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SUMMARY

Maternal-offspring gene interactions, aka maternal-fetal genotype (MFG) incompatibilities, are 

neglected in complex diseases and quantitative trait studies. They are implicated in birth to adult 

onset diseases but there are limited ways to investigate their influence on quantitative traits. We 

present the Quantitative-MFG (QMFG) test, a linear mixed model where maternal and offspring 

genotypes are fixed effects and residual correlations between family members are random effects. 

The QMFG handles families of any size, common or general scenarios of MFG incompatibility, 

and additional covariates. We develop likelihood ratio tests (LRTs) and rapid score tests and show 

they provide correct inference. In addition, the LRT’s alternative model provides unbiased 

parameter estimates. We show that testing the association of SNPs by fitting a standard model, 

which only considers the offspring genotypes, has very low power or can lead to incorrect 

conclusions. We also show that offspring genetic effects are missed if the MFG modeling 

assumptions are too restrictive. With GWAS data from the San Antonio Family Heart Study, we 

demonstrate that the QMFG score test is an effective and rapid screening tool. The QMFG test 

therefore has important potential to identify pathways of complex diseases for which the genetic 

etiology remains to be discovered.
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INTRODUCTION

Maternal and offspring gene interaction, also termed maternal-fetal genotype (MFG) 

incompatibility, occurs when the effects of maternal genes on the offspring’s phenotype vary 

depending on the offspring’s genotype. The possibility of joint maternal and offspring 

effects needs to be studied, especially when investigating genetic factors of developmental 

disorders and their associated quantitative traits. Previous studies have found that MFG 

interactions are associated with preterm birth, conotruncal heart defects, neural tube defects, 

and preeclampsia (see as examples, Liang et al., 2010, Li et al., 2014, Lupo et al., 2014, 

Procopciuc et al., 2014). Additionally, MFG incompatibilities have been implicated as risk 

factors in complex adult onset diseases, such as schizophrenia, where the effects are not 

evident until long after the MFG incompatibility initiated event has occurred and subsided 

(see as examples, Stubbs et al., 1985, Hollister et al., 1996, Dahlquist et al., 1999, Juul-Dam 

et al., 2001, Cannon et al., 2002, Palmer et al., 2002, Newton et al., 2004, Insel et al., 2005, 

Palmer et al., 2008, Freedman et al., 2011). To date, studies have not looked at the role of 

MFG incompatibility on the quantitative traits related to these adult onset diseases. Although 

there are a number of methods for investigating MFG incompatibility as a risk factor for 

disease (see Sinsheimer & Creek, 2013 for a review of these methods), the proposed 

methods to investigate the effects of maternal and offspring genes on quantitative traits 

typically rely on retrospective likelihoods and are limited to case-parent trios (Kistner & 

Weinberg, 2004, Kistner & Weinberg, 2005, Wheeler & Cordell, 2007). Moreover, the 

retrospective likelihood design is not easily generalized to arbitrary family structures, 

multiple markers, or multivariate traits (Kraft et al., 2004) and parameter interpretation can 

be challenging.

One way to conduct association testing with quantitative traits using pedigree data is in a 

measured genotype analysis (Boerwinkle et al., 1986, Lange, 2002). This method of testing 

uses a linear mixed model (LMM) in which the genotypes are fixed effects and familial 

correlations are taken into account through partitioning the variance. Hence the LMM is also 

called variance component modeling in the genetic literature. We have developed the 

Quantitative-MFG (QMFG) test, an extension to the LMM where the joint maternal and 

offspring effects including MFG incompatibilities are fixed effects, familial correlations are 

variance components, and the outcome is a trait with residuals that are reasonably modeled 

as normally distributed (Lange, 2002). This approach handles pedigrees of virtually any size, 

both general and specific scenarios of MFG incompatibility, multivariate traits, and 

covariates in a straightforward manner. Another advantage of this approach is the ability to 

quickly test genome-wide association study (GWAS) pedigree data for joint maternal and 

offspring effects including MFG incompatibility via the use of the score test.

MATERIALS AND METHODS

The QMFG Test

Recall that, for a single pedigree, the general multivariate normal loglikelihood for a LMM 

is
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with observed trait vector y, mean vector ν, and covariance matrix Ω (see for example, 

Lange, 2002 for details regarding the variance component model in classic genetic 

applications). We propose an extension to this model where the maternal-offspring 

genotypes are fixed effects. In the QMFG test, ν = Aβ, where A is the design matrix 

consisting of indicator variables for the MFG combinations of interest and β is the column 

vector of corresponding regression coefficients. In our applications, ν always includes a 

grand mean μ so there is one entry of β that equals μ and one column of A is all ones. 

Consider the effects of a single SNP with a reference allele and a variant allele. When 

modeling the joint effects of maternal and offspring genotype effects, let βamac denote the 

difference in the offspring’s quantitative trait value from the grand mean for a mother with 

am variant alleles and an offspring with ac variant alleles at a given SNP. Because there are 

seven possible mother-offspring genotype combinations for a biallelic locus (see Table 1), in 

the general MFG incompatibility case for one SNP, the vector of regression coefficients is βt 

=(μ, β00, β01, β10, β11, β12, β21, β22) and the additional columns of the design matrix A are 

indicator variables corresponding to each of the seven possible MFG combinations. Note 

that just as additional covariates such as age and sex can be incorporated in the standard 

measured genotype analysis (Boerwinkle et al., 1986), they can be included in the fixed 

effect portion of the QMFG model as additional entries in theβ vector and additional 

columns of the A matrix. To avoid non-identifiability, one of the parameters for the MFG 

effects should be made the reference state or, equivalently, the sum of MFG parameters 

should be set to some constant. In our analyses, parameter β00, denoting zero copies of the 

variant allele in both mother’s and offspring’s genotypes, is always set to zero and hence, at 

most six MFG parameters are estimated along with the grand mean.

We continue to treat familial correlations as random effects by partitioning the residual 

variance. Here we define the partition of the covariance matrix as , where k is 

the number of variance components included in the model. Often in genetic studies a very 

simple version of this matrix with only two components is used, one representing the 

additive genetic effects and one representing environmental random effects. In this model, 

the familial correlations are assumed to be due to small and approximately equal effects of 

alleles at a number of genes each acting independently. The additive genetic and 

environmental variances are denoted by  and , respectively. The design matrix Γa 

corresponding to  is twice the global kinship coefficient matrix Φ. Each element Φij is the 

probability that, at a randomly chosen autosomal locus, an allele chosen at random from 

subject i and an allele chosen at random from subject j match identically by descent. When i 

equals j the alleles are chosen with replacement. The environmental contribution is 

multiplied by the identity matrix I since the environment is assumed to affect each subject 

independently. The environmental variance  is always included even when there are 

thought to be no environmental factors to insure that the matrix is positive definite. Under 

this simple model, .
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As in other LMM scenarios, likelihood ratio tests (LRTs) can be used here to determine the 

significance of MFG parameters. Asymptotically, the LRT statistic follows a chi-square 

distribution with degrees of freedom equal to the difference in the number of parameters 

under the null and alternative models. In addition to the LRT, we can use score tests to 

rapidly screen markers (Chen & Abecasis, 2007). The score statistic is given by

where ∇L(θ) is the gradient of the loglikelihood with the parameter vector θ, dL(θ) is the 

first differential of the loglikelihood, and J(θ) is the expected information matrix. Zhou et al. 

(2015) precompute and store key quantities for a fast score test for individual SNPs. In 

particular, for family i under the alternative hypothesis, the design matrix Ai can be written 

as (ai, Ni) where Ni is the design matrix under the null. Additional covariates are included in 

the matrix Ni. The array ai conveys the genotypes at the SNP of interest. Let the residual for 

family i be ri = yi − Niβ̂ where β̂ are the maximum likelihood estimates (MLEs) of the fixed 

effects under the null (in which no SNPs are included in the model). The score statistic for n 

families then reduces to

where

Thus the quantities , and  can be computed once under 

the null model and then reused for the analysis of each SNP. This makes the calculation of 

the score test statistic for each SNP simple and rapid.

We extend this fast calculation of the score test to MFG incompatibility by replacing ai, 

which previously was a vector conveying the variant allele counts at the SNP of interest for 

family i, with the matrix Xi. In its most general form, each column of matrix Xi represents 

one of the possible maternal-fetal genotype combinations and is composed of zeros and 

ones, indicating which MFG combination defines the joint mother-offspring genotype for 

each offspring within the pedigree at a particular SNP. For example, for the pedigree in 

Figure 1
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and for the pedigree in Figure 2

In these examples, the top row corresponds to Offspring A and the bottom row corresponds 

to Offspring B and each column corresponds to the maternal-fetal genotype combinations in 

Table 1. The columns of Xi can be combined depending on the restrictions imposed on the 

parameters and therefore the number of columns equals the number of parameters to be 

estimated. As with the LRT, the score test statistic asymptotically follows a chi-square 

distribution with degrees of freedom determined by the difference between the number of 

parameters in the null and alternative models.

There are advantages and disadvantages to both the LRT and the fast score test. For 

example, dealing with complex null and alternative hypotheses is better handled with the 

LRT. However, to calculate the LRT iterative maximization of the likelihood under both the 

null and alternative models is required, which can be computationally intensive when using 

large numbers of extended pedigrees and markers. We evaluate the ability of both tests to 

make correct QMFG inferences. Another advantage of the LRT is that in maximizing the 

likelihood we obtain parameter estimates. We also evaluate the accuracy and precision of 

these estimates.

Examples of MFG Incompatibility

To better illustrate how the QMFG model works, we present two well-known examples of 

MFG incompatibility. Although these two examples are typically framed in terms of disease, 

they could easily be imagined to be operating on associated quantitative traits. First, we 

consider the case where the mother reacts to antigens created by the offspring. The 

prototypical example is RHD incompatibility (Figure 1), which occurs if the mother is 

homozygous for the variant allele ‘d’ (RHD-negative) and the offspring is heterozygous 

(RHD-positive). This can lead to hemolytic disease of the newborn (Levine et al., 1941), 

which is associated with high levels of bilirubin resulting from the breakdown of the fetus’s 

red blood cells (Lee et al., 2009). In our simulation study we estimate parameter β21, which 

denotes the expected change in the quantitative trait value of the offspring when mother and 

offspring are RHD incompatible, and the other six MFG parameters form the reference 

group, i.e., β00 = β01 = β10 = β11 = β12 = β22 = 0 (Table 1, Column 4).

The second example we investigate is the case where the offspring’s immune system reacts 

to an antigen that has its origins in the mother’s genotype. It is inspired by rheumatoid 

arthritis (RA) and HLA-DRB1, where non-inherited maternal antigens (NIMA) have been 

implicated in offspring disease susceptibility (van der Horst-Bruinsma et al., 1998, Harney 
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et al., 2003, Newton et al., 2004). As an example of an associated quantitative trait, anti-

CCP antibodies are important markers for diagnosis and prognosis in RA since they are 

highly specific and sensitive (Visser et al., 2002, Silveira et al., 2007) and therefore would 

be an interesting quantitative trait to investigate using the QMFG test. A pedigree depiction 

of NIMA is shown in Figure 2 and is characterized by a mother that has one variant allele 

encoding a shared epitope (SE-positive) and an offspring that has none (SE-negative). There 

is strong evidence that there is an effect when the offspring has one or more variant alleles 

regardless of the mother’s genotype (Gregersen et al., 1987, Jawaheer & Gregersen, 2002) 

and thus offspring effects must be included in the model. This model allows us to show how 

more complex restrictions can be handled. As shown in Table 1, Column 5, the effects of 

interest are the NIMA effect (β10) and the offspring genotype effects (β.1 = β01 = β11 = β21 

and β.2 = β12 = β22).

Mendel Software

We implement the QMFG test by modifying the statistical genetics software package 

Mendel (Lange et al., 2013). When using SNPs, one allele is considered the reference allele 

and the other is the derived, variant allele. In order to implement the measured genotype 

analysis option for MFG incompatibility, the Mendel code was updated to extract the variant 

allele counts for mother and offspring from the genotypes included in the pedigree files. The 

reference allele is by default the more frequent allele but this can be changed if the user 

specifies in the Mendel control file. Once variant allele counts are determined, the LRT 

option is run by internally including a new covariate for each offspring that indicates which 

of the seven possible maternal-fetal gene-gene combinations describes the offspring’s and 

his mother’s genotypes. This enables MFG incompatibility parameters to be estimated and 

the likelihood to be calculated within the variance component analysis option in Mendel. 

The user can place restrictions on parameter estimates thus allowing for specific forms of 

MFG incompatibility such as offspring antigen – maternal antibody (referred in this 

document by the prototypical example RHD incompatibility) or maternal antigen – offspring 

antibody (referred in this document by the prototypical example NIMA). To program the 

QMFG score test, we used much of the machinery in the existing ped-GWAS option in 

Mendel that implements an LMM-based fast score test for GWAS on pedigree data with 

quantitative traits (Zhou et al., 2015). We forced the existing algorithm to include in its 

model the seven possible maternal-fetal genotype combinations and any user-specified 

restrictions on these combinations.

Simulation of Pedigrees

To evaluate the type I error or power of the QMFG tests and, for the LRT implementation, 

parameter estimation, we simulate data under ten specific scenarios (A-J) using the 

parameters shown in Table 2. Simulation A data are under the null of no genetic effects. 

Simulations B, E, and H involve conditions consistent with the effects of RHD 

incompatibility. Simulations C, D, F, and I are consistent with the effects of NIMA with and 

without the additional effects of offspring alleles and maternal effects. Simulation G is 

another possible scenario where each variant allele in the mother or offspring has the same 

effect on the phenotype and the effects are additive and independent; it is a special case of a 

scenario where there are both maternal and offspring main effects but no interaction. We use 
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Simulation G when we want to evaluate the properties of fitting the general model. 

Simulation J involves offspring effects only and is used to investigate model 

misspecification. For power analyses, we vary selected parameters of particular interest in 

these simulation scenarios. The simulation design consists of 2,000 repetitions of 1,000 

three-generational pedigrees (except when studying the effect of family structure or sample 

size), a biallelic locus, and a quantitative trait. Every three-generational pedigree is 

comprised of a nuclear family with two offspring, each of which have a partner and child of 

their own, and therefore the extended family contains a total of four founders and four 

offspring. Unless otherwise specified, the variant allele frequency is 0.40. Genotypes are 

simulated using Mendel’s gene dropping option. Additional effects include a grand mean 

(intercept) μ = 40 and variance components  and  (residual heritability h2 = 0.167) 

unless otherwise specified. A univariate quantitative trait is simulated for all offspring by 

modifying the trait simulation option of Mendel (Lange et al., 2013).

Assessing the Statistical Properties of the Tests

We use a variety of full and reduced models (Table 3, Models 1–9) to analyze the simulated 

data, the exact choice depending on our alternative and null hypotheses. All models fit to the 

data estimate a grand mean (μ) and both variance components (  and ). To quantify the 

degree of bias in type I error, genomic control values (λ) are reported (Devlin & Roeder, 

1999) and 95% confidence bounds are included on Q-Q plots. Confidence bounds are based 

on the standard errors of the order statistics of the comparison distribution (Fox, 2008).

Power is defined as the rejection rate, which is the proportion of simulations in which the 

statistical test rejects the null model in favor of the alternative. If not otherwise specified, we 

used a per test significance level of 0.001 when determining power. Standard errors of 

power estimates are calculated using  where p is the proportion of rejected 

tests and N is the number of repetitions. The proportion of variation explained is calculated 

as the ratio of phenotypic variation due to the effects of interest and the total phenotypic 

variation, and is based on the true parameter values and allele frequencies with which the 

data are simulated.

The San Antonio Family Heart Study

To show the feasibility of using this approach on a real pedigree-based GWAS dataset, we 

use data from the San Antonio Family Heart Study (SAFHS). These data have described 

elsewhere (Mitchell et al., 1996) but we briefly describe the subset of the data we use. The 

complete study data consist of 3637 subjects in Mexican American families of various sizes. 

High-density lipoprotein (HDL) levels were measured at up to three time points. For the first 

time point, 1,397 individuals were phenotyped (Table S1). Of the subjects that were 

phenotyped, 1,043 also have genotype data. To reduce the computational time used to 

impute missing genotypes for irrelevant members of the pedigree, we first trim the data to 

include only subjects with a quantitative trait measurement and their connecting relatives 

(Lange & Sinsheimer, 2004). Because the QMFG test is an offspring-only analysis, we are 

interested in the subset of 855 offspring in the dataset that have both phenotype and 

genotype data. If an offspring’s mother is completely ungenotyped before imputation, they 
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were not used. Our analysis therefore involves the 419 offspring from 43 families with 

phenotype, genotype, and maternal genotype information. In this subset of data, the largest 

family has 176 members and 5 generations while the smallest family has 8 members and 3 

generations. Next, we use Mendel’s imputation option to fill in all missing genotypes for 

subjects who have some existing SNP data (Ayers & Lange, 2008). Standard imputation 

programs, which do not take pedigree data into account, inevitably produce impossible 

maternal-offspring genotype combinations. We remove SNPs that have a maternal and 

offspring genotype combination of either 2/2 and 1/1, respectively, or 1/1 and 2/2, 

respectively. Additionally, we filter out any SNPs that have a minor allele count less than 

10.

RESULTS

RHD Incompatibility

We first compare type I error rates of the LRT and score test for a simple example of 

maternal-fetal gene interactions that mimics RHD incompatibility. In this example, 

heterozygous offspring whose mothers who are homozygous for the variant allele differ in 

their trait value from other offspring. Figure 3a shows the results when data are simulated 

under the null hypothesis of no genetic effects (Simulation A) and the parameter β21 is tested 

for significance. For the LRT, Model 1 reflects the null hypothesis and Model 2 reflects the 

alternative hypothesis, resulting in a one degree of freedom (df) test. The QMFG score test 

provides almost identical results (Figure S1a). Based on the confidence bounds on the Q-Q 

plot, we conclude there is little bias in the type I error for either test (genomic control value 

λ = 1.065). Next, data are simulated to provide a moderately small RHD effect (Simulation 

B). In Simulation B, the only effect associated with the offspring’s phenotype is an expected 

increase of 0.55 units when mother and offspring are incompatible, corresponding to 0.0044 

of the variance explained by the RHD effect. Figure 4a provides boxplots of the parameter 

estimate bias over 2,000 replicates when the underlying MFG mechanism, RHD 

incompatibility, is suspected and consequently the correct model, Model 2, is fit to the data. 

As desired, the QMFG method produces unbiased parameter estimates. Keeping all other 

simulation conditions the same, we then varied the true RHD effect between 0 and 0.7, 

resulting in the true proportion of variation explained by the MFG effect ranging from 0 to 

0.007. Figure 5a shows the LRT and score test power curves corresponding to these 

variations for the one degree of freedom test (solid lines) testing the significance of the RHD 

parameter (β21). When the significance level is 0.001, the curve illustrates that 80% power is 

achieved when the proportion of variation explained by the RHD effect is approximately 

equal to 0.004 for both the LRT and score test.

Non-inherited Maternal Antigen (NIMA) Effects

The case of NIMA provides a more complex model under which to investigate the 

properties of the QMFG test due to the added offspring allelic effects. For this more 

complicated case of MFG incompatibility, we start by comparing the LRT and score test 

type I error rates. Model 1 corresponds to the null hypothesis of no genetic effects and 

Model 3 corresponds to the alternative hypothesis of offspring or NIMA effects. By fitting 

Models 1 and 3 to data simulated with no genetic effects (Simulation A), the three degrees 
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of freedom LRT results in the Q-Q plot in Figure 3b (λ = 0.989). Figure S1b shows that the 

score test for the significance of the same three parameters (β10, β.1, β.2) is a suitable 

substitute for the LRT as it yields nearly identical p-values. As mentioned previously, using 

the LRT we can test the significance of NIMA in the presence of offspring effects or the 

offspring effect in the presence of NIMA. Figure 3c is the Q-Q plot (λ = 1.048) of the results 

of testing the significance of the NIMA parameter while allowing for offspring genotype 

effects (Model 3 vs Model 4) and Figure 3d is the Q-Q plot (λ = 0.959) of the results for 

offspring parameters in the presence of NIMA effects (Model 3 vs Model 5). Together these 

three Q-Q plots (Figure 3b–d) and confidence bounds demonstrate that our type I error rates 

are correct.

In Simulation C, a quantitative trait is simulated for offspring with a NIMA effect of 0.6 and 

an additive offspring allelic effect of 0.18 per allele, corresponding to 0.0058 of the variance 

explained by the combination of MFG and offspring effects. Mimicking a situation where 

there is a priori evidence for a particular model (in this case, NIMA and offspring effects), 

we fit Model 3 to the simulated data thus estimating three parameters (β10, β.1, β.2) in 

addition to the variance components when using the LRT. The bias of each parameter 

estimate is shown in Figure 4b. As a valid method should, the QMFG method generates bias 

centered at zero. We further evaluate power over 2,000 simulation replicates for varying 

levels of proportion of variation explained for this model (Model 3). The power curves in 

Figure 5b are the results of jointly testing for NIMA or offspring effects (solid lines) when 

the simulated NIMA effect sizes range from 0 to 0.7 and the offspring effects are β.1 = 0.18, 

and β.2 = 0.36. These simulation parameters are consistent with proportion of variation 

explained ranging from 0.002 to 0.008. The power to detect NIMA or offspring effects 

(three degrees of freedom test) is approximately 80% when proportion of variation 

explained reaches 0.0055 for both the LRT and the score test. Figure S2 displays the power 

of the LRT for testing the significance of the NIMA effect in the presence of offspring 

genotype effects (one degree of freedom test) using the same collection of data. Power is 

approximately 80% when the proportion of variation explained by the NIMA effect reaches 

0.002.

The NIMA analyses mentioned above are free of constraints on the relationship between 

offspring allelic effect parameters β.1 and β.2, that is, a genotypic model. Offspring effects 

may act in an additive, recessive or dominant manner. If there is a priori evidence to suggest 

any of these models, it is possible to impose restrictions on these parameters for the models 

that are fit, therefore reducing the degrees of freedom and increasing power. To demonstrate 

the ability of the QMFG LMM to handle such a situation, we simulate data with a NIMA 

effect varying from 0 to 0.6 and dominant offspring effects equal to 0.1 and analyze the data 

estimating again the NIMA and offspring effects, this time imposing the additional 

constraint β.1 = β.2. Figure S3 shows the power curves resulting from testing for a NIMA or 

dominant offspring effect. For the LRT, this involves using Model 1 corresponding to the 

null hypothesis and Model 6 corresponding to the alternative hypothesis, resulting in a two 

degrees of freedom test. The power to detect these effects remains high. There is greater 

than 80% to detect NIMA or dominant offspring effects when the proportion of the variance 

explained by these effects is 0.006.
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Thus far, we have considered scenarios where just MFG and offspring effects are present. It 

is possible that in addition to these effects, there are maternal effects. To further demonstrate 

the flexibility of the QMFG method, we simulate data with both maternal and offspring 

main effects such that each variant allele further increases the offspring’s trait by 0.18 

(Simulation D). In this scenario, the proportion of variation explained by the NIMA, 

offspring, and maternal effects is 0.009. For this specific scenario, we fit Model 1 

corresponding to the null of no genetic effects and Model 7 corresponding to our alternative 

hypothesis. Model 7 is a five parameter model that is mathematically equivalent to 

genotypic offspring main effects, genotypic maternal main effects and a NIMA effect. 

Parameterized through using the coefficients for seven possible maternal-offspring genotype 

combinations, Model 7 requires an additional constraint β22 + β11 − β12 − β21 = 0 in addition 

to β00 = 0. In other words, one of the parameters, β11, β12, β21, β22, is completely determined 

by the other three and so when using a LRT, five MFG parameters are tested (e.g. β01, β10, 

β11, β12, β21). Figure S4 shows that there is no parameter estimate bias when we fit Model 7 

to the data. The power of the LRT for this five degrees of freedom test is 0.96 (SE=0.004).

Effects of Allele Frequency and Variance Parameters

In the previous sections, the variant allele had a frequency of 0.4. For RHD incompatibility 

we consider ‘d’ to be the variant allele and for NIMA we consider the alleles encoding a 

shared epitope (SE+) to be variant. To evaluate the effect of allele frequency on our QMFG 

method, we compare our power results for Simulations B and C while varying the variant 

allele frequency from 0.1 to 0.9. Figures S5a and S5b show the impact of changing the 

variant allele frequency keeping the other simulation parameters the same for Simulations B 

and C, respectively. The power is maximized when the frequency of the ‘d’ allele is 0.67 for 

data simulated under RHD incompatibility. Under NIMA and offspring effects, power is 

maximized when the SE+ allele frequency is 0.33.

We also investigate the performance of the QMFG test when the values for additive genetic 

and environmental variance are changed, increasing the residual heritability. We recreate the 

power curves for RHD incompatibility as well as for NIMA and offspring effects, this time 

changing both the additive genetic and environmental variance simulation values to 3 

( , h2 = 0.50). Repeating the same one degree of freedom test for an RHD effect 

with these new variance values, we see an increase in power (Figure S6a) over our previous 

results (Figure 5a). Repeating the same three degrees of freedom test for NIMA or offspring 

effects using data simulated with these new variance values, we also see an increase in 

power (Figure S6b) over our previous results (Figure 5b).

Effects of Family Structure and Sample Size

To address the impact of family structure on our MFG tests, we simulate 4,000 trios, 

keeping the total number of offspring at 4,000, with quantitative traits with the same 

simulation parameters in Simulations B and C. With linear mixed models the additive and 

environmental variances are confounded when using a single individual per pedigree so 

instead of estimating  and  separately, we estimate their sum. Figure S7a shows there is 

no parameter estimate bias when fitting Model 2 to data simulated under RHD 

incompatibility (Simulation B). Power for either the LRT or the score test to detect an RHD 
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effect (Model 2 vs Model 1) is not significantly altered. It is 0.81 (SE = 0.009) for three-

generational families and 0.79 (SE = 0.009) for trios. Parameter estimates also remain 

unbiased (Figure S7b) when using trios with a quantitative trait simulated with NIMA and 

offspring effects (Simulation C) when fitting Model 3. Power with the three degrees of 

freedom test for NIMA or offspring effects (Model 3 vs Model 1) is not significantly 

changed. It is 0.82 (SE = 0.009) for three-generational families and 0.85 (SE = 0.008) for 

parent-offspring trios.

It is important to also consider the effect of sample size on the statistical properties of the 

tests. Here we run simulations with a smaller sample of 400 offspring from 100 three-

generational families. As shown in Figure S8, type I error rates remain unaffected by a 

reduction in sample size. To achieve equivalent power to 1,000 families, we need to increase 

the RHD effect to 1.75. Fitting Model 2 to 100 three-generational families simulated with 

quantitative traits given Simulation E parameters, results in no bias for grand mean, RHD, 

and environmental variance parameters (Figure 6). Additive variance is slightly 

underestimated. The power to detect an RHD effect, which accounts for 0.042 of the trait 

variance in this scenario, is 0.78 (SE = 0.009). To achieve equivalent power to 1,000 

families, we need to increase effect sizes for NIMA and offspring effects (Model 3) to β01 = 

1.90, β.1 = 0.60, β.2 = 1.20 when generating data for 100 three-generational families 

(Simulation F). We again see no bias for grand mean, NIMA, offspring, and environmental 

variance parameters (Figure S9). Additive variance is again slightly underestimated over the 

2,000 repetitions. The proportion of variation explained by the NIMA and offspring effects 

in this scenario is 0.056 and the power for the three degrees of freedom test for NIMA or 

offspring effects is 0.82 (SE = 0.009).

Analysis when the MFG Mechanism is Unknown

Our QMFG analyses thus far assume that our outcome is associated with two well-known 

mechanisms of MFG incompatibility. However, it may be that there is no a priori 

information about the underlying MFG model that influences a trait’s value. Thus, we study 

the effects of using the general model, which imposes no constraints on the MFG 

parameters. First, we investigate the properties (type I error, power, and parameter 

estimates) of fitting such a model. Figure 3e shows the Q-Q plot for data simulated under the 

null hypothesis of no genetic effects (Simulation A) where all six MFG parameters β01, β10, 

β11, β12, β21, β22 are tested for significance (λ = 1.086). This is a six degrees of freedom test 

in which the full model (Model 8) is tested against the null model in which no MFG effects 

are estimated (Model 1) via the LRT. All the points lie within the confidence bounds; there 

is no bias in the type I error rate. The score test produces equivalent p-values (not shown). 

Parameter estimate bias is examined by simulating data given a count model (Simulation G). 

In Simulation G, each variant allele in the mother or offspring increases the offspring’s 

phenotype by 0.17 and the effects are additive and independent. In this scenario, 0.007 of the 

variance is explained by the MFG effect. Figure 4c shows the boxplots of the parameter 

estimate bias over 2,000 replicates when the general model is fit to the data. Again, unbiased 

parameter estimates are produced.
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It is also of interest to examine the degree to which parameter estimate precision is reduced 

and power is lost when the underlying MFG model requires a less complex model, such as 

RHD or NIMA, but agnostically, the general model is fit. We consequently repeat the 

analysis of Simulations B and C, this time fitting the general six-parameter model (Model 

8). As the boxplots displayed in Figures S10a and S10b illustrate, parameter estimates 

remain unbiased. The effect on power is visible in Figures 5a and 5b (dotted lines). As 

expected, the power curves follow a similar pattern to those from less complex models but 

are lower for both RHD incompatibility and NIMA examples. Under Simulation B 

conditions, the power of the LRT when α = 0.001 reduces from 0.751 (SE = 0.010) to 0.467 

(SE = 0.011) when the proportion of variation explained is 0.0044. Under Simulation C 

conditions, the power of the LRT at the same significance level reduces from 0.823 (SE = 

0.009) to 0.702 (SE = 0.010) when the proportion of variation explained is 0.0058. These 

results demonstrate that in terms of power, the QMFG test performs well when there is no 

prior support for a restricted model, thus avoiding possible model misspecification or 

misinterpretation. However, when there is prior support for a specific model (such as RHD 

incompatibility or NIMA), a restricted model can provide a substantial increase in power.

Power to Detect MFG Incompatibility in a Standard GWAS Analysis

Can a typical GWAS, which tests the effects of an offspring’s genotype and ignores MFG 

interactions, be used as a first screen for MFG incompatibility? We address this question by 

using data simulated with RHD incompatibility effects ranging from 0 to 0.70 and 

comparing the power shown in Figure 5a with the power that results when testing for either 

offspring genotypic and additive effects. Figure 7 shows the two degrees of freedom test for 

an offspring genotypic effect model and the one degree of freedom test for an additive 

offspring allelic effect model with significance levels α = 0.05 (Figure 7a) and α = 0.001 

(Figure 7b). For the LRT, the two degrees of freedom test involves fitting Models 1 and 4 

and the one degree of freedom test involves fitting Models 1 and 9. Together these figures 

demonstrate that, compared to the correct test for an RHD effect, power is drastically 

reduced. In the case of a true underlying RHD effect of 0.70 (Simulation H), the parameters 

representing the effect of one variant allele in the offspring genotype (β01, β11) are biased 

upward when fitting the offspring only genotypic model (Figure S11a). The parameter 

representing the effect of being homozygous for the variant allele remains unbiased. The 

parameter for the offspring allelic effect is only slightly upwardly biased when fitting the 

additive model (Figure S11b). We repeat both the two degrees of freedom test for offspring 

effects and one degree of freedom additive offspring effects analyses in data simulated with 

a NIMA effect ranging from 0 to 0.7 and no offspring effect. Figure 8 shows the resulting 

power curves for α = 0.001. In this case, the power is not as severely reduced. However, 

when fitting the genotypic model to data with a true NIMA effect of 0.7 (Simulation I), we 

see a downward bias of offspring genotype parameter estimates (Figure S12a). Figure S12b 

also shows there is parameter estimate bias when the additive model is fit to Simulation I 

data. Thus in the case of NIMA, a user may very well reject the null hypothesis but 

mistakenly attribute the effect to the offspring’s genotype.
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Model Misspecification

We find that an RHD effect is unlikely to be detected if an investigator uses a NIMA effect 

model. For instance, if we take data with a true RHD effect of 0.7 (Simulation H), power 

drops from 0.97 (SE = 0.004) when the correct RHD effect model (Model 2) is fit to 0.008 

(SE = 0.002) when an incorrect NIMA effect model is fit (Model 5). Although the parameter 

for a NIMA effect, β10, is estimated on average to reduce the quantitative trait (Figure 

S13a), the estimate would not likely be found significant. Thus in the event that the model is 

misspecified, an RHD effect would not be misinterpreted as a NIMA effect but instead it 

would be missed. Likewise, misspecifying the QMFG model as an RHD effect model 

(Model 2) when data have a true underlying NIMA effect of 0.7 (Simulation I) would result 

in a missed effect. In this case, power drops from 0.999 (SE = 0.001) when the correct 

NIMA model is fit (Model 5) to 0.004 (SE = 0.001) when an incorrect RHD model is fit 

(Model 2). As shown in Figure S13b, the RHD parameter (β12) is on average estimated to 

decrease the phenotype, though it would seldom be found significant given similar sample 

and effect sizes and therefore the NIMA effect would not be misinterpreted as an RHD 

effect. In both cases, although the true MFG effect would be missed, detecting false MFG 

effects is unlikely.

In Simulation J, a quantitative trait is simulated for offspring with an additive offspring 

allelic effect of 0.27. Mimicking a situation where the user incorrectly hypothesizes that 

there is an RHD effect on the quantitative trait, we fit Model 2 to the simulated data thus 

estimating the RHD parameter (β21). Under these conditions where we would have power 

equal to 0.86 (SE= 0.008) if the correct model for offspring effects (Model 4) was used, the 

rejection rate when testing for an RHD effect is 0.002 (SE = 0.001). Figure 9a shows the 

degree of parameter estimate bias that follows from misspecifying the model. Taken 

together, these results show that it is possible that an offspring effect would be 

misinterpreted as an RHD-like effect that reduces the trait value, but that the null hypothesis 

of no RHD effect would rarely be rejected. If a user instead believes there may be a NIMA 

effect on phenotype, he or she may fit Model 3 (NIMA and offspring effects model) or 

Model 5 (NIMA effect only model) to the data. Because the NIMA and offspring effects 

model includes parameters for offspring allelic effects, we expect that the estimated 

parameters would not be biased although the power would be reduced. These expectations 

are confirmed by Figure 9b and the power for the three degrees of freedom test for NIMA or 

offspring effects is 0.81 (SE = 0.009). On the other hand, if the NIMA effect model (Model 

5) is fit to the same data, the power when testing for a NIMA effect is 0.16 (SE = 0.008). 

The potential to reject the null hypothesis is higher than in the case of RHD, but a significant 

effect would probably not be detected. In Figure 9c it can be seen that if there was enough 

power, the offspring effect might be misinterpreted as a NIMA effect that decreases the 

quantitative phenotype. Finally, if the user has no a priori hypothesis and fits the most 

general model (Model 8), there is zero bias (Figure 9d) and the power to detect an effect is 

0.69 (SE = 0.010). These results further demonstrate the advantage of using an MFG model 

that allows for offspring effects, which is a generalization of the standard GWAS analysis, 

when screening for MFG effects.
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Effect of Missing Data on Type I Error

As is often the case with real data, missing data are an issue that must be considered. 

Assuming genotypes are missing at random, we compare type I error rates testing for 

various sets of MFG parameters given 0, 5, 10, and 20% missing genotypes. Here we use 

Simulation A data, randomly removing a percentage of genotypes with each repetition, and 

estimate type I error rates with a per test significance level of 0.05. With all the models 

tested missing data did not significantly affect type I error rates (Table S2).

Screening for MFG Incompatibility Using Pedigree-based GWAS Data

The ability to quickly screen markers is demonstrated by running the QMFG test on data 

from the SAFHS. Missing genotypes for the 944,565 SNPs across the genome were imputed 

using Mendel’s imputation option. We removed 14,008 SNPs (1.48%) because there was at 

least one impossible maternal-offspring genotype combination observed at each of these 

SNPs in the imputation results. We omitted another 295,063 SNPs because they had minor 

allele counts less than 10 leaving a total of 635,494 SNPs for the analysis. Because we have 

no specific hypothesis regarding MFG interactions associated with HDL measures but aim 

to demonstrate the feasibility of using the QMFG test on pedigree-based GWAS data, we 

use an alternative hypothesis of NIMA or offspring effects, a straightforward generalization 

of the standard GWAS analysis. This model takes into account offspring effects, so in the 

case that there is an underlying offspring genotypic effect but no NIMA effect, we lose 

power by including the parameter for NIMA but avoid misspecifying the model.

In these analyses we assume the minor allele of each SNP is the variant allele and include 

sex and age as fixed effects. Under the null hypothesis of no genetic effects, the estimate of 

the grand mean was 48.030 (SE = 2.094). The age effect estimate of 0.034 (SE = 0.069) was 

not significant. Women had significantly higher HDL levels than males (4.222 units higher, 

SE = 1.154). Figures 10 and 11 show the Q-Q plot (λ = 1.012) and Manhattan plot resulting 

from the three degrees of freedom QMFG score test for the alternative hypothesis of NIMA 

or offspring effects. The run time for Mendel to read in and perform the score tests for the 

635,494 SNPs was 4 minutes and 28 seconds on a computer with 12 CPU cores (at 2.67 

GHz). About 0.2% (1309) of sites fall outside the 95% confidence limits of the Q-Q plot 

(Figure 10). The 10 markers with the smallest p-values are shown in Table 4. Figure S14 

shows the Q-Q plot of the same results with the top 10 hits removed (λ = 1.012). The lowest 

p-value, found with SNP rs1547189, corresponds to an FDR (Benjamini & Hochberg, 1995) 

of 7.5% (Table 5). The parameter estimates for this SNP are shown in Table 6.

For rs1547189, we further refine our analysis. The two degrees of freedom test for offspring 

genetic effects for SNP rs1547189 on HDL has a p-value of 0.0007. For the one degree of 

freedom test for additive offspring effects (2β.1 = β.2) using the same SNP, the p-value is 

0.18. We also test for a NIMA effect in the presence of offspring effects adjusting for sex 

and age using an LRT. The p-value of 2.98 × 10−6 suggests that even when accounting for 

offspring genotypic effects, there may be an additional effect of NIMA. Taken together, 

these results suggest that there may be both an underlying recessive offspring effect and a 

NIMA effect on HDL for SNP rs1547189.
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DISCUSSION

Our simulation studies show that the LRT version of the QMFG test leads to correct 

parameter estimates and inference and the score test version of the QMFG test provides 

equivalent inference to the LRT under both specific and general models of MFG 

incompatibility. The simulations under an RHD incompatibility scenario illustrate the 

QMFG test under a simple model, involving just one MFG parameter. We show that our 

approach has correct type I error rates for the LRT and score test, zero parameter estimation 

bias, and high power even when the proportion of variation explained by MFG 

incompatibility is small. The simulations under NIMA provide a more complicated, but still 

biologically pertinent, scenario to evaluate the properties of the QMFG test, requiring an 

MFG effect and offspring effects to be tested jointly. Under this scenario, the effect on 

offspring with genotypes homozygous for the reference allele depends on their mother’s 

genotype. With this scenario, we show the flexibility of the LRT to test effects jointly, 

marginally, and conditionally. When testing NIMA and offspring effects jointly and 

conditionally, again the LRT version of the QMFG test produces appropriate type I error 

rates, zero parameter estimation bias, and high power. This model can be extended by 

allowing for maternal genetic effects. We also demonstrate that it is possible to impose 

parameter restrictions to test for other situations such as a dominant offspring effects.

Additionally, we investigate MFG incompatibility testing in the case that there is no a priori 

information about the underlying MFG model. As expected, power is reduced when 

applying this general model, which imposes no constraints on the MFG parameters, to data 

simulated with a specific, more restricted MFG incompatibility. Our results indicate that 

even when the general model is fit to the data in place of the correct, simpler model, the 

QMFG LRT still produces unbiased parameter estimates. We also explore cases where the 

model is misspecified such that a model with only offspring effects is fit to data with true 

underlying MFG effects and find that power is greatly reduced. This is especially true in the 

case of testing for additive effects when the underlying MFG effect is RHD incompatibility, 

where power drops down to the type I error rate. This particularly low powered case with the 

additive model results because we have a SNP that, when viewed from the perspective of 

offspring effects, is displaying a weak amount of over-dominance in which a only fraction of 

the offspring with heterozygous genotypes are expected to have different phenotypic values 

from offspring with either of the two homozygous genotypes. In the case of an underlying 

NIMA effect, there is more power to detect a genotypic effect when fitting a model with 

only offspring effects but in this case, the NIMA would be misinterpreted as a weak 

dominant effect on the quantitative trait. These results have implications for GWAS, which 

typically use additive models or Armitage trend tests, since, as we have shown, the genetic 

effects can be detected but misinterpreted, determined with lower power, or missed all 

together. The QMFG test is also subject to type I or type II error when the model is 

misspecified. In particular, when applying the NIMA effect model to data with an RHD 

effect, applying the RHD effect model to data with a NIMA effect, or applying a RHD or 

NIMA model to data with offspring effects, the null hypothesis is rejected at very low rates, 

indicating that in these cases the locus would be missed. Because most effects are very 
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likely to be offspring genotype effects, we recommend using an MFG model that includes 

offspring genetic effects when screening large numbers of SNPs.

Unlike other methods that have been proposed to test for an association between a 

quantitative trait and MFG incompatibility, the QMFG test can handle small and large 

pedigrees simultaneously. With actual data from the SAFHS we verify that the QMFG score 

test is an effective and rapid screening tool for genome wide association studies. In this data 

set, family size varied greatly; the smallest family had 8 members and spanned 3 

generations; the largest family had 176 members and spanned 5 generations. We chose to 

analyze the data by jointly screening for NIMA and offspring genotypic effects using the 

score test. If the genetic effects only come from the offspring as typically assumed, our 

analysis would still be able to detect them, albeit with slightly lower power than in the 

typical GWAS.

Although none of the top ten markers for NIMA or offspring effects have been previously 

shown to be associated with HDL, the WWOX gene has been shown to be associated with 

HDL (Lee et al., 2008, Saez et al., 2010). Our result with the smallest p-value is for SNP 

rs1547189, which is an intron variant in the ubiquitin specific peptidase 12 (USP12) gene, 

with an FDR of 7.5%. Because it is possible that this marker’s effect could be exclusively 

due to offspring effects, we use the LRT with the null hypothesis of only offspring effects 

and the alternative hypothesis of NIMA and offspring effects to test for NIMA effects in the 

possible presence of offspring effects with SNP rs1547189. Combined, our results are 

suggestive of a NIMA effect in the presence of offspring effects. To determine whether this 

association is due to a previously undetected NIMA effect on HDL or, perhaps what is more 

likely is just a type I error, requires testing in other cohorts. However, we have clearly 

demonstrated the potential of the QMFG test to identify novel associations with quantitative 

traits that may not be detected in standard GWAS analysis models, because the standard 

GWAS only considers offspring allelic effects. Additionally, our analysis demonstrates that 

the LRT is a useful tool to refine results following the rapid screening provided by the 

QMFG score test.

To date, no other studies have looked at the role of MFG incompatibility on quantitative 

traits in families larger than trios due to the lack of appropriate models and practical 

software. The QPL method (Kistner & Weinberg, 2005) as well as the QCPG method 

(Wheeler & Cordell, 2007) are both retrospective approaches in which the offspring 

genotype is modeled as a function of the quantitative trait and parental genotypes and are 

restricted to parent-offspring trios. These methods can be easily modified to test for 

maternal-offspring gene interactions (Wheeler & Cordell, 2007). However, Wheeler and 

Cordell’s simulation results suggest that, compared to these two retrospective approaches to 

test for quantitative trait association in trios, a prospective, linear regression approach such 

as ours is likely to be more efficient but more sensitive to departures from normality. From 

our viewpoint, the main difficulty with retrospective approaches such as the QPL and QCPG 

is in generalizing them to work with a dataset composed of dramatically different sized 

families. Another limitation is the interpretation of the estimated effects as they are scaled 

by the unknown trait variance. Furthermore, including covariates such as age and sex is not 

straightforward. With the QMFG test we have demonstrated the benefits of a prospective 
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approach to rapidly test for MFG incompatibility in families of any size. It is a highly 

flexible and accurate method, which is also easy to execute with our user-friendly software.

It should be noted that in general, LMMs used for quantitative traits do not directly apply to 

binary phenotypes. This limitation results from the fact that the phenotypic variance of a 

dichotomous disease or trait depends on its incidence in the population (Falconer, 1965). 

Thus, estimates must be rescaled. Unlike with continuous traits, case-control studies are 

additionally susceptible to ascertainment bias. As a result, using LMMs on binary traits 

directly can result in loss of power as sample size increases, likely due to the amplification 

of inaccuracies caused by ascertainment bias (Yang et al., 2014). Methods to improve power 

for qualitative outcomes are based on a liability threshold principle, in which it is assumed 

that binary traits can be represented by an underlying normally distributed liability trait. If 

an individual’s liability exceeds a threshold, then he or she has a phenotypic value of 1, 

otherwise 0, with the proportion of the normal distribution that exceeds the threshold being 

equal to trait incidence (Dempster & Lerner, 1950, Falconer, 1965). An approach by Hayeck 

et al. (2015) estimates the posterior mean liability (PML) of each individual conditional on 

the case-control status of all subjects, disease prevalence, and liability scale phenotypic 

covariance. The association between each SNP and PML is then tested. Accordingly, if the 

QMFG test is applied to dichotomous data, it is recommended that one adopt the Hayeck et 

al. (2015) approach.

We have implemented the QMFG test by modifying the statistical genetics software package 

Mendel. This option is scheduled for release in an upcoming version of Mendel. The validity 

of our method, together with the availability of convenient software, make the QMFG test a 

powerful tool for detecting undiscovered associations with complex diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Pedigree depiction of the Rhesus factor D (RHD) scenario
The mother has two variant alleles (d/d). Offspring A has two variant alleles (d/d). Offspring 

B has one variant allele (D/d) and is therefore RHD incompatible with the mother.
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Figure 2. Pedigree depiction of the non-inherited maternal antigen (NIMA) scenario
The mother has one variant allele encoding a shared epitope (SE+/SE−). Offspring A has 

two variant alleles encoding a shared epitope (SE+/SE+). Offspring B has no variant alleles 

encoding a shared epitope (SE−/SE−) and therefore illustrates the NIMA scenario.
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Figure 3. Q-Q plot for LRT using Simulation A data
Genotypes and quantitative traits for each replication were simulated for 1,000 pedigrees 

under the null of no MFG effects and were tested with the LRT for (a) RHD effects (df = 1, 

λ = 1.065), (b) NIMA or offspring effects (df = 3, λ = 0.989), (c) NIMA effects in the 

presence of offspring genotype effects (df = 1, λ = 1.048), (d) offspring effects in the 

presence of NIMA effects (df = 2, λ = 0.959), and (e) any MFG effects (df = 6, λ = 1.086).
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Figure 4. Parameter estimate bias
Genotypes and quantitative traits for each replication were simulated for 1,000 pedigrees 

using (a) Simulation B data with an RHD effect of 0.55 (μ = 40, β21 = 0.55, ), 

(b) Simulation C data with a NIMA effect of 0.60 and an additive offspring allelic effect of 

0.18 (μ = 40, β10 = 0.60, β.1 = 0.18, β.2 = 0.36, ), and (c) Simulation G data with 

a variant allele count effect of 0.17 (μ = 40, β01 = 0.17, β10 = 0.17, β11 = 0.34, β12 = 0.51, β21 

= 0.51, β22 = 0.68, ). Boxplots show bias of parameter estimates, additive 

genetic variance, and environmental variance over 2,000 replications. A horizontal line is 

drawn at zero bias.
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Figure 5. RHD incompatibility and NIMA power curves
(a) Solid lines show power for the one degree of freedom test for an RHD effect (β21) using 

the LRT and score test. Dotted lines show power when there is no specific MFG hypothesis 

(so all 6 MFG parameters are tested) using the LRT and score test. RHD effect sizes range 

from 0 to 0.7. Error bars represent approximate 95% confidence intervals. (b) Solid lines 

show power for the three degrees of freedom test for NIMA or offspring effects (β10, β.1, β.2) 

using the LRT and score test. Dotted lines show power when there is no specific MFG 

hypothesis (so all 6 MFG parameters are tested) using the LRT and score test. NIMA effect 

sizes β10 range from 0 to 0.7 and offspring effects are fixed (β.1 = 0.18, β.2 = 0.36). The 

power is not 0.001 and the proportion of variation explained is not zero when β10 = 0 

because β.1, β.2 are not zero. Error bars represent approximate 95% confidence intervals.
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Figure 6. Parameter estimate bias when data are simulated under RHD incompatibility with a 
smaller sample size
Boxplots show bias of parameter estimates for the grand mean, MFG effects, additive 

genetic variance, and environmental variance using 100 three-generational families over 

2,000 replications using parameters from Simulation E with an RHD effect of 1.75 (μ=40, 

β21 =1.75, ). A horizontal line is drawn at zero bias.
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Figure 7. Power using an offspring effect only test for data simulated under RHD incompatibility
RHD effect sizes range from 0 to 0.7. Solid lines show the power for fitting the genotypic 

model, i.e., the two degrees of freedom test for offspring effects (β.1, β.2). Dotted lines show 

the power for fitting the additive model, i.e., the one degree of freedom test with the added 

constraint 2β.1 = β.2. Error bars represent approximate 95% confidence intervals. (a) Curves 

show power using the LRT and score test at significance level α=0.05. (b) Curves show 

power using the LRT and score test at significance level α=0.001.
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Figure 8. Power using an offspring effect only test for data simulated under a NIMA effect
Curves show power using the LRT and score test at significance level α = 0.001. NIMA 

effect sizes range from 0 to 0.7. Solid lines show the power for fitting the genotypic model, 

i.e., the two degrees of freedom test for offspring effects (β.1, β.2). Dotted lines show the 

power for fitting the additive model, i.e., the one degree of freedom test with the added 

constraint 2β.1 = β.2. Error bars represent approximate 95% confidence intervals.
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Figure 9. Parameter estimate bias due to model misspecification
Genotypes and quantitative traits for each replication were simulated for 1,000 pedigrees 

using Simulation J data with an offspring allelic effect of 0.27 (μ = 40, β.1 = 0.27, β.2= 0.54, 

). Boxplot shows bias of parameter estimates, additive variance, and 

environmental variance over 2,000 replications when the model is misspecified as (a) Model 

2, the RHD effect model, (b) Model 3, the NIMA and offspring effects model, (c) Model 5, 

the NIMA effect model, and (d) Model 8, the general model. A horizontal line is drawn at 

zero bias.
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Figure 10. Q-Q plot for score test of the SAFHS data
Results from the three degrees of freedom test for NIMA or offspring effects (β10, β.1, β.2) 

using the score test adjusting for age and sex (λ = 1.012). Data from the SAFHS consist of 

635,494 SNPs from 419 offspring with HDL measurements in 43 multi-generational 

families.
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Figure 11. Manhattan plot for score test of the SAFHS data
Results from the three degrees of freedom test for NIMA or offspring effects (β10, β.1, β.2) 

using the score test adjusting for age and sex. Data from the SAFHS consists of 635,494 

SNPs from 419 offspring with HDL measurements in 43 multi-generational families. A 

dashed horizontal line is drawn at the initial significance cutoff for an FDR of 10%.
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Table 1
QMFG model parameterizations

GMat and GOff denote the maternal and offspring genotypes, respectively.

GMat GOff General QMFG model RHD effects NIMA and offspring effects

1/1 1/1 β00 β00 β00

1/1 1/2 β01 β00 β.1

1/2 1/1 β10 β00 β10

1/2 1/2 β11 β00 β.1

1/2 2/2 β12 β00 β.2

2/2 1/2 β21 β21 β.1

2/2 2/2 β22 β00 β.2
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Table 3

QMFG full and reduced models.

Models Number of MFG parameters estimated MFG parameters estimated

1 No genetic effects model 0 None

2 RHD effect model 1 β21

3 NIMA and offspring effects model 3
β10

β01=β11=β21

β21 = β22

4 Offspring effects model 2
β01 =β11 =β21

β12 = β22

5 NIMA effect model 1 β10

6 NIMA and dominant offspring effects model 2
β10

β01 =β11 =β21= β12=β22

7 NIMA, offspring, and maternal effects model 5
β01, β10, β11, β12, β21

β22 = β12 + β21 − β11

8 General model 6 β01, β10, β11, β12, β21, β22

9 Additive offspring effect model 1 2β01 = 2β11 = 2β21 =β12 = β22
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Table 4

Score test for NIMA or offspring effects on HDL from the San Antonio Family Heart Study.

Chromosome Nearby gene SNP Score test statistic P-value

13 USP12 rs1547189:G>A 35.1 1.16 × 10−7

5 - rs9293660:G>A 32.6 3.91 × 10−7

17 NGFR rs614455:T>C 31.9 5.49 × 10−7

1 FAM69A rs7521417:C>T 30.9 8.92 × 10−7

8 LOC102723729 rs11987150:G>A 30.6 1.03 × 10−6

19 ZNF888 rs10425203:G>A 30.5 1.08 × 10−6

8 GINS4 rs13265966:T>C 30.0 1.38 × 10−6

8 LOC102723729 rs11994079:G>T 29.6 1.68 × 10−6

16 - rs6564175:T>C 28.9 2.35 × 10−6

16 WWOX rs4267317:G>A 27.9 3.81 × 10−6

Ann Hum Genet. Author manuscript; available in PMC 2017 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CLARK et al. Page 35

Table 5

False discovery rates for the San Antonio Family Heart Study analysis.

FDR P-value threshold Number of significant SNPs

5% 7.87 × 10−8 0

7.5% 1.18 × 10−7 1

10% 1.57 × 10−7 1

15% 1.89 × 10−6 8
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Table 6

Parameter estimates for SNP rs1547189 from the SAFHS data.

Effect Parameter Estimate Std Error

Grand mean μ 46.10 2.72

NIMA β10 8.51 2.15

A/G* offspring β.1 −0.60 1.85

G/G offspring β.2 10.19 2.84

Female βfemale 4.32 0.55

Age βage 0.04 0.07

Additive variance 80.66 19.64

Environmental variance 63.60 14.60

*
G is the minor allele for SNP rs1547189
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