. The estimates |u(t, x)| ≤ 1
2
‖m‖L1 and |ux(t, x)| ≤ 1

2
‖m‖L1 are well known in the case of

real functions by Young’s inequality for convolution. They extend directly to complex functions.

Then the L1 conservation law (2.11) completes the proof. �

To proceed, we will first need the transport equations of u ± ux under the flow produced by

viewing J as a velocity field.

Proposition 6.2. Let u be a strong solution to the peakon equation (1.7). Write ∆ := 1 − ∂2
x

and v± := u± ux. Then v± satisfies the transport equation

v±t + Jv±x = ∆−1(1± ∂x)
(

− Jxu+ iIm (K)m
)

∓∆−1
(

Jxux

)

:= L±. (6.2)

Proof. We start from the identity

∆ut +∆(Jux) = mt + Jmx − (Jxux)x − Jxuxx.

Using the transport form (2.3) of the peakon equation, we get

∆ut +∆(Jux) = −Jxm+ i Im (K)m− (Jxux)x − Jxuxx

= −Jxu− (Jxux)x + i Im (K)m,
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which leads immediately to the transport equation

ut + Jux = ∆−1
(

− Jxu− (Jxux)x + iIm (K)m
)

. (6.3)

Then we differentiate with respect to x and rearrange the terms to get

uxt + Juxx = ∆−1∂x
(

− Jxu+ iIm (K)m
)

−∆−1
(

Jxux

)

. (6.4)

Adding and subtracting (6.3) and (6.4) yields equation (6.2). �

The main transport equation underlying the blow-up phenomenon will be the resulting flow

on Jx. We note, from expressions (2.1), (2.4) and (2.6), that

J = Re (eiθQ) = Re (eiθv+v̄−) (6.5)

and

Jx = Re (eiθQx) = Re (eiθ(v+m̄− v̄−m)). (6.6)

Proposition 6.3. Let u be a strong solution to the peakon equation (1.7). Then Jx satisfies the

transport equation

Jxt + JJxx + J2
x = Im (eiθQ)Im (eiθ(v+m̄+ v̄−m)) + Re (eiθ(m̄L+ −mL̄−)). (6.7)

Proof. Differentiating (6.6) and using the identity v±x = ±(v± −m), we have

Jxx = Re (eiθ(v+x m̄− v̄−x m+ v+m̄x − v̄−mx))

and

Jxt =Re (eiθ(v+t m̄− v̄−t m+ v+m̄t − v̄−mt))

=Re (eiθ((−Jv+x + L+)m̄− (−Jv̄−x + L̄−)m+ v+(K̄m̄− Jm̄x)− v̄−(Km− Jmx)))

=− JRe (eiθ(v+x m̄− v̄−x m+ v+m̄x − v̄−mx)) + Re (K)Re (eiθ(v+m̄− v̄−m))

+ Im (K)Im (eiθ(v+m̄+ v̄−m)) + Re (eiθ(L+m̄− L̄−m)) + Re (eiθ(L+m̄− L̄−m))

after use of the transport equations (6.2) and (2.3). Substituting expression (2.5) then yields

(6.7). �

Now we will obtain a pointwise estimate for the right-hand side of the transport equation

(6.7).

Lemma 6.4. Let m0 ∈ Hs ∩ L1, with s > 1
2
, and let T be the maximal existence time of

the corresponding solution m to the peakon equation (1.7). Then there exists a constant C0 =

7‖m0‖3L1 such that, for all t ∈ [0, T ):

Jxt + JJxx + J2
x ≤ C0|m|. (6.8)

Proof. From the pointwise estimates (6.1), we have

|v±| ≤ ‖v±‖L∞ ≤ ‖m0‖L1 .
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Hence, we can easily estimate

|Im (eiθQ)| ≤ |v+||v̄−| ≤ ‖m0‖2L1 ,

|Im (eiθ(v+m̄+ v̄−m))| ≤ (|v+|+ |v−|)|m| ≤ 2‖m0‖L1 |m|,

and

‖Jx‖L1 ≤ ‖v+m̄− v̄−m‖L1 ≤ (‖v+‖L∞ + ‖v−‖L∞)‖m‖L1 ≤ 2‖m0‖2L1. (6.9)

Then, on the right-hand side of equation (6.7), the first term can be estimated as

|Im (eiθQ)Im (eiθ(v+m̄+ v̄−m))| ≤ 2‖m0‖3L1|m|, (6.10)

while for the second term we have

|Re (eiθ(m̄L+ −mL̄−))| ≤ (|L+|+ |L−|)|m| (6.11)

and

|L±| ≤ ‖∆−1(Jxux)‖L∞ + ‖∆−1(1± ∂x)(Jxu)‖L∞ + ‖∆−1(1± ∂x)(Im (eiθQ)m)‖L∞ .

We now estimate each of these three terms by using ∆−1 = 1
2
e−|x|∗ . For the first term, we have

‖∆−1(Jxux)‖L∞ = 1
2
‖e−|x| ∗ (Jxux)‖L∞ ≤ 1

2
‖Jxux‖L1 ≤ 1

2
‖ux‖L∞‖Jx‖L1 ≤ 1

2
‖m0‖3L1 .

Similarly, the second and third terms can be estimated as

‖∆−1(1± ∂x)(Jxu)‖L∞ = 1
2
‖(1± ∂x)(e

−|x| ∗ (Jxu))‖L∞

≤ 1
2
‖(1∓ sgn(x))e−|x|‖L∞‖Jxu‖L1 ≤ ‖u‖L∞‖Jx‖L1 ≤ ‖m0‖3L1

and

‖∆−1(1± ∂x)(Im (eiθQ)m)‖L∞ = 1
2
‖(1± ∂x)(e

−|x| ∗ (Im (eiθv+v̄−)m))‖L∞

≤ 1
2
‖(1∓ sgn(x))e−|x|‖L∞‖Im (eiθv+v̄−)m‖L1

≤ ‖v+‖L∞‖v̄−‖L∞‖m‖L1 ≤ ‖m0‖3L1 .

Hence, we obtain

|L±| ≤ 5
2
‖m0‖3L1. (6.12)

Combining this estimate with (6.11) and (6.10) then yields (6.8). �

From Lemma 6.4, we can now derive the sufficient condition for blow-up stated in Theorem 2.4.

The derivation uses the type of argument employed in Ref. [7,25] for blow-up of the FORQ/mCH

equation.
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6.1. Proof of Theorem 2.4. First we evaluate the pointwise estimate (6.8) on the increasing

diffeomorphism h(t, ·) given by Lemma 4.1, which yields

Jxt(t, h(t, x)) + (JJxx)(t, h(t, x)) + Jx(t, h(t, x))
2 ≤ C0|m(t, h(t, x))|. (6.13)

Since J(t, h(t, x)) = ht(t, x) from equation (4.1), we have

Jxt(t, h(t, x)) + (JJxx)(t, h(t, x)) + Jx(t, h(t, x))
2 =

d

dt

(

Jx(t, h(t, x))
)

+ Jx(t, h(t, x))
2

for the left-hand side of (6.13). On the right-hand side of (6.13), we use the relation (4.4) in

Lemma 4.2 to get

|m(t, h(t, x))| = |m0(x)| exp
(

−
∫ t

0

Jx(τ, h(τ, x))dτ

)

.

Hence we obtain

d

dt

(

Jx(t, h(t, x))
)

+ Jx(t, h(t, x))
2 ≤ C0|m0(x0)| exp

(

−
∫ t

0

Jx(τ, h(τ, x))dτ

)

which can be rearranged into the form

d2

dt2
exp

(
∫ t

0

Jx(τ, h(τ, x))dτ

)

≤ C0|m0(x)|.

By integrating this inequality, we get

exp

(
∫ t

0

Jx(τ, h(τ, x))dτ

)

≤ 1 + Jx(0, x) t+
1
2
C0|m0(x)| t2. (6.14)

This inequality can be used to establish blow-up.

Choose a point x0 ∈ R such that the quadratic polynomial in t given by the right-hand side

of (6.14) has a positive discriminant:

Jx(0, x0)
2 − 2C0|m0(x0)| > 0, m0(x0) 6= 0.

Then the polynomial has two real roots

0 < T1 =
−Jx(0, x0)−

√

Jx(0, x0)2 − 2C0|m0(x0)|
C0|m0(x0)|

≤ T2 =
−Jx(0, x0) +

√

Jx(0, x0)2 − C0|m0(x0)|
C0|m0(x0)|

,

whereby

1 + Jx(0, x0) t+
C0|m0(x0)|

2
t2 ց 0, as t ր T1.

Consequently, from the inequality (6.14), we have

0 < exp

(
∫ t

0

inf
x∈R

Jx(τ, x) dτ

)

≤ exp

(
∫ t

0

Jx(τ, h(τ, x0)) dτ

)

→ 0 as t → T1

which implies

lim sup
t↑T

inf
x∈R

Jx(t, x) = −∞.

According to Theorem 2.3, m blows up at the finite time T1. This completes the proof.
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7. Concluding Remarks and open problems

In this paper, we have studied the Cauchy problem for integrable U(1)-invariant peakon equa-

tions generated from the NLS hierarchy.Main results include local well-posedness in Theorem 2.1,

L1 conservation law in Theorem 2.2, and blow-up scenarios in Theorem 2.3 and Theorem 2.4.

The NLS hierarchy is a very important integrable family in soliton theory, and many related

work such as the Riemann-Hilbert (RH) problem and ∂̄-approach has been done in recent years.

But, for the U(1)-invariant peakon system (1.7), peakon stability and long time asymptotic be-

havior associated with the RH problem and ∂̄-approach are still open, which is looked forward

to solving elsewhere.
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Appendix A. Besov spaces, Littlewood-Paley decomposition,

and linear transport theory

We will recall some facts on the Littlewood-Paley decomposition, the Besov spaces and some

of their useful properties, and we will also summary the main results that will be needed from

the linear transport theory. For more details, see Ref. [?, 4].

Throughout, we use the notation:

S is the Schwartz space of fast decrease; S ′ is the tempered distribution space.

F is the Fourier transform f̂(ξ) = Ff :=
∫

R
e−ixξf(x)dx; F−1 is the inverse of F .

D is a pseudo-differential operator defined by χ(D)f(x) := F−1(χ(ξ)f̂(ξ))(x) for a given a

function χ(ξ) in the frequency space.

Sq is a low frequency cut-off operator defined by

Squ := F−1χ(2−qξ)Fu, ∀q ∈ N.

lr(Lp) is the space of sequences of functions fi(x) ∈ Lp, i ∈ Z, such that {ai}i∈Z = {‖fi‖Lp}i∈Z
satisfies (

∑

i∈Z a
r
i )

1
r
<∞.

An Sk-multiplier, k ∈ R, is a smooth operator A : R → R such that, ∀α ∈ Nn and ∀ξ ∈ R,

|∂αA(ξ)| ≤ Cα(1 + |ξ|)k−|α| holds for some constant Cα.

〈·, ·〉 denotes the pairing between a normed space and its dual space (i.e., linear bounded func-

tional space).

Lemma A.1. For a pair of real functions f1, f2 on R:

1
2
(‖f1‖Lp + ‖f2‖Lp) ≤ ‖f1 + if2‖Lp ≤ ‖f1‖Lp + ‖f2‖Lp
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Proof. The inequalities |f1|p, |f2|p ≤ (|f1|2 + |f2|2)
p
2 directly imply

‖f1‖Lp + ‖f2‖Lp ≤ 2‖
√

|f1|2 + |f2|2‖Lp = 2‖|f1 + if2|‖Lp.

Next, the triangle inequality
√

|f1|2 + |f2|2 ≤ |f1|+ |f2| yields

‖
√

|f1|2 + |f2|2‖Lp ≤ ‖|f1|+ |f2|‖Lp.

Then the Cauchy-Schwartz inequality ‖|f1|+ |f2|‖Lp ≤ ‖f1‖Lp + ‖f2‖Lp completes the proof. �

Proposition A.2. (Littlewood-Paley decomposition)

There exists on R a pair of smooth functions (χ, ϕ) valued in [0, 1], with the following properties:

(1) χ is supported in the interval {ξ ∈ R : |ξ| ≤ 4
3
}, and ϕ is supported in the ring {ξ ∈ R : 3

4
≤

|ξ| ≤ 8
3
};

(2) χ(ξ) +
∑

q≥0

ϕ(2−qξ) = 1 for all ξ ∈ R;

(3) supp(ϕ(2−q ·)) ∩ supp(ϕ(2−q′ ·)) = ∅ if |q − q′| ≥ 2, and supp(χ(·)) ∩ supp(ϕ(2−q ·)) = ∅ if

q ≥ 1.

For all u ∈ S ′, we can define the nonhomogeneous dyadic blocks as follows. Let

∆qu := 0 if q ≤ −2,

∆−1u := χ(D)u = F−1(χFu),

∆qu := ϕ(2−qD)u = F−1(ϕ(2−q·)Fu) if q ≥ 0.

Then

u =
∑

q∈Z

∆qu ∈ S ′(R)

where the right-hand side is called the nonhomogeneous Littlewood-Paley decomposition of u.

Remark A.3. (i) The low frequency cut-off operator obeys

Squ =

q−1
∑

p=−1

∆pu.

(ii) The Littlewood-Paley decomposition obeys

∆p∆qu = 0 if |p− q| ≥ 2,

∆q(Sp−1u∆pv) = 0 if |p− q| ≥ 5,

for all u, v ∈ S ′(R). These properties describe quasi-orthogonality in L2 in the following sense:

the symbols of∆q and∆p are ϕ(2
−qξ) and ϕ(2−pξ) respectively, which obey

∫

R
ϕ(2−qξ)ϕ(2−pξ)dξ =

0 for |q − p| ≥ 2.

(iii) Young’s inequality implies, for all 1 ≤ p ≤ ∞,

‖∆qu‖Lp, ‖Squ‖Lp ≤ C‖u‖Lp

where C is a positive constant independent of q.
24



Definition A.4. (Besov spaces)

Let s ∈ R and 1 ≤ p, r ≤ ∞. The nonhomogeneous Besov space is defined by Bs
p,r(R) := {f ∈

S ′(R) : ‖f‖Bs
p,r

< ∞} in terms of the Besov norm

‖f‖Bs
p,r

:= ‖2qs∆qf‖lr(Lp) =
∥

∥(2qs‖∆qf‖Lp)q≥−1

∥

∥

lr

for s < ∞. In the case s = ∞, the space is defined by B∞
p,r :=

⋂

s∈R

Bs
p,r.

In the following lemma, we list some important properties of Besov spaces.

Lemma A.5. Suppose that s ∈ R, 1≤ p, r, pi, ri ≤ ∞, i = 1, 2.

(i) Basic properties: Bs
p,p = W s,p; Bs

2,2 = Hs. Bs
p,r is a Banach space which is continuously

embedded in S ′.

(ii) Density: C∞
c is dense in Bs

p,r iff 1 ≤ p, r < ∞.

(iii) Embedding: Bs
p1,r1

→֒ B
s−( 1

p1
− 1

p2
)

p2,r2 if p1 ≤ p2 and r1 ≤ r2. Bs2
p,r2

→֒ Bs1
p,r1

is locally compact if

s1 < s2. B
s
p,r →֒ L∞ if s > 1

p
or if s ≥ 1

p
and r = 1.

(iv) Algebraic properties: Bs
p,r

⋂

L∞ is an algebra if s > 0. Bs
p,r itself is an algebra if s > 1

p
or

if s ≥ 1
p
and r = 1.

(v) Complex interpolation:

‖f‖
B

θs1+(1−θ)s2
p,r

≤ ‖f‖θ
B

s1
p,r
‖f‖1−θ

B
s2
p,r
, ∀u ∈ Bs1

p,r ∩Bs1
p,r, ∀θ ∈ [0, 1]. (A.1)

(vi) Logarithm interpolation: for all s ∈ R and ε > 0, there exists a constant C such that for

any u in Bs+ε
p,∞ and f in Bε

∞,∞:

‖u‖Bs
p,1

≤ C(1 + 1/ε)‖u‖Bs
p,∞

ln
(

e+ ‖u‖Bs+ε
p,∞

/‖u‖Bs
p,∞

)

, 1 ≤ p ≤ ∞; (A.2)

‖f‖L∞ ≤ C(1/ε)‖u‖B0
∞,∞

ln
(

e+ ‖f‖Bε
p,∞

/‖f‖B0
∞,∞

)

. (A.3)

(vii) Fatou’s lemma: if (un)n∈N is bounded in Bs
p,r and un → u in S ′, then u ∈ Bs

p,r and

‖u‖Bs
p,r

≤ C lim inf
n→∞

‖un‖Bs
p,r
.

(viii) For all k ∈ R, an Sk-multiplier is continuous from Bs
p,r to Bs−k

p,r .

Lemma A.6. Moser-type inequalities

(i) Let s > 0, 1 ≤ p, r ≤ ∞, u, v ∈ Bs
p,r ∩ L∞. Then there exists a constant C = C(s) such that

‖uv‖Bs
p,r

≤ C(‖u‖L∞‖v‖Bs
p,r

+ ‖v‖L∞‖u‖Bs
p,r
).

(ii) Let 1 ≤ p, r ≤ ∞, (s1, s2) ∈ R2 such that s1 ≤ s2, s1 + s2 > max(0, 2
p
− 1), and s2 > 1

p
if

r 6= 1, or s2 =
1
p
if r = 1. Then there exists a constant C = C(s1, s2, p, r) such that

‖uv‖Bs1
p,r

≤ C‖u‖Bs1
p,r
‖v‖Bs2

p,r
.

(iii) For any u ∈ B
1
p
−1

p,∞ (R) and v ∈ B
1
p

p,1(R), we have

‖uv‖
B

1
p−1

p,∞

≤ C‖u‖
B

1
p−1

p,∞

‖v‖
B

1
p
p,1
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Proposition A.7. Let 1 ≤ p, r ≤ ∞ and s ∈ R.

(i) For all u ∈ Bs
p,r and φ ∈ B−s

p′,r′,

(u, φ) 7−→
∑

|j−i|≤1

〈∆ju,∆iφ〉

defines a continuous bilinear functional on Bs
p,r ×B−s

p′,r′.

(ii) Denote by Q−s
p′,r′ the set of functions φ in S such that ‖φ‖B−s

p′,r′
≤ 1. If u is in S ′, then

‖u‖Bs
p,r

≤ C sup
φ∈Q−s

p′,r′

〈u, φ〉.

Now we state some useful results in the transport equation theory, which are crucial to the

proofs of our main theorems.

Lemma A.8. (A priori estimates in Besov spaces)

Let 1 ≤ p ≤ p1 ≤ ∞, 1 ≤ r ≤ ∞, and σ ≥ −min( 1
p1
, 1 − 1

p
) with strict inequality if r < ∞.

Assume that f0 ∈ Bσ
p,r, F ∈ L1(0, T ;Bσ

p,r), and consider the linear transport equation

(∗) ∂tf + v ∂xf = F, f |t=0 = f0.

Suppose ∂xv belongs to L1(0, T ;Bσ−1
p1,r

) for σ > 1+ 1
p1
, r 6= 1, or σ = 1+ 1

p1
, r = 1), and otherwise

∂xv belongs to L1(0, T ;B
1
p1
p1,∞

⋂

L∞). If f ∈ L∞(0, T ;Bσ
p,r)
⋂

C([0, T ];S ′) solves (∗), then there

exists a constant C, depending only on p, r, and σ, such that the following statements hold:

(i)

‖f(t)‖Bσ
p,r

≤ ‖f0‖Bσ
p,r

+

∫ t

0

‖F (τ)‖Bσ
p,r
dτ + C

∫ t

0

V ′(τ)‖f(τ)‖Bσ
p,r
dτ

and hence

‖f(t)‖Bσ
p,r

≤ eCV (t)

(

‖f0‖Bσ
p,r

+

∫ t

0

e−CV (τ)‖F (τ)‖Bσ
p,r
dτ

)

, (A.4)

with

V (t) =







∫ t

0
‖∂xv(τ)‖

B
1
p1
p1,∞

∩L∞

dτ, σ < 1 + 1
p1

∫ t

0
‖∂xv(τ)‖Bσ−1

p1,r
dτ, σ > 1 + 1

p1
, r 6= 1, or σ = 1 + 1

p1
, r = 1

.

(ii) If r < ∞, then f ∈ C([0, T ];Bσ
p,r). If r = ∞, then f ∈ C([0, T ];Bσ′

p,1) ∩ Cw([0, T ];B
s
p,∞(R))

for all σ′ < σ.

(iii) If f = v, then for all σ > 0 the estimate (A.4) holds with V ′(t) = ‖∂xv(t)‖L∞.

Lemma A.9. [34] Let 1 ≤ p ≤ ∞ and 1 ≤ r ≤ ∞. Assume f0 ∈ B
1+ 1

p
p,r (R), F ∈ L1(0, T ;B

1+ 1
p

p,r (R)),

and v ∈ L1(0, T ;B
2+ 1

p
p,r (R)) in the linear transport equation (∗). If f ∈ L∞(0, T ;B

1+ 1
p

p,r (R)) solves

(∗), then

‖f(t)‖
B

1+ 1
p

p,r

≤ eCV (t)(‖f0‖
B

1+ 1
p

p,r

+

∫ t

0

e−CV (τ)‖F (τ)‖
B

1+ 1
p

p,r

dτ),

with V (t) =
∫ t

0
‖v‖

B
2+ 1

p
p,r (R)

dτ and C = C(p, r).
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Lemma A.10. [32] If σ > 0, then there exists a constant C = C(p, r, σ) such that

‖f(t)‖Bσ
p,r

≤ ‖f0‖Bσ
p,r

+

∫ t

0

‖F (τ)‖Bσ
p,r
dτ + C

∫ t

0

(

‖f(τ)‖Bσ
p,r
‖vx‖L∞ + ‖f(τ)‖L∞‖vx‖Bσ

p,r

)

dτ.

Lemma A.11. (Existence and uniqueness) Let p, r, σ, f0 and F be as in the statement of Lemmas

A.8–A.9. Assume that v ∈ Lk(0, T ;B−M
∞,∞) for some k > 1 and M > 0, and that

∂xv ∈







L1(0, T ;Bσ−1
p,r ), σ > 1 + 1

p
, r 6= 1, or σ = 1 + 1

p
, r = 1

L1(0, T ;B
1
p
p,∞ ∩ L∞), σ < 1 + 1

p

and v ∈ L1(0, T ;Bσ+1
p,r (R)) if σ = 1 + 1

p
, r > 1. Then (∗) has a unique solution

f ∈ L∞(0, T ;Bσ
p,r)
⋂

(

⋂

σ′<σ

C([0, T ];Bσ′

p,1)
)

and the inequalities of Lemmas A.8–A.9 hold. Moreover, if r < ∞, then f ∈ C([0, T ];Bσ
p,r).
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