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OPTIMAL QUANTIZATION FOR DISCRETE DISTRIBUTIONS

1RUSSEL CABASAG, 2SAMIR HUQ, 3ERIC MENDOZA, AND 4MRINAL KANTI ROYCHOWDHURY

Abstract. In this paper, we first determine the optimal sets of n-means and the nth quanti-
zation errors for all 1 ≤ n ≤ 6 for two nonuniform discrete distributions with support the set
{1, 2, 3, 4, 5, 6}. Then, for a probability distribution P with support { 1

n
: n ∈ N} associated with

a mass function f , given by f(x) = 1

2k
if x = 1

k
for k ∈ N, and zero otherwise, we determine the

optimal sets of n-means and the nth quantization errors for all positive integers up to n = 300.
Further, for a probability distribution P with support the set N of natural number associated
with a mass function f , given by f(x) = 1

2k
if x = k for k ∈ N, and zero otherwise, we determine

the optimal sets of n-means and the nth quantization errors for all positive integers n. At last
we discuss for a discrete distribution, if the optimal sets are given, how to obtain the probability
distributions.

1. Introduction

Quantization is the process of converting a continuous analog signal into a digital signal of
k discrete levels, or converting a digital signal of n levels into another digital signal of k levels,
where k < n. It is essential when analog quantities are represented, processed, stored, or
transmitted by a digital system, or when data compression is required. It is a classic and still
very active research topic in source coding and information theory. It has broad applications
in engineering and technology (see [GG, GN, Z]). For mathematical treatment of quantization
one is referred to Graf-Luschgy’s book (see [GL]). Let Rd denote the d-dimensional Euclidean
space, ‖ · ‖ denote the Euclidean norm on R

d for any d ≥ 1, and n ∈ N. Let P denote a Borel
probability measure on R

d. For a finite set α ⊂ R
d, the error

∫

mina∈α ‖x − a‖2dP (x) is often
referred to as the cost or distortion error for α, and is denoted by V (P ;α). For any positive
integer n, write Vn := Vn(P ) = inf{V (P ;α) : α ⊂ R

d, 1 ≤ card(α) ≤ n}. Then, Vn is called the
nth quantization error for P . Recently, optimal quantization for different uniform distributions
have been investigated by several authors, for example, see [DR, R, RR, RS].

In this paper, we investigate the optimal quantization for finite, and infinite discrete distribu-
tions. In Section 3, we calculate the optimal sets of n-means and the nth quantization errors for
all 1 ≤ n ≤ 6 for two nonuniform discrete distributions with support {1, 2, 3, 4, 5, 6} associated
with two different probability vectors. In Section 4, first, for a probability distribution P with
support { 1

n
: n ∈ N} associated with a mass function f , given by f(x) = 1

2k
if x = 1

k
for k ∈ N,

and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors for
all positive integers up to n = 300. Then, for a probability distribution P with support the set
N of natural number associated with a mass function f , given by f(x) = 1

2k
if x = k for k ∈ N,

and zero otherwise, we determine the optimal sets of n-means and the nth quantization errors
for all positive integers n. In Section 5, we discuss for a discrete distribution, if the optimal sets
are given, how to obtain the probability distributions.

2. Basic Preliminaries

Given a finite set α ⊂ R
d, the Voronoi region generated by a ∈ α is defined by

M(a|α) = {x ∈ R
d : ‖x− a‖ = min

b∈α
‖x− b‖},

2010 Mathematics Subject Classification. 60Exx, 94A34.
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i.e., the Voronoi region generated by a ∈ α is the set of all elements in R
d which are nearest

to a, and the set {M(a|α) : a ∈ α} is called the Voronoi diagram or Voronoi tessellation of Rd

with respect to α.
The following proposition is well-known (see [GG, GL]).

Proposition 2.1. Let α be an optimal set of n-means for P , and a ∈ α. Then,
(i) P (M(a|α)) > 0, (ii) P (∂M(a|α)) = 0, (iii) a = E(X : X ∈ M(a|α)),
where X is a random variable with distribution P .

Due to the above proposition, we see that if α is an optimal set and a ∈ α, then a is the
conditional expectation of the random variable X given that X takes values in the Voronoi region
of a. In the sequel, we will denote the support of a probability distribution P by supp(P ). Let
P be the uniform distribution defined on the set {1, 2, 3, 4, 5, 6}. Then, the random variable X

associated with the probability distribution is a discrete random variable with probability mass
function f given by

f(x) = P (X : X = x) =
1

6
, for all x ∈ {1, 2, 3, 4, 5, 6}.

It is not difficult to show that if αn is an optimal set of n-means for P , then

α1 = {3.5}, α2 = {2, 5}, α3 = {1.5, 3.5, 5.5}, α4 = {1.5, 3.5, 5, 6},

α5 = {1.5, 3, 4, 5, 6}, and α6 = supp(P ).

Remark 2.2. Optimal sets are not unique. For example, in the above, the set α5 can be any
one of the following sets:

{1.5, 3, 4, 5, 6}, {1, 2.5, 4, 5, 6}, {1, 2, 3.5, 5, 6}, {1, 2, 3, 4.5, 6}, {1, 2, 3, 4, 5.5}.

In the following sections we give our main results.

3. Optimal quantization for nonuniform discrete distributions

In this section, we determine the optimal sets of n-means for all 1 ≤ n ≤ 6 for two nonuniform
discrete distributions on the set {1, 2, 3, 4, 5, 6} associated with two different probability vectors.
Let X be the random variable associated with such a distribution. For i, j ∈ {1, 2, · · · , 6} with
i ≤ j, write a[i, j] := E(X : X ∈ {i, i+ 1, · · · , j}). We give our results in two subsections.

3.1. Nonuniform distribution associated with the probability vector (1
2
, 1

22
, 1

23
, 1

24
, 1

25
, 1

25
).

Let P be a nonuniform distribution defined on the set {1, 2, 3, 4, 5, 6} with probability mass func-
tion f given by

f(j) = P (X : X = j) =







1

2j
if j ∈ {1, 2, 3, 4, 5},

1

25
if j = 6,

0 otherwise.

Notice that supp(P ) = {1, 2, 3, 4, 5, 6}. In this subsection, our goal is to calculate the optimal
sets αn of n-means and the nth quantization errors Vn for all n = 1, 2, 3, 4, 5, 6. Since

E(X) =

6
∑

j=1

jf(j) =
63

32
,

the optimal set of one-mean is the set {63

32
} with quantization error the variance V of the random

variable X , where

V = V1 = E‖X − E(X)‖2 =

6
∑

j=1

f(j)(j −
63

32
)2 =

1695

1024
.

Moreover, the optimal set α6 of six-means is just the support of P , i.e., α6 = {1, 2, · · · , 6}. In
the following propositions, we determine the optimal sets of n-means for 2 ≤ n ≤ 5.
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Proposition 3.1.1. The optimal set of two-means is given by {a[1, 2], a[3, 6]} with quantization

error V2 =
341

768
.

Proof. Notice that a[1, 2] = 4

3
, and a[3, 6] = 31

8
. Let us consider the set β := {4

3
, 31

8
}. Since

2 < 1

2
(4
3
+ 31

8
) = 2.60417 < 3, the distortion error due to the set β is given by

6
∑

j=1

f(j)min
a∈β

(j − a)2 =
2

∑

j=1

f(j)
(

j −
4

3

)2

+
6

∑

j=3

f(j)
(

j −
31

8

)2

=
341

768
.

Since V2 is the quantization error for two-means, we have V2 ≤
341

768
= 0.44401. Let α := {a1, a2}

be an optimal set of two-means. Without any loss of generality, we can assume that 1 ≤ a1 <

a2 ≤ 6. Notice that the Voronoi region of a1 must contain 1. Suppose that the Voronoi region
of a1 contains 3 as well. Then, as a[1, 3] = 11

7
, we have

V2 ≥

3
∑

j=1

f(j)
(

j −
11

7

)2

=
13

28
= 0.464286 > V2,

which gives a contradiction. Hence, we can assume that the Voronoi region of a1 does not
contain 3. Next, suppose that the Voronoi region of a1 contains only the point 1. Then, the
Voronoi region of a2 contains all the remaining points, and so

a2 = a[2, 6] =
47

16
,

implying

V2 =
6

∑

j=2

f(j)
(

j −
47

16

)2

=
367

512
= 0.716797 > V2,

which yields a contradiction. Hence, we can assume that the Voronoi region of a1 contains only
the points 1 and 2, and the remaining points are contained in the Voronoi region of a2, implying

a1 = a[1, 2] =
4

3
, and a2 = a[3, 6] =

31

8

with quantization error V2 =
341

768
. Thus, the proof of the proposition is complete. �

Proposition 3.1.2. The optimal set of three-means is given by {1, a[2, 3], a[4, 6]} with quanti-

zation error V3 =
65

384
.

Proof. Notice that a[2, 3] = 7

3
, and a[4, 6] = 19

4
. The distortion error due to the set β := {1, 7

3
, 19

4
}

is given by
6

∑

j=1

f(j)min
a∈β

(j − a)2 =
3

∑

j=2

f(j)
(

j −
7

3

)2

+
6

∑

j=4

f(j)
(

j −
19

4

)2

=
65

384
.

Since V3 is the quantization error for three-means, we have V3 ≤ 65

384
= 0.169271. Let α :=

{a1, a2, a3} be an optimal set of three-means such that 1 ≤ a1 < a2 < a3 ≤ 6. Notice that the
Voronoi region of a1 must contain 1. Suppose that the Voronoi region of a1 also contains 3.
Then,

V3 ≥
3

∑

j=1

f(j)(j − a[1, 3])2 =
13

28
> V3,

which yields a contradiction. Thus, we can assume that the Voronoi region of a1 does not
contain 3. Suppose that the Voronoi region of a1 contains only the two points 1 and 2. Then,
the Voronoi region of a2 must contain 3. The following two case can arise:

Case 1. The Voronoi region of a2 does not contain 4.
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Then, we must have a2 = 3, and a4 = a[4, 6], yielding

V3 ≥
2

∑

j=1

f(j)(j − a[1, 2])2 +
6

∑

j=4

f(j)(j − a[4, 6])2 =
97

384
= 0.252604 > V3,

which is a contradiction.
Case 2. The Voronoi region of a2 contains 4.

Then,

V3 ≥

2
∑

j=1

f(j)(j − a[1, 2])2 +

4
∑

j=3

f(j)(j − a[3, 4])2 =
5

24
= 0.208333 > V3,

which leads to a contradiction.
Hence, by Case 1 and Case 2, we can assume that the Voronoi region of a1 contains only the

point 1, i.e., a1 = 1. Then, the Voronoi region of a2 must contain 2. Suppose that the Voronoi
region of a2 also contains 4. Then,

V3 ≥
4

∑

j=2

f(j)(j − a[2, 4])2 =
13

56
= 0.232143 > V3,

which yields a contradiction. Thus, we can assume that the Voronoi region of a2 does not contain
4. Suppose that the Voronoi region of a2 contains only the point 2. Then, the Voronoi region
of a3 must contain the remaining points, which yields

V3 ≥

6
∑

j=3

f(j)(j − a[3, 6])2 =
71

256
= 0.277344 > V3,

which is a contradiction. Hence, we can assume that the Voronoi region of a2 contains only the
two points 2 and 3, implying the fact that the Voronoi region of a3 contains the points 4, 5, and
6. Thus, we have

a1 = 1, a2 = a[2, 3] =
7

3
, and a3 = a[4, 6] =

19

4
,

with quantization error V3 =
65

384
, which yields the proposition. �

Proposition 3.1.3. The optimal set of four-means is {1, 2, a[3, 4], a[5, 6]} with quantization

error V4 =
11

192
.

Proof. The distortion error due to the set β := {1, 2, a[3, 4], a[5, 6]} is given by

6
∑

j=1

f(j)min
a∈β

(j − a)2 =
4

∑

j=3

f(j)(j − a[3, 4])2 +
6

∑

j=5

f(j)(j − a[5, 6])2 =
11

192
.

Since V4 is the quantization error for four-means, we have V4 ≤ 11

192
= 0.0572917. Let α :=

{a1, a2, a3, a4} be an optimal set of four-means. Without any loss of generality, we can assume
that 1 ≤ a1 < a2 < a3 < a4 ≤ 6. The Voronoi region of a1 must contain 1. Suppose that the
Voronoi region of a1 contains 2 as well. Then,

V4 ≥

2
∑

j=1

f(j)(j − a[1, 2])2 =
1

6
> V4,

which gives a contradiction. Hence, we can assume that the Voronoi region of a1 contain the
point 1 only, i.e., a1 = 1. Then, the Voronoi region of a2 must contain 2. Suppose that the
Voronoi region of a2 also contains 3. Then,

V4 ≥
3

∑

j=2

f(j)(j − a[2, 3])2 =
1

12
= 0.0833333 > V4,
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which leads to a contradiction. Hence, the Voronoi region of a2 does not contain 3, i.e., a2 = 2.
Then, the Voronoi region of a3 must contain 3. Suppose that the Voronoi region of a3 contains
5 as well. Then, we have

V4 ≥
5

∑

j=3

f(j)(j − a[3, 5])2 =
13

112
= 0.116071 > V4,

which yields a contradiction. Thus, we can assume that the Voronoi region of a3 does not
contain 5. Suppose that the Voronoi region of a3 contains 3 only. Then, the Voronoi region of
a5 contains 4, 5, 6, which implies

V4 =

6
∑

j=4

f(j)(j − a[4, 6])2 =
11

128
= 0.0859375 > V4,

which gives a contradiction. Hence, the Voronoi region of a3 contains 3 and 4, yielding a3 =
a[3, 4], and a4 = a[5, 6]. Thus, the optimal set of four-means is {1, 2, a[3, 4], a[5, 6]} with quan-
tization error V4 =

11

192
. which is the proposition. �

Using the similar technique as the previous proposition, the following proposition can be
proved.

Proposition 3.1.4. The optimal set of five-means is {1, 2, 3, 4, a[5, 6]} with quantization error

V5 =
1

64
.

3.2. Nonuniform distribution associated with a probability vector of the form (x, (1−
x)x, (1−x)2x, (1−x)3x, (1−x)4x, (1−x)5). Let P be a nonuniform distribution defined on the
set {1, 2, 3, 4, 5, 6} with probability mass function f given by

f(j) = P (X : X = j) =















x if j = 1,
(1− x)j−1x if j ∈ {2, 3, 4, 5},

(1− x)5 if j = 6,
0 otherwise,

where 0 < x < 1. Notice that supp(P ) = {1, 2, 3, 4, 5, 6}. Fix x = 7

10
. In this subsection,

our goal is to calculate the optimal sets αn of n-means and the nth quantization errors for all
n = 1, 2, 3, 4, 5, 6 for the given mass function f with x = 7

10
. Since

E(X) =
6

∑

j=1

jf(j) =
142753

100000
,

the optimal set of one-mean is the set {142753

100000
} with quantization error the variance V of the

random variable X , where

V = V1 = E‖X − E(X)‖2 =

6
∑

j=1

f(j)
(

j −
142753

100000

)2

=
6007880991

10000000000
.

Moreover, the optimal set α6 of six-means is just the support of P , i.e., α6 = {1, 2, · · · , 6}. In
the following propositions, we determine the optimal sets of n-means for 2 ≤ n ≤ 5.

Proposition 3.2.1. The optimal set of two-means is given by {1, a[2, 6]} with quantization error

V2 =
174296997

1000000000
.

Proof. The distortion error due to the set β := {1, a[2, 6]} is given by

6
∑

2=1

f(j)min
a∈β

(j − a)2 =

6
∑

j=2

f(j)(j − a[2, 6])2 =
174296997

1000000000
.
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Since V2 is the quantization error for two-means, we have V2 ≤ 174296997

1000000000
= 0.174296997. Let

α := {a1, a2} be an optimal set of two-means. Without any loss of generality, we can assume
that 1 ≤ a1 < a2 ≤ 6. Notice that the Voronoi region of a1 must contain 1. Suppose that the
Voronoi region of a1 contains 3 as well. Then,

V2 ≥

3
∑

j=1

f(j)(j − a[1, 3])2 =
4809

13900
= 0.345971 > V2,

which gives a contradiction. Hence, we can assume that the Voronoi region of a1 does not
contain 3. Next, suppose that the Voronoi region of a1 contains 2. Then, the Voronoi region of
a2 contains all the remaining points, and so

V2 =

2
∑

j=1

f(j)(j − a[1, 2])2 +

6
∑

j=3

f(j)(j − a[3, 6])2 =
272139987

1300000000
= 0.209338 > V2,

which yields a contradiction. Hence, we can assume that the Voronoi region of a1 contains only
the point 1, and the remaining points are contained in the Voronoi region of a2, implying

a1 = 1, and a2 = a[2, 6]

with quantization error V2 =
174296997

1000000000
. Thus, the proof of the proposition is complete. �

Proposition 3.2.2. The optimal set of three-means is given by {1, 2, a[3, 6]} with quantization

error V3 =
4779999

100000000
.

Proof. The distortion error due to the set β := {1, 2, a[3, 6]} is given by

6
∑

j=3

f(j)min
a∈β

(j − a)2 =

6
∑

j=3

f(j)(j − a[3, 6])2 =
4779999

100000000
= 0.04779999.

Since V3 is the quantization error for three-means, we have V3 ≤ 0.04779999. Let α := {a1, a2, a3}
be an optimal set of three-means such that 1 ≤ a1 < a2 < a3 ≤ 6. Notice that the Voronoi
region of a1 must contain 1. Suppose that the Voronoi region of a1 also contains 2. Then,

V3 ≥

2
∑

j=1

f(j)(j − a[1, 2])2 =
21

130
= 0.161538 > V3,

which yields a contradiction. Thus, we can assume that the Voronoi region of a1 contains only
the point 1, i.e., a1 = 1. The Voronoi region of a2 contains 2. Suppose that the Voronoi region
of a2 also contains 3. Then,

V3 ≥
3

∑

j=2

f(j)(j − a[2, 3])2 =
63

1300
= 0.0484615 > V3,

which is a contradiction. Hence, the Voronoi region of a2 contains only the point 2, which
yields a2 = 2, and a3 = a[3, 6], with quantization error V3 = 4779999

100000000
. Thus, the proof of the

proposition is complete. �

Following the similar techniques as given in Proposition 3.2.2, we can prove the following two
propositions.

Proposition 3.2.3. The optimal set of four-means is given by {1, 2, 3, a[4, 6]} with quantization

error V4 =
112833

10000000
.

Proposition 3.2.4. The optimal set of five-means is given by {1, 2, 3, 4, a[5, 6]} with quantiza-

tion error V5 =
1701

1000000
.
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4. Optimal quantization for infinite discrete distributions

In this section, for n ∈ N, we investigate the optimal sets of n-means for two different infinite
discrete distributions. We give them in the following two subsections.

4.1. Optimal quantization for an infinite discrete distribution with support { 1

n
: n ∈

N}. Let N := {1, 2, 3, · · · } be the set of natural numbers, and let P be a Borel probability
measure on the set { 1

n
: n ∈ N} with probability mass function f given by

f(x) =

{

1

2k
if x = 1

k
for k ∈ N,

0 otherwise.

Then, P is a Borel probability measure on R, and the support of P is given by supp(P ) =
{ 1

n
: n ∈ N}. In this section, our goal is to determine the optimal sets of n-means and the nth

quantization errors for all positive integers n for the probability measure P . For k, ℓ ∈ N, where
k ≤ ℓ, write

[k, ℓ] := {
1

n
: n ∈ N and k ≤ n ≤ ℓ}, and [k,∞) := {

1

n
: n ∈ N and n ≥ k}.

Further, write

Av[k, ℓ] := E
(

X : X ∈ [k, ℓ]
)

=

∑ℓ

n=k
1

2n
1

n
∑ℓ

n=k
1

2n

, Av[k,∞) := E
(

X : X ∈ [k,∞)
)

=

∑

∞

n=k
1

2n
1

n
∑

∞

n=k
1

2n

,

Er[k, ℓ] :=

ℓ
∑

n=k

1

2n

(1

n
−Av[k, ℓ]

)2

, and Er[k,∞) :=

∞
∑

n=k

1

2n

(1

n
− Av[k,∞)

)2

.

Notice that E(X) := E(X : X ∈ supp(P )) =
∑

∞

n=1

1

2n
1

n
= Av[1,∞) = log(2), and so the

optimal set of one-mean is the set {log(2)} with quantization error

V (P ) =
∞
∑

n=1

1

2n

(1

n
− log(2)

)2

= Er[1,∞) =
1

12

(

π2 − 18 log2(2)
)

= 0.101788.

Proposition 4.1.1. The set {Av[2,∞), 1} forms the optimal set of two-means for the probability

measure P with quantization error V2(P ) = Er[2,∞) = 1

12

(

π2 − 12− 30 log2(2) + 24 log(2)
)

=
0.0076288597.

Proof. Consider the set β := {Av[2,∞), 1}. Since 1

3
< 1

2
(Av[2,∞) + 1) < 1, the Voronoi region

of 1 contains only the point 1, and the Voronoi region of Av[2,∞) contains the set { 1

n
: n ≥ 2}.

Hence, the distortion error due to the set β is given by

V (P ; β) = Er[2,∞) =
1

12

(

π2 − 12− 30 log2(2) + 24 log(2)
)

= 0.0076288597.

Since V2(P ) is the quantization error for two-means, we have V2(P ) ≤ 0.0076288597. Let
α := {a2, a1} be an optimal set of two-means. Due to Proposition 2.1, we can assume that
0 ≤ a2 < a1 ≤ 1. The Voronoi region of a1 must contain 1. Suppose that the Voronoi region of
a1 also contains 1

2
. Then,

V2(P ) ≥ Er[1, 2] =
1

24
= 0.0416667 > V2(P ),

which leads to a contradiction. Hence, we can assume that the Voronoi region of a1 does
not contain 1

2
. Again, by Proposition 2.1, the Voronoi region of a2 cannot contain the point

1. Thus, we have a2 = Av[2,∞), and a1 = 1, and the corresponding quantization error is
V2(P ) = Er[2,∞) = 0.0076288597. Thus, the proof of the proposition is complete. �

Proposition 4.1.2. The set {Av[3,∞), 1
2
, 1} forms the optimal set of three-means for the prob-

ability measure P with quantization error V3(P ) = Er[3,∞) = 0.00116437359.
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Proof. Consider the set β := {Av[3,∞), 1
2
, 1}. Since, 1

3
< 1

2
(Av[3,∞) + 1

2
) < 1

2
, and 1

2
<

1

2
(1
2
+ 1) < 1, the distortion error due to the set β := {Av[3,∞), 1

2
, 1} is given by

V (P ; β) = Er[3,∞) =
1

24

(

2π2 − 51− 108 log2(2) + 120 log(2)
)

= 0.00116437359.

Since V3(P ) is the quantization error for three-means, we have V3(P ) ≤ 0.00116437359. Let
α := {a3, a2, a1} be an optimal set of three-means such that 0 ≤ a3 < a2 < a1 ≤ 1. Proceeding
as Proposition 4.1.1, we can show that a1 = 1. Suppose that the Voronoi region of a2 contains
1

2
and 1

3
. Then,

V3(P ) ≥ Er[2, 3] = 0.002314814815 > V3(P ),

which is a contradiction. Hence, the Voronoi region of a2 cannot contain 1

3
. Thus, we have

a3 = Av[3,∞), a2 =
1

2
, and a1 = 1,

with quantization error V3(P ) = Er[3,∞) = 0.00116437359. Thus, the proof of the proposition
is complete. �

Proposition 4.1.3. The set {Av[4,∞), 1
3
, 1
2
, 1} forms the optimal set of four-means for the

probability measure P with quantization error V4(P ) = Er[4,∞) = 0.0002418966477.

Proof. The proof of this proposition is similar to the proof of Proposition 4.1.2. �

Proposition 4.1.4. The set {Av[5,∞), 1
4
, 1

3
, 1

2
, 1} forms the optimal set of five-means for the

probability measure P with quantization error V5(P ) = Er[5,∞) = 0.00005991266593.

Proof. The distortion error due to the set β := {Av[5,∞), 1
4
, 1

3
, 1

2
, 1} is given by

V (P ; β) := Er[5,∞) = Er[5,∞) = 0.00005991266593.

Since V5(P ) is the quantization error for five-means, we have V5(P ) ≤ 0.00005991266593. Let
α := {a5, a4, a3, a2, a1} be an optimal set of five-means such that 0 ≤ a5 < a4 < a3 < a2 < a1 ≤
1. Proceeding as Proposition 4.1.2, we can show that a1 = 1, a2 =

1

2
, and a3 =

1

3
. We now show

that a4 =
1

4
. Suppose that the Voronoi region of a4 contains 1

4
, 1

5
, and 1

6
. Then,

V5(P ) ≥ Er[4, 6] = 0.0001116071429 > V5(P ),

which is a contradiction. Assume that the Voronoi region of a4 contains only the points 1

4
, and

1

5
. Then, the Voronoi region of a5 contains the set [6,∞), and so we have

V5(P ) = Er[6,∞) + Er[4, 5] = 0.00006872664638 > V5(P ),

which leads to a contradiction. Hence, we can assume that the Voronoi region of a4 contains
only the point 1

4
. Thus, we have a5 = Av[5,∞), a4 = 1

4
, a3 = 1

3
, a2 = 1

2
, and a1 = 1 with

quantization error V5(P ) = Er[5,∞) = 0.00005991266593. Thus, the proof of the Proposition
is complete. �

Proposition 4.1.5. The set {Av[7,∞), Av[5, 6], 1
4
, 1
3
, 1

2
, 1} forms the optimal set of six-means

for the probability measure P with quantization error

V6(P ) = Er[7,∞) + Er[5, 6] = 0.00001658886625.

Proof. Notice that 1

7
= 0.142857 < 1

2
(Av[7,∞) + Av[5, 6]) = 0.158488 < 0.166667 = 1

6
, and 1

5
<

1

2
(Av[5, 6]+ 1

4
) < 1

4
. Hence, the distortion error due to the set β := {Av[7,∞), Av[5, 6], 1

4
, 1

3
, 1
2
, 1}

is given by
V (P ; β) = Er[7,∞) + Er[5, 6] = 0.00001658886625.

Since V6(P ) is the distortion error for six-means, we have V6(P ) ≤ 0.00001658886625. Let
α := {a6, a5, a4, a3, a2, a1} be an optimal set of six-means such that 0 ≤ a6 < a5 < · · · < a1 ≤ 1.
Proceeding in the similar way as in the proof of Proposition 4.1.2, we can show that a3 =

1

3
, a2 =

1

2
, and a1 = 1. Proceeding in the similar way as in the proof of Proposition 4.1.4, we can show
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that a4 =
1

4
. We now show that a5 = Av[5, 6]. Notice that the Voronoi region of a5 must contain

1

5
. Suppose that the Voronoi region of a5 contains 1

7
and 1

6
as well. Then,

V6(P ) ≥ Er[5, 7] = 0.00002576328150 > V6(P ),

which leads to a contradiction. Suppose that the Voronoi region of a5 contains only the point
1

5
, i.e., a5 =

1

5
. Then,

V6(P ) = Er[6,∞) = 0.00001664331305 > V6(P ),

which yields a contradiction. Hence, we can assume that the Voronoi region of a5 contains only
the two points 1

6
and 1

5
. Thus, we have

a6 = Av[7,∞), a5 = Av[5, 6], a4 =
1

4
, a3 =

1

3
, a2 =

1

2
, and a1 = 1,

and the quantization error is V6(P ) = Er[7,∞)+Er[5, 6] = 0.00001658886625. Thus, the proof
of the proposition is complete. �

In the following proposition, we calculate the optimal set of n-means and the nth quantization
error for n = 200.

Proposition 4.1.6. The set {Av[301,∞), Av[299, 300], 1

298
, 1

297
, · · · , 1

3
, 1

2
, 1} forms the optimal

set of 300-means for the probability measure P with quantization error V300(P ) = Er[301,∞) +
Er[299, 300] = 1.564317642582409606174128× 10−100.

Proof. Notice that 1

301
= .003322259136 < 1

2
(Av[301,∞) + Av[299, 300]) = 0.003326047849 <

0.003333333333 = 1

300
, and 1

299
= 0.003344481605 < 1

2
(Av[299, 300] + 1

298
) = 0.003348235106 <

0.003355704698 = 1

298
. Hence, the distortion error due to the set

β := {Av[301,∞), Av[299, 300],
1

198
,

1

197
, · · · ,

1

3
,
1

2
, 1}

is given by

V (P ; β) = Er[301,∞) + Er[299, 300] = 1.564317642582409606174128× 10−100.

Since V300(P ) is the distortion error for 300-means, we have

V300(P ) ≤ 1.564317642582409606174128× 10−100.

Let α := {a300, a299, · · · , a3, a2, a1} be an optimal set of 300-means such that 0 ≤ a300 < a299 <

· · · < a1 ≤ 1. Proceeding in the similar way as in the proof of Proposition 4.1.2, we can show that
a297 =

1

297
, a296 =

1

296
, · · · , a3 =

1

3
, a2 =

1

2
, and a1 = 1. Proceeding in the similar way as in the

proof of Proposition 4.1.4, we can show that a298 =
1

298
. We now show that a299 = Av[299, 300].

The Voronoi region of a299 must contain 1

299
. Suppose that the Voronoi region of a299 contains

1

i
for i = 299, 300, 301, 302. Then,

V300(P ) ≥ Er[299, 302] = 1.953916208081117722202350× 10−100 > V300(P ),

which leads to a contradiction. Assume that the Voronoi region of a299 contains only the points
1

i
for i = 299, 300, 301. Then,

V300(P ) = Er[302,∞) + Er[299, 301] = 1.698521119259119376459397× 10−100 > V300(P ),

which yields a contradiction. Assume that the Voronoi region of a299 contains only the point
1

299
. Then,

V300(P ) = Er[300,∞) = 2.345910694878821203973953× 10−100 > V300(P ),

which gives a contradiction. Hence, we can assume that the Voronoi region of a299 contains only
the two points 1

299
and 1

300
. Thus, we have

a300 = Av[301,∞), a299 = Av[299, 300], a298 =
1

298
, · · · , a4 =

1

4
, a3 =

1

3
, a2 =

1

2
, and a1 = 1,
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and the quantization error is given by

V300(P ) = Er[301,∞) + Er[299, 300] = 1.564317642582409606174128× 10−100.

Thus, the proof of the proposition is complete. �

We now give the following theorem.

Theorem 4.1.7. For any positive integer n, the sets {Av[n,∞), 1

n−1
, · · · , 1

3
, 1

2
, 1}, where 1 ≤

n ≤ 5, form the optimal sets of n-means for the probability measure P with quantization er-

rors Vn(P ) := Er[n,∞). For the positive integers n, where 6 ≤ n ≤ 300, the sets {Av[n +
1,∞), Av[n − 1, n], 1

n−2
, · · · , 1

3
, 1
2
, 1} form the optimal sets of n-means for the probability mea-

sure P with quantization errors

Vn(P ) = Er[n+ 1,∞) + Er[n− 1, n].

Proof. Due to Proposition 4.1.1 through Proposition 4.1.4, it follows that for 1 ≤ n ≤ 5 the
sets {Av[n,∞), 1

n−1
, · · · , 1

3
, 1

2
, 1} form the optimal sets of n-means for the probability measure P

with quantization errors Vn(P ) = Er[n,∞). Proceeding in the similar way as Proposition 4.1.5
and Proposition 4.1.6, we can show that for any positive integer n, where 6 ≤ n ≤ 300, the sets
{Av[n+1,∞), Av[n−1, n], 1

n−2
, · · · , 1

3
, 1
2
, 1} form the optimal sets of n-means for the probability

measure P with quantization errors

Vn(P ) = Er[n+ 1,∞) + Er[n− 1, n].

Thus, we complete the proof of the theorem. �

We now give the following remark.

Remark 4.1.8. Proceeding in the similar way, as given in the proof of Theorem 4.1.7, it can be
shown that the set {Av[n,∞), 1

n−1
, · · · , 1

3
, 1

2
, 1} also gives an optimal set of n-means for n = 301.

It is still not known whether the sets {Av[n+1,∞), Av[n−1, n], 1

n−2
, · · · , 1

3
, 1

2
, 1} give the optimal

sets of n-means for all positive integers n ≥ 6. If not, then the least upper bound of n ∈ N for
which such sets give the optimal sets of n-means for the probability measure P is not known
yet.

4.2. Optimal quantization for an infinite discrete distribution with support {n : n ∈
N}. Let N := {1, 2, 3, · · · } be the set of natural numbers, and let P be a Borel probability
measure on the set {n : n ∈ N} with probability density function f given by

f(x) =

{

1

2n
if x = n for n ∈ N,

0 otherwise.

Then, P is a Borel probability measure on R, and the support of P is the set N of natural
numbers. In this section, our goal is to determine the optimal sets of n-means and the nth
quantization errors for all positive integers n for the probability measure P . For k, ℓ ∈ N, where
k ≤ ℓ, write

[k, ℓ] := {n : n ∈ N and k ≤ n ≤ ℓ}, and [k,∞) := {n : n ∈ N and n ≥ k}.

Further, write

Av[k, ℓ] := E
(

X : X ∈ [k, ℓ]
)

=

∑ℓ

n=k
n
2n

∑ℓ

n=k
1

2n

, Av[k,∞) := E
(

X : X ∈ [k,∞)
)

=

∑

∞

n=k
n
2n

∑

∞

n=k
1

2n

,

Er[k, ℓ] :=

ℓ
∑

n=k

1

2n

(

n−Av[k, ℓ]
)2

, and Er[k,∞) :=

∞
∑

n=k

1

2n

(

n− Av[k,∞)
)2

.
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Notice that E(P ) := E(X : X ∈ supp(P )) =
∑

∞

n=1

n
2n

= Av[1,∞) = 2, and so the optimal set
of one-mean is the set {2} with quantization error

V (P ) =
∞
∑

n=1

1

2n
(n− 2)2 = Er[1,∞) = 2.

Proposition 4.2.1. The optimal set of two-means is given by {Av[1, 2], Av[3,∞)} with quan-

tization error V2 =
2

3
.

Proof. We see that Av[1, 2] = 4

3
, and Av[3,∞) = 4. Since 4

3
< 1

2
(4
3
+4) < 4, the distortion error

due to the set β := {4

3
, 4} is given by

V (P ; β) = Er[1, 2] + Er[3,∞) =
2

3
.

Since V2 is the quantization error for two-means, we have V2 ≤
2

3
. Notice that the Voronoi region

of a1 must contain 1. Suppose that the Voronoi region of a1 contains the set {1, 2, 3, 4}. Then,

V2 ≥

4
∑

j=1

1

2j
(j −Av[1, 4])2 = Er[1, 4] =

97

120
= 0.808333 > V2,

which yields a contradiction. Hence, we can assume that the Voronoi region of a1 contains only
the set {1, 2, 3}, and so the Voronoi region of a2 contains the set {n : n ≥ 4}. Then, we have

V2 = Er[1, 3] + Er[4,∞) =
5

7
= 0.714286 > V2,

which is a contradiction. Next, suppose that the Voronoi region of a1 contains only the element
1, and so the Voronoi region of a2 contains the set {n : n ≥ 2}. Then, we have

V2 = Er[2,∞) = 1 > V2,

which leads to a contradiction. Hence, we can assume that the Voronoi region of a1 contains
the set {1, 2}, and so the Voronoi region of a2 contains {3, 4, 5, · · · }, yielding a1 = Av[1, 2], and
a2 = Av[3,∞), and the corresponding quantization error is V2 = 2

3
. Thus, the proof of the

proposition is complete. �

Proposition 4.2.2. The sets {1, Av[2, 3], Av[4,∞)}, and {Av[1, 2], Av[3, 4], Av[5,∞)} form two

optimal sets of three-means with quantization error V3 =
1

3
.

Proof. The distortion error due to set β := {1, Av[2, 3], Av[4,∞)} is given by

V (P ; β) = Er[2, 3] + Er[4,∞) =
1

3
.

Notice that the distortion error due to the set {Av[1, 2], Av[3, 4], Av[5,∞)} is also 1

3
. Since V3 is

the quantization error for three-means, we have V3 ≤
1

3
. Let α := {a1, a2, a3} be an optimal set

of three-means, where 1 ≤ a1 < a2 < a3 < ∞. Suppose that the Voronoi region of a1 contains
the set {1, 2, 3}. Then,

V3 ≥

3
∑

j=1

1

2j
(j −Av[1, 3])2 =

13

28
>

1

3
> V3,

which leads to a contradiction. Hence, we can assume that the Voronoi region of a1 contains
either the set {1}, or the set {1, 2}. Consider the following two cases:

Case 1. The Voronoi region of a1 contains only the set {1}.
In this case, the Voronoi region of a2 must contain the element 2. Suppose that the Voronoi

region of a2 contains the set {2, 3, 4, 5}. Then,

V3 ≥

5
∑

j=2

1

2j
(j − Av[2, 5])2 =

97

240
= 0.404167 > V3,
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which yields a contradiction. Assume that the Voronoi region of a2 contains only the set {2, 3, 4},
and so the Voronoi region of a3 contains the set {n : n ≥ 5}. Then, the distortion error is

V3 = Er[2, 4] + Er[5,∞) =
5

14
= 0.357143 > V3,

which gives a contradiction. Next, assume that the Voronoi region of a2 contains only the
element 2, and so the Voronoi region of a3 contains the set {n : n ≥ 3}. Then, the distortion
error is

V3 = Er[3,∞) =
1

2
> V3,

which is a contradiction. Hence, in this case, we can conclude that the Voronoi region of a2
contains only the set {2, 3}, yielding a1 = 1, a2 = Av[2, 3], and a3 = Av[4,∞) with quantization
error V3 =

1

3
.

Case 2. The Voronoi region of a1 contains only the set {1, 2}.
In this case, the Voronoi region of a2 must contain the element 3. Suppose that the Voronoi

region of a2 contains the set {3, 4, 5, 6}. Then,

V3 ≥
2

∑

j=1

1

2j
(j −Av[1, 2])2 +

6
∑

j=3

1

2j
(j − Av[3, 6])2 =

59

160
= 0.36875 > V3,

which yields a contradiction. Assume that the Voronoi region of a2 contains only the set {3, 4, 5},
and so the Voronoi region of a3 contains the set {n : n ≥ 6}. Then, the distortion error is

V3 = Er[1, 2] + Er[3, 5] + Er[6,∞) =
29

84
= 0.345238 > V3,

which gives a contradiction. Next, assume that the Voronoi region of a2 contains only the
element 3, and so the Voronoi region of a3 contains the set {n : n ≥ 4}. Then, the distortion
error is

V3 = Er[1, 2] + Er[4,∞) =
5

12
= 0.416667 > V3,

which yields a contradiction. Hence, in this case, we can conclude that the Voronoi region of
a2 contains only the set {3, 4}, yielding a1 = Av[1, 2], a2 = Av[3, 4], and a3 = Av[5,∞) with
quantization error V3 =

1

3
.

By Case 1 and Case 2, the proof of the proposition is complete. �

We need the following lemma.

Lemma 4.2.3. Let n ≥ 4, and let αn be an optimal set of n-means. Then, αn must contain the

set {1, 2, · · · , (n− 3)}.

Proof. The distortion error due to the set β := {1, 2, · · · , (n − 3), (n − 2), Av[n − 1, n], Av[n +
1,∞)} is given by

V (P ; β) = Er[n− 1, n] + Er[n+ 1,∞) =
23−n

3
.

Since Vn is the quantization error for n-means, we have Vn ≤ 23−n

3
. Let αn := {a1, a2, · · · , an}

be an optimal set of n-means such that 1 ≤ a1 < a2 < · · · < an < ∞. We show that
a1 = 1, a2 = 2, · · · , an−3 = n−3. Notice that the Voronoi region of a1 must contain the element
1. Suppose that the Voronoi region of a1 also contains the element 2. Then,

Vn >

2
∑

j=1

1

2j
(j − Av[1, 2])2 =

1

6
≥

23−n

3
≥ Vn,

which is a contradiction. Hence, we can conclude that the Voronoi region of a1 contains only
the element 1, yielding a1 = 1. Thus, we can deduce that there exists a positive integer k, where
1 ≤ k < n − 3, such that a1 = 1, a2 = 2, · · · , ak = k. We now show that ak+1 = k + 1. Notice
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that the Voronoi region of ak+1 must contain k + 1. Suppose that the Voronoi region of ak+1

also contains the element k + 2. Then, as k < n− 3, we have

Vn >

k+2
∑

j=k+1

1

2j
(j − Av[k + 1, k + 2])2 =

2−k−1

3
≥

23−n

3
≥ Vn,

which is a contradiction. Hence, we can conclude that the Voronoi region of ak+1 contains only
the element k+1, yielding ak+1 = k+1. Thus, by the Principle of Mathematical Induction, we
deduce that a1 = 1, a2 = 2, · · · , an−3 = n− 3. Thus, the proof of the lemma is complete. �

Theorem 4.2.4. Let n ≥ 4, and let αn be an optimal set of n-means. Then, either αn =
{1, 2, 3, · · · , n− 3, n− 2, Av[n− 1, n], Av[n + 1,∞)}, or αn = {1, 2, 3, · · · , n− 3, Av[n− 2, n−

1], Av[n, n+ 1], Av[n+ 2,∞)} with quantization error Vn = 23−n

3
.

Proof. As shown in the proof of Lemma 4.2.3, we have Vn ≤ 23−n

3
. Let αn := {a1, a2, · · · , an} be

an optimal set of n-means such that 1 ≤ a1 < a2 < · · · < an < ∞. By Lemma 4.2.3, we have
a1 = 1, a2 = 2, · · · , an−3 = n − 3. Recall that n ≥ 4. Suppose that the Voronoi region of an−2

contains the set {n− 2, n− 1, n}. Then,

Vn ≥

n
∑

j=n−2

1

2j
(j −Av[n− 2, n])2 =

13

7
21−n >

23−n

3
≥ Vn,

which leads to a contradiction. Hence, we can assume that the Voronoi region of an−2 contains
either the set {n− 2}, or the set {n− 2, n− 1}. Consider the following two cases:

Case 1. The Voronoi region of an−2 contains only the set {n− 2}.
Proceeding along the similar lines as Case 1 in the proof of Proposition 4.2.2, we can show

that the Voronoi region of an−1 contains only the set {n− 1, n}, yielding an−2 = n− 2, an−1 =

Av[n− 1, n], and an = Av[n + 1,∞) with quantization error Vn = 23−n

3
.

Case 2. The Voronoi region of an−2 contains only the set {n− 2, n− 1}.
Proceeding along the similar lines as Case 2 in the proof of Proposition 4.2.2, we can show

that the Voronoi region of an−1 contains only the set {n, n+1}, yielding an−2 = Av[n−2, n−1],

an−1 = Av[n, n+ 1], and an = Av[n + 2,∞) with quantization error Vn = 23−n

3
.

By Case 1 and Case 2, the proof of the theorem is complete. �

5. Probability distributions when the optimal sets are given

Let P be a discrete probability measure on R with support a finite or an infinite set {1, 2, 3, · · · }.
Let (p1, p2, p3, · · · ) be a probability vector associated with {1, 2, 3, · · · } such that the probabil-
ity mass function f of P is given by f(k) = pk if k ∈ {1, 2, 3, · · · }, and zero otherwise. For
k, ℓ ∈ {1, 2, 3, · · · } with k ≤ ℓ, write

[k, ℓ] := {n : k ≤ n ≤ ℓ}, and [k,∞) := {k, k + 1, · · · }.

For a random variable X with distribution P , let Av[k, ℓ] represent the conditional expectation
of X given that X takes values on the set {k, k + 1, k + 2, · · · , ℓ}, i.e.,

Av[k, ℓ] = E(X : X ∈ [k, ℓ]),

where k, ℓ ∈ {1, 2, 3, · · · } with k ≤ ℓ. On the other hand, by Av[k,∞) it is meant Av[k,∞) =
E(X : X ∈ [k,∞)), where k ∈ {1, 2, 3, · · · }. Let αn be an optimal set of n-means for P , where
n ∈ N. In this section, our goal is to find a set of probability vectors (p1, p2, p3, · · · ) such that
for all n ∈ N, the optimal sets of n-means are given by αn = {1, 2, 3, · · · , n− 1, Av[n,∞)}.

Consider the following two cases:
Case 1. {1, 2, 3, · · · } is a finite set.

In this case, there exists a positive integer m, such that the support of P is given by
{1, 2, 3, · · · , m}. Notice that for any k ∈ {1, 2, · · · , m}, in this case by [k,∞) it meant the set
[k,m]. If m = 1, then α1 = {1}; and if m = 2, then α1 = {Av[1,∞)}, and α2 = {1, Av[2,∞)},
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i.e., there is nothing to prove. So, we can assume that m ≥ 3. Define the probability vector
(p1, p2, · · · , pm) as follows:

pj =







x if j = 1,
(1− x)j−1x if 2 ≤ j ≤ m− 1,
(1− x)j−1 if j = m.

(1)

For the sets αn to form the optimal sets of n-means for all 1 ≤ n ≤ m, we must have

(2) (n− 1) ≤
1

2
(n− 1 + Av[n,∞)) ≤ n

for 2 ≤ n ≤ m. The set of values of x obtained by solving the above inequalities does not
guarantee that the sets αn for 1 ≤ n ≤ m will form the optimal set of n-means. Thus, we need
further investigation. Due to symmetry in the construction of the probability vectors, we can
say that αn for 1 ≤ n ≤ m will form the optimal sets of n-means if the following condition is
also true:

(3) V (P ; {1, Av[2,∞)}) ≤ V (P ; {Av[1, 2], Av[3,∞)}).

Thus, we conjecture that the values of x, for which the inequalities given by (2) and (3) are
true, form the set of probability vectors (p1, p2, p3, · · · , pm), given by (1), for which the sets αn

for 1 ≤ n ≤ m form the optimal sets of n-means. By several examples, we verified that the
conjecture is true, also see Example 5.1 and Example 5.2.

Case 2. {1, 2, 3, · · · } is an infinite set.

Define the probability vector (p1, p2, p3 · · · ) as follows:

pj =

{

x if j = 1,
(1− x)j−1x if 2 ≤ j.

(4)

For the sets αn to form optimal sets of n-means for all 1 ≤ n, we must have

(5) (n− 1) ≤
1

2
(n− 1 + a(n)) ≤ n

for 2 ≤ n. The set of values of x obtained by solving the above inequalities does not guarantee
that αn for 1 ≤ n will form an optimal set of n-means. Thus, we need further investigation.
Due to symmetry in the construction of the probability vectors, we can say that the sets αn for
1 ≤ n will form the optimal sets of n-means if the following inequality is also true:

(6) V (P ; {1, Av[2,∞)}) ≤ V (P ; {Av[1, 2], Av[3,∞)}).

After some calculation, we see that there exists a real number y, the ten-digit rational approxi-
mation of which is 0.6666666667, such that the inequalities given by (5) and (6) are satisfied if
y ≤ x < 1. Thus, we conjecture that the sets αn for 1 ≤ n will form the optimal sets of n-means
if the probability vector (p1, p2, p3, · · · ) is given by (4) for 0.6666666667 ≤ x < 1. By several
examples, we verified that the conjecture is true.

Example 5.1. Let m = 6 in Case 1. Then, for 0 < x < 1 we have

p1 = x, p2 = (1− x)x, p3 = (1− x)2x, p4 = (1− x)3x, p5 = (1− x)4x, and p6 = (1− x)5.

After solving the inequalities given by (2), we have 0.4812099363 < x < 1. Again, solving the
inequality (3), we have 0.6628057756 ≤ x < 1. Notice that 0.4812099363 and 0.6628057756 are
the ten-digit rational approximations of two real numbers. Thus, the inequalities given by (2)
and (3) are true if 0.6628057756 ≤ x < 1. Hence, a set of probability vectors (p1, p2, · · · , p6) for
which the given sets αn form the optimal sets of n means for 1 ≤ n ≤ 6 is given by

{(

x, (1− x)x, (1 − x)2x, (1− x)3x, (1− x)4x, (1− x)5
)

: 0.6628057756 ≤ x < 1
}

.
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Example 5.2. Let m = 7 in Case 1. Then, proceeding as Example 5.1, we see that (2) and (3)
are true if 0.6654212000 ≤ x < 1. Hence, a set of probability vectors (p1, p2, · · · , p7) for which
the given sets αn form the optimal sets of n means for 1 ≤ n ≤ 7 is given by

{

x, (1− x)x, (1− x)2x, (1− x)3x, (1− x)4x, (1− x)5x, (1− x)6
}

where 0.6654212000 ≤ x < 1.
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