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Abstract

The integrability of a system which describes constant mean curvature surfaces by means
of the adapted Weierstrass-Enneper inducing formula is studied. This is carried out by
using a specific transformation which reduces the initial system to the completely inte-
grable 2-dimensional Euclidean nonlinear sigma model. Through the use of the appara-
tus of differential forms and Cartan theory of systems in involution, it is demonstrated
that the general analytic solutions of both systems possess the same degree of free-
dom. Furthermore, a new linear spectral problem equivalent to the initial Weierstrass-
Enneper system is derived via the method of differential constraints. A new procedure
for constucting solutions to this system is proposed and illustrated by several elementary
examples, including a multi-soliton solution.

AMS subject classifications (1980). Primary 35P05; Secondary 35A25.

Résumé

On effectue une étude de l’intégrabilité d’un système décrivant les courbures moyennes
constantes des surfaces à partir des formules induites de Weierstrass-Enneper. Une trans-
formation particulière est proposée, qui réduit le système initial à un modèle sigma eu-
clidien bidimensionnel complètement intégrable. En utilisant l’appareil des formes de
Pfaff et la théorie de Cartan pour les systèmes en involution, il est démontré que ces
deux systèmes ont une solution générale possédant le même degré de liberté. De plus,
un nouveau problème spectral équivaut au système initial de Weierstrass-Enneper est
dérivé à l’aide de la méthode des contraintes différentielles. Une nouvelle procédure pour
la construction des solutions du système est proposée. Nous illustrons cette procédure
par plusieurs exemples élémentaires incluant la solution multi-solitonique.
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1. INTRODUCTION. Since the last century, the problems of surfaces and their deformations
under various types of dynamics have generated a great deal of interest and activity in several
mathematical as well as physical fields of research ([1-9]). In particular, surfaces with constant
mean curvature have been shown to play an essential role in several applications to nonlinear
phenomena in such areas of physics as two-dimensional gravity [4,15], quantum field theory [4,16],
statistical physics [3,17], and fluid dynamics [18,19]. The Weierstrass-Enneper formula for inducing
minimal surfaces has been studied for several years [10,11,12], most recently by B. Konopelchenko
and I. Taimanov [13,14]. They established a direct connection between certain classes of constant
curvature surfaces and an integrable finite-dimensional Hamiltonian system (for a summary of their
results, see [14]). In general, it was shown [13] that the following infinite-dimensional Hamiltonian
system describes constant mean curvature surfaces,

(1.1) ∂ψ1 = 2H (|ψ1|2 + |ψ2|2)ψ2, ∂̄ψ2 = −2H (|ψ1|2 + |ψ2|2)ψ1,

where ψ1 and ψ2 are complex functions of the complex variables (z, z̄). The bar denotes the complex
conjugate, ∂ = ∂/∂ z and ∂̄ = ∂/∂ z̄, and H denotes the constant mean curvature of the surface.
One can assume, without loss of generality, H = 1/2. Then, system (1.1) takes the form

(1.2a) ∂ψ1 = pψ2, ∂̄ψ2 = −pψ1, p = |ψ1|2 + |ψ2|2,

and its respective complex conjugate is

(1.2b) ∂̄ψ̄1 = pψ̄2, ∂ψ̄2 = −pψ̄1.

The above system can be considered a variant of the original Weierstrass-Enneper (WE) system
and we will refer to it as such.

The system (1.2) determines a set of constant mean curvature surfaces obtained by the following
parametrization (z, z̄) → (X1, X2, X3)

X1 + iX2 = 2i

∫ z

z0

(ψ̄2
1 − ψ̄2

2) dz
′,

(1.3) X1 − iX2 = 2i

∫ z

z0

(ψ2
2 − ψ2

1) dz
′,

X3 = −2

∫ z

z0

(ψ2ψ̄1 + ψ1ψ̄2) dz
′.

Using the standard formulae, we find that the first fundamental form on the surface is given by

(1.4) Ω = 4p2 dzdz̄

and the Gaussian curvature is [13]

(1.5) K = −∂∂̄(ln p)

p2
.

in isothermic coordinates.
The results obtained in [14] give a certain indication suggesting complete integrability of the WE

system (1.2). However, a systematic approach to its integrability remains still an open problem. It
will be shown here that the WE system (1.2) passes the Painlevé test, which means that it satisfies
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the necessary condition for complete integrability. This fact will be deduced from the existence
of a linear spectral problem for the WE system (1.2). Moreover, the Lie algebra of infinitesimal
symmetries of the WE system (1.2) is spanned by the vector fields

(1.6) α1 = ∂, α2 = ∂̄, β = ψ1∂ψ1 − ψ̄1∂ψ̄1
+ ψ2∂ψ2 − ψ̄2∂ψ̄2

and

(1.7) αξ = ξ ∂ + ξ̄ ∂̄ − 1

2
[ψ1(∂̄ξ̄)∂ψ1 + ψ̄1(∂ξ)∂ψ̄1

+ ψ2(∂ξ)∂ψ2 + ψ̄2(∂̄ξ̄)∂ψ̄2
],

where ξ(z) is an arbitrary analytic function and ξ̄(z̄) denotes its complex conjugate. Then, the
set {αξ} generates an infinite dimensional Lie algebra, realizing the conformal symmetry property
of the system (1.2). This algebra contains a Virasoro subalgebra [20], which has translations and
dilations as special elements and sl(2) as unique simple subalgebras. The vector field β commutes
with the αξ and it descibes a scaling transformation involving only the dependent variables ψi and
ψ̄i.

To obtain a one-parameter subgroup, we integrates αξ. Thus, we obtains the transformations

z′(λ, z) = F−1(λ+ F (z)) =

∫ z

z0

ξ[z′(λ,w)]

ξ(w)
dw

ψ′1(λ, ψ1) = ψ1(
ξ̄(z̄)

ξ̄(z̄′(λ, z))
)1/2, ψ′2(λ, ψ2) = ψ2(

ξ(z′(λ, z))

ξ(z)
)1/2,

where,

F (z) =

∫ z

c

ds

ξ(s)
,

with z0 and c suitable complex numbers. Although the existence of a conformal symmetry does not
imply in general complete integrability, it is, however, a strong indication in this direction.

Moreover, the WE system (1.2) possesses several conserved quantities [15]. The conservation of
current which is defined by

(1.8) J = ψ̄1∂ψ2 − ψ2∂ψ̄1.

leads to interesting consequences. Differentiation of J gives

∂̄J = ∂̄(ψ̄1∂ψ2 − ψ2∂ψ̄1)

(1.9) = (∂̄ψ̄1)∂ψ2 + ψ̄1(∂̄∂ψ2)− (∂̄ψ2)(∂ψ̄1)− ψ2(∂̄∂ψ̄1)

= pψ̄2∂ψ2 + ψ̄1(∂̄∂ψ2) + pψ1∂ψ̄1 − ψ2(∂̄∂ψ̄1).

The mixed derivatives obtained from (1.2) are

∂∂̄ψ̄1 = ∂(pψ̄2) = (∂p)ψ̄2 + p∂ψ̄2 = (∂p)ψ̄2 − p2ψ̄1,

(1.10) ∂∂̄ψ2 = −∂(pψ1) = −(∂p)ψ1 − p∂ψ1 = −(∂p)ψ1 − p2ψ2.

Consequently, the derivative of J vanishes,

∂̄J = pψ̄2∂ψ2 − |ψ1|2(∂p)− p2ψ̄1ψ2 + pψ1∂ψ̄1 − |ψ2|2(∂p) + p2ψ̄1ψ2

3



(1.11) = −p(∂p) + p(ψ̄2∂ψ2 + ψ1∂ψ̄1) = −p(∂p) + p(∂p) = 0.

Note that ∂̄J = 0 holds even when no restriction has been placed on ∂p. Exactly the same situation
occurs for the conjugate equation, ∂J̄ = 0.

In this paper, we examine certain aspects of complete integrability of the WE system (1.2) in
the context of a two-dimensional Euclidean sigma-model. In particular, we focus on constructing a
linear spectral problem for this system where the explicit form has not been known up to now.

This paper is organised as follows. In Section 2, we perform the reduction of the original
system to a certain second order system of PDEs. Section 3 presents an estimation of the degree
of freedom of the general analytic solutions of both systems. This analysis is carried out by means
of the Cartan theory of systems in involution. In Section 4, a linear spectral problem is derived
for the WE system via a two-dimensional nonlinear sigma model based on the related second order
system. This procedure amounts to a new technique for generating certain classes of solutions of
the WE system which is illustrated with several examples in Section 5. Section 6 contains final
remarks and possible future developments.
2. THE SECOND-ORDER SYSTEM ASSOCIATED TO THE WEIERSTRASS-ENNEPER
SYSTEM. In our investigation of the integrability of the WE system (1.2), we subject it to several
transformations in order to simplify its structure.

We start by introducing the new complex variable

(2.1) ρ =
ψ1

ψ̄2

.

Using equations (1.2) and the relation p = |ψ2|2(1 + |ρ|2), one obtains

(2.2) ∂ρ =
∂ψ1

ψ̄2

− ψ1

ψ̄2
2

∂ψ̄2 =
pψ2

ψ̄2

− ψ1

ψ̄2
2

(−pψ̄1) =
p2

ψ̄2
2

= (1 + |ρ|2)2ψ2
2.

Note that ∂ρ and ψ2
2 are related by a real function (1 + |ρ|2)2. Consequently, they have the same

polar angle in the complex plane. Dividing (2.2) by (1 + |ρ|2)2 and taking the principal square
root, one obtains ψ2. The complex conjugate of ψ2 is found in the usual way by reflecting through
the real axis. Using (2.1), ψ1 can be obtained from the product of ρ and ψ̄2. This generates the
following transformation from the variable ρ into the set of variables ψi,

(2.3) ψ1 = ερ
(∂̄ρ̄)1/2

1 + |ρ|2
, ψ2 = ε

(∂ρ)1/2

1 + |ρ|2
, (ε2 = 1).

Let us now state the following proposition,
PROPOSITION 1. If ψ1 and ψ2 are solutions of the system (1.2), then the function ρ defined by
(2.1) is a solution of the following second order system,

(2.4a) ∂∂̄ρ− 2ρ̄

1 + |ρ|2
∂ρ ∂̄ρ = 0,

(2.4b) ∂∂̄ρ̄− 2ρ

1 + |ρ|2
∂ρ̄ ∂̄ρ̄ = 0.

PROOF. Differentiation of equation (2.1) with respect to z̄ yields

(2.5) ∂̄ρ =
∂̄ψ1

ψ̄2

− ψ1

ψ̄2
2

∂̄ψ̄2 = (ψ̄2)
−2[ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2].
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By an easy computation, one obtains from (2.2) and (2.5)

∂∂̄ρ =
∂∂̄ψ1

ψ̄2

− ∂̄ψ1

(ψ̄2)2
∂ψ̄2 −

∂ψ1

(ψ̄2)2
∂̄ψ̄2 + 2

ψ1

(ψ̄2)3
∂ψ̄2∂̄ψ̄2 −

ψ1

(ψ̄2)2
∂∂̄ψ̄2

(2.6) = (ψ̄2)
−3[ψ̄2

2(∂∂̄ψ1)− ψ̄2∂̄ψ1∂ψ̄2 − ψ̄2∂ψ1∂̄ψ̄2 + 2ψ1(∂ψ̄2)(∂̄ψ̄2)− ψ1ψ̄2(∂∂̄ψ̄2)]

= (ψ̄2)
−3[ψ̄2

2(∂∂̄ψ1) + pψ̄2ψ̄1∂̄ψ1 − p|ψ2|2∂̄ψ̄2 − 2p|ψ1|2∂̄ψ̄2 − ψ1ψ̄2(∂∂̄ψ̄2)],

and its respective complex conjugate equation is

(2.7) ∂∂̄ρ̄ = (ψ2)
−3[ψ2

2(∂̄∂ψ1) + pψ2ψ1∂ψ̄1 − p|ψ2|2∂ψ2 − 2p|ψ1|2∂ψ2 − ψ̄1ψ2(∂̄∂ψ2)].

Using (1.2) the second derivatives (1.9) become

∂∂̄ψ̄1 = (ψ1∂ψ̄1 + ψ̄2∂ψ2)ψ̄2 − p2ψ̄1,

∂̄∂ψ1 = (ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2)ψ2 − p2ψ1,

(2.8) ∂∂̄ψ2 = −(ψ1∂ψ̄1 + ψ̄2∂ψ2)ψ1 − p2ψ2,

∂̄∂ψ̄2 = −(ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2)ψ̄1 − p2ψ̄2.

Substituting (2.8) into (2.6) and (2.7), the following compact formulas for the mixed ρ derivatives
can be obtained,

∂∂̄ρ =
2ψ̄1p

ψ̄3
2

(ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2)

(2.9) ∂̄∂ρ̄ =
2ψ1p

ψ3
2

(ψ2∂ψ̄1 − ψ̄1∂ψ2).

Substituting (2.1), (2.2), (2.5) and (2.9) into the left hand side of (2.4a), one obtains

∂∂̄ρ− 2ρ̄

1 + |ρ|2
∂ρ∂̄ρ

=
2ψ̄1p

ψ̄3
2

(ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2)−
2ψ̄1ψ2

ψ̄2
2

(1 + |ρ|2)(ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2)

=
2ψ̄1p

ψ̄3
2

(ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2)−
2ψ̄1p

ψ̄3
2

(ψ̄2∂̄ψ1 − ψ1∂̄ψ̄2) = 0.

An analogous result holds for the conjugate equation (2.4b). Q.E.D.
Similar formulae to those of (2.4) can be found in the literature [15,16] in the context involving

conformal immersions of a Riemann surface in Rn.
The converse of Proposition 1 can be formulated as follows.

PROPOSITION 2. If ρ is a solution to the system (2.4), then the functions ψ1, and ψ2 defined
by (2.3) in terms of ρ satisfy the WE system (1.2).
PROOF. Differentiating (2.3) with respect to z, we obtain

∂ψ1 = ε{∂ρ (∂̄ρ̄)1/2

1 + |ρ|2
+ ρ

(∂̄ρ̄)1/2

2(1 + |ρ|2)
∂∂̄ρ̄− ρ

(∂̄ρ̄)1/2

(1 + |ρ|2)
(ρ∂ρ̄+ ρ̄∂ρ)}.
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Substituting equation (2.4) into this expression, we get

(2.10) ∂ψ1 = ε{∂ρ (∂̄ρ̄)1/2

1 + |ρ|2
− |ρ|2 (∂̄ρ̄)1/2

(1 + |ρ|2)2
∂ρ} =

(∂ρ∂̄ρ̄)1/2

(1 + |ρ|2)
ψ2.

Multiplying both equations in (2.3) together, the following expression for p results,

(2.11) p =
(∂ρ ∂̄ρ̄)1/2

(1 + |ρ|2)
.

Therefore,

∂ψ1 =
(∂ρ ∂̄ρ̄)1/2

(1 + |ρ|2)
ψ2 = pψ2.

Similarly, differentiation of (2.3) with respect to z̄ gives

(2.12) ∂̄ψ2 = ε{ (∂ρ)−1/2

2(1 + |ρ|2)
∂̄∂ρ− (∂ρ)1/2

(1 + |ρ|2)2
(ρ∂̄ρ̄+ ρ̄∂̄ρ)}.

Substituting (2.4) and (2.11) into (2.12), we obtain,

∂̄ψ2 = −(∂̄ρ̄∂ρ)1/2

(1 + |ρ|2)
ψ1 = −pψ1.

which completes the proof. Q.E.D.
In some cases, it is more convenient to deal with (2.4) than the original system (1.2), since it

consists of only two equations for two dependent variables ρ and ρ̄. For example, a very large class of
solutions of (2.4) can be found simply by requiring the holomorphicity (∂̄ = 0) or antiholomorphicity
(∂ρ = 0) of the function ρ. We will show later in Section 5 some examples of this type of solution.
In the context of differential geometry, the system (2.4) was introduced by Kenmotsu in his seminal
paper [10], and then often used by subsequent authors [13-15].

It is worth noting that, as in the case of system (1.2), the classical symmetry groups of (2.4) are
conformal and scaling transformations. The corresponding symmetry algebra is spanned by

(2.13) α1 = ξ(z)∂, α2 = η(z̄)∂̄, α3 = ρ∂ρ − ρ̄∂ρ̄,

where ξ and η are arbitrary functions of their arguments. This algebra can be decomposed as a
direct sum of two infinite dimensional simple Lie subalgebras with direct sum a one-dimensional
algebra generated by α3. Assuming that the functions ξ and η are analytic in a proper open subset
Ω of C, they can be developed in a Laurent series so, we can provide a base for two centerless
Virasoro algebras. Finite-dimensional subalgebras are spanned by {∂}, {∂, z∂}, {∂, z∂, z2∂}, · · ·
and {∂̄}, {∂̄, z̄∂̄}, {∂̄, z̄∂̄, z̄2∂̄}, · · · , respectively. In particular, the invariants of the one-dimensional
subalgebra {∂} is given by {z̄, ρ}. Then, the invariant solutions are any holomorphic functions ρ
of z̄. A detailed study of solutions invariant under vector fields (2.13) is beyond the scope of the
present work, but there is no difficulty in treating them.

Finally, an interesting feature of the WE system (1.2) can be derived from the Gaussian curvature
(1.5). It can be expanded in the following way

p2K = −∂̄∂ ln(p) = −∂̄(
1

p
∂p) =

1

p2
∂p ∂̄p− 1

p
∂̄∂p.
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Using the system of equations (1.2), the differentiation of the function p with respect to z and z̄,
respectively, yields

(2.14) ∂p = ψ1∂ψ1 + ∂ψ2ψ̄2, ∂̄p = ψ̄1(∂̄ψ1) + ψ2(∂̄ψ̄2).

The mixed derivative of p becomes,

(2.15) ∂̄∂p = ∂̄ψ1∂ψ̄1 + ψ1∂̄∂ψ̄1 + ψ̄2∂̄∂ψ2 + ∂ψ2∂̄ψ̄2 = ∂̄ψ1∂ψ̄1 + ∂ψ2∂̄ψ̄2 − p3.

The product of the derivatives (2.14) is given by

∂̄p ∂p = |ψ1|2(∂̄ψ1)(∂ψ̄1) + ψ1ψ2(∂ψ̄1)(∂̄ψ̄2) + ψ̄1ψ̄2(∂̄ψ1)(∂ψ2) + |ψ2|2(∂ψ2)(∂̄ψ̄2).

Substituting these derivatives into the expression for p2K, we obtain the following result,

(2.16) p4K = ψ1ψ2(∂ψ̄1)(∂̄ψ̄2) + ψ̄1ψ̄2(∂̄ψ1)(∂ψ2)− |ψ1|2(∂ψ2)(∂̄ψ̄2)− |ψ2|2(∂̄ψ1)(∂ψ̄1) + p4.

This gives an explicit form for the Gaussian curvature K in terms of the functions ψ1 and ψ2.
3. THE ESTIMATION OF DEGREE OF INDETERMINANCY OF GENERAL SO-
LUTIONS. Now, let us demonstrate that the general analytic solutions of the Weierstrass-Enneper
system (1.2) and system (2.4) possess the same degree of freedom. To this end, we employ Cartan’s
theory of systems in involution [21]. For more information on this subject, see [22-24].

For computational purposes, it is useful to examine the systems of Pfaffian forms equivalent to
the considered systems of equations (1.2) and (2.4). We determine the Cartan numbers of these
systems and the numbers of arbitrary parameters admitted by the solutions of their polar equations
[21].
3.1. The Weierstrass-Enneper System.

If one introduces the following notation,

x1 = z, x2 = z̄, u1 = ψ1, u2 = ψ2, u3 = ψ̄1, u4 = ψ̄2,

(3.1) u5 = u1,x2 , u6 = u2,x1 , u7 = u3,x1 , u8 = u4,x2 ,

then system (1.2) takes the form

u1,x2 = (u1u3 + u2u4)u2, u3,x1 = (u1u3 + u2u4)u4,

(3.2) u2,x1 = −(u1u3 + u2u4)u1, u4,x2 = −(u1u3 + u2u4)u3.

If one chooses

(3.3) ξ1 = u1,x1 , ξ2 = u2,x2 , ξ3 = u3,x2 , ξ4 = u4,x1 ,

as parameters then, in terms of (3.1), equation (3.2) can be written as a system of differential
one-forms

ω1 = du1 − (ξ1 dx1 + u5 dx
2) = 0,

ω2 = du2 − (u6 dx
1 + ξ2 dx2) = 0,

ω3 = du3 − (u7 dx
1 + ξ3 dx2) = 0,

ω4 = du4 − (ξ4 dx1 + u8 dx
2) = 0,
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(3.4) ω5 = du5 − {[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u2 + (u1u3 + u2u4)u6] dx

1

+[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u2 + (u1u3 + u2u4)ξ

2] dx2} = 0,

ω6 = du6 + {[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u1 + (u1u3 + u2u4)ξ

1] dx1

+[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5] dx

2} = 0

ω7 = du7 − {[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u4 + (u1u3 + u2u4)ξ

4] dx1

+[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8] dx

2} = 0

ω8 = du8 + {[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u3 + (u1u3 + u2u4)u7] dx

1

+[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u3 + (u1u3 + u2u4)ξ

3] dx2} = 0.

After exterior differentiation of (3.4) we obtain the following system of 2-forms, modulo (3.4),

Ω1 ≡ dω1 = dx1 ∧ dξ1 − [(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u2 + (u1u3 + u2u4)u6]dx

1 ∧ dx2,

Ω2 ≡ dω2 = −[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5]dx

1 ∧ dx2 + dx2 ∧ dξ2,

Ω3 ≡ dω3 = [(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8]dx

1 ∧ dx2 + dx3 ∧ dξ3,

Ω4 ≡ dω4 = dx1 ∧ dξ4 + [(ξ1u3 + u1u7 + u4u6 + u2ξ
4)u3 + (u1u3 + u2u4)u7]dx

1 ∧ dx2,

Ω5 ≡ dω5 = −u2u3dξ
1 ∧ dx1 + u2

2dx
1 ∧ dξ4 − u1u2dξ

3 ∧ dx2 − (u1u3 + 2u2u4) dξ
2 ∧ dx2

(3.5) +[u1u2((u3u5 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8)

−(u1u3 + 2u2u4)((u3u5 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5)

−u2u3((ξ
1u3 + u1u7 + u4u6 + u2ξ

4)u2 + (u1u3 + u2u4)u6)

+u2
2((ξ

1u3 + u1u7 + u4u6 + u2ξ
4)u3 + (u1u3 + u2u4)u7)] dx

1 ∧ dx2,

Ω6 ≡ dω6 = −(2u1u3 + u2u4)dx
1 ∧ dξ1 − u1u2 dx

1 ∧ dξ4 − u1u4dx
2 ∧ dξ2 − u2

1dx
2 ∧ dξ3

−u2
1((u3u5 + u1ξ

3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8)

+u1u4((u3u5 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5)

−u1u2((ξ
1u3 + u1u7 + u4u6 + u2ξ

4)u3 + (u1u3 + u2u4)u7)

+((ξ1u3 + u1u7 + u4u6 + u2ξ
4)u2 + (u1u3 + u2u4)u6)(2u1u3 + u2u4)] dx

1 ∧ dx2,

Ω7 ≡ dω7 = u3u4 dx
1 ∧ dξ1 + (u1u3 + 2u2u4) dx

1 ∧ dξ4 + u2
4 dx

2 ∧ dξ2 + u1u4 dx
2 ∧ dξ3

+[u1u4((u3u5 + u1ξ
3 + u4ξ

2 + u2u8)u4 + (u1u3 + u2u4)u8)

−u2
4((u3u5 + u1ξ

3 + u4ξ
2 + u2u8)u1 + (u1u3 + u2u4)u5)

−u3u4((ξ
1u3 + u1u7 + u4u6 + u2ξ

4)u2 + (u1u3 + u2u4)u6)

+(u1u3 + 2u2u4)((ξ
1u3 + u1u7 + u4u6 + u2ξ

4)u3 + (u1u3 + u2u4)u7] dx
1 ∧ dx2,

Ω8 ≡ dω8 = −u2
3 dx

1 ∧ dξ1 − u2u3 dx
1 ∧ dξ4 − u3u4 dx

2 ∧ dξ2 − (2u1u3 + u2u4) dx
2 ∧ dξ3

+[u3u4((u3u5 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5)

−(2u1u3 + u2u4)((u3u5 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8)

+u2
3((ξ

1u3 + u1u7 + u4u6 + u2ξ
4)u2 + (u1u3 + u2u4)u6)
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−u2u3((ξ
1u3 + u1u7 + u4u6 + u2ξ

4)u3 + (u1u3 + u2u4)u7)] dx
1 ∧ dx2.

The vector fields Yj, j = 1, 2 which annihilate the 1-forms ωs and the 2-forms Ωs, satisfy the
polar equations,

(3.6) < ωsyYj >= 0, < ΩsyY1, Y2 >= 0, s = 1, · · · , 8, j = 1, 2.

From conditions (3.6) one finds

Y1 = ∂x1 +
4∑
r=1

ar∂ξr + ξ1∂u1 + u6∂u2 + u7∂u3 + ξ4∂u4

−[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u2 + (u1u3 + u2u4)u6]∂u5

+[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u1 + (u1u3 + u2u4)ξ

1]∂u6

−[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u4 + (u1u3 + u2u4)ξ

4]∂u7

+[(ξ1u3 + u1u7 + u6u4 + u2ξ
4)u3 + (u1u3 + u2u4)u7]∂u8 ,

and,

Y2 = ∂x2 +
4∑
r=1

br∂ξr + u5∂u1 + ξ2∂u2 + ξ3∂u3 + u8∂u4

−[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u2 + (u1u3 + u2u4)ξ

2]∂u5

+[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5]∂u6

−[(u5u3 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8]∂u7

+[(u5u3 + u1ξ3 + ξ2u4 + u2u8)u3 + (u1u3 + u2u4)ξ
3]∂u8 ,

where
a2 = −((u5u3 + u1ξ

3 + ξ2u4 + u2u8)u1 + (u1u3 + u2u4)u5),

a3 = ((u5u3 + u1ξ
3 + ξ2u4 + u2u8)u4 + (u1u3 + u2u4)u8),

b1 = ((ξ1u3 + u1u7 + u6u4 + u2ξ
4)u2 + (u1u3 + u2u4)u6),

b4 = −((ξ1u3 + u1u7 + u6u4 + u2ξ
4)u3 + (u1u3 + u2u4)u7),

and, the quantities a1, a4, b2, b3 are arbitrary. Thus the number of free parameters in (3.6) is

(3.7) N = 4.

Under the chosen notation (3.1) and (3.3) the Pfaffian system (3.4) takes the form

(3.8) ωs = dus −Gsµ(x, ξ, u) dx
µ, s = 1, · · · , 8 , µ = 1, 2,

where
x = (x1, x2), ξ = (ξ1, · · · , ξ4), u = (u1, · · · , u8).

and Gsµ depends linearly on ξ. The elements of the 8× 4 matrix

(3.9) asr = (
∂Gsµ

∂ξr
(x, ξ, u)Xµ), X = (X1, X2) ∈ C2,
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determine the values of the Cartan quasicharacters si, i = 1, 2. The nonzero elements of the matrix
(asr) are

a11 = X1 a51 = u3u2X
1 a61 = −(2u1u3 + u2u4)X

1

a22 = X2 a52 = (2u2u4 + u1u3)X
2 a62 = −u1u4X

2

a33 = X2 a53 = u1u2X
2 a63 = −u2

1X
2

a44 = X1 a54 = u2
2X

1 a64 = −u1u2X
1

a71 = u3u4X
1 a81 = −u2

3X
1

a72 = u2
4X

2 a82 = −u2u3X
1

a73 = u1u4X
2 a83 = −(2u1u3 + u2u4)X

2

a74 = (u1u3 + 2u2u4)X
1 a84 = −u3u4X

2

Thus, the Cartan quasicharacters are given by,

s1 = max
X∈C

rank(asr) = 4, s2 = p− s1 = 0,

where p is the number of coordinates ξ, that is, p = 4. From the definition of the Cartan number
Q one has

(3.10) Q = s1 + 2s2 = 4.

Since the number N of free parameters appearing in (3.6) equals 4, one has Q = N . Thus, according
to Cartan’s Theorem [21], system (3.4) (as well as (1.2)) is in involution. Its general analytic solution
exists in some neighbourhood of a regular point (x0, ξ0, u0) and depends on four arbitrary complex
analytic functions of one complex variable.
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3.2. The Second Order System of PDEs.
Now, for the system (2.4), a similar analysis is performed. We demonstrate that locally the

solution space of (2.4) has the same dimension as the system (1.2). For computational purposes, it
is useful to write equations (2.4) in the form

u1,x1x2 − 2u2

1 + u1u2

u1,x1u1,x2 = 0,

(3.11) u2,x1x2 − 2u1

1 + u1u2

u2,x1u2,x2 = 0,

where the following notation has been used

(3.12) x1 = z, x2 = z̄, u1 = ρ, u2 = ρ̄.

The system of differential one-forms corresponding to (3.11) can be written as follows

ω1 = du1 − u3 dx
1 − u5 dx

2 = 0,

ω2 = du2 − u4 dx
1 − u6 dx

2 = 0,

ω3 = du3 − ξ1 dx1 − 2u2

1 + u1u2

u3u5 dx
2 = 0,

(3.13) ω4 = du4 − ξ2 dx1 − 2u1

1 + u1u2

u4u6 dx
2 = 0,

ω5 = du5 −
2u2

1 + u1u2

u3u5 dx
1 − ξ3 dx2 = 0,

ω6 = du6 −
2u1

1 + u1u2

u4u6 dx
1 − ξ4 dx2 = 0,

ω7 = du7 − u11 dx
1 − u12 dx

2,

ω8 = du8 − u21 dx
1 − u22 dx

2,

where we use the standard notation

(3.14) u3 = u1
x1 , u4 = u2

x1 , u5 = u1
x2 , u6 = u2

x2 u7 = u1
x1x2 , u8 = u2

x1x2

and for the sake of simplicity, introduce the additional notation

u11 = 2(
u2u3u5

1 + u1u2

)x1 = 2[
u3u4u5 + u2u5ξ

1 + u2u3u7

1 + u1u2

− (u2u3u5)(u2u3 + u1u4)

(1 + u1u2)2
],

u12 = 2(
u2u3u5

1 + u1u2

)x2 = 2[
u3u5u6 + u2u5u7 + u2u3ξ

3

1 + u1u2

− (u2u3u5)(u2u5 + u1u6)

(1 + u1u2)2
],

u21 = 2(
u1u4u6

1 + u1u2

)x1 = 2[
u3u4u6 + u1u6ξ

2 + u1u4u8

1 + u1u2

− (u1u4u6)(u2u3 + u1u4)

(1 + u1u2)2
],

u22 = 2(
u1u4u6

1 + u1u2

)x2 = 2[
u4u5u6 + u1u6u8 + u1u4ξ

4

1 + u1u2

− (u1u4u6)(u2u5 + u1u6)

(1 + u1u2)
].
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We choose as parameters

(3.15) ξ1 = u1
x1x1 , ξ2 = u1

x2x1 , ξ3 = u1
x2x2 , ξ4 = u2

x2x2 .

As in the previous case, given the chosen notation (3.12), the Pfaffian system (3.13) takes the form
(3.8). Note, that in this case the matrix (3.9) has the same dimension 8× 4 as in the case of system
(1.2). The nonzero elements of the matrix (asr) are

a3
1 = X1, a4

2 = −X1, a5
3 = −X2, a6

4 = −X2.

Thus, the Cartan quasi-characters are given by

s1 = maxX∈C2rank(asr) = 4, s2 = p− s1 = 0,

where p is the number of coordinates ξ, that is, p = 4. Consequently, the Cartan number Q equals

(3.16) Q = s1 + 2s2 = 4.

After exterior differentiation system (3.13) takes the form

Ωl ≡ dωl ≡ 0, l = 1, 2, 7, 8,

Ω3 ≡ dω3 = −dx1 ∧ dξ1 − u11 dx
1 ∧ dx2,

Ω4 ≡ dω4 = −dx1 ∧ dξ2 − u21 dx
1 ∧ dx2,

Ω5 ≡ dω5 = u12dx
1 ∧ dx2 + dx2 ∧ dξ3,

Ω6 ≡ dω6 = u22 dx
1 ∧ dx2 + dx2 ∧ dξ4,

which is satisfied modulo (3.13).
The vector fields Yj, j = 1, 2 which annihilate the one-forms ωs and the two-forms Ωs satisfy the

polar equations (3.6). From these equations we have

Y1 = ∂x1 +
4∑
r=1

ar∂ξr + u3∂u1 + u4∂u2 + ξ1∂u3 + ξ2∂u4

(3.17) +2
u2u3u5

1 + u1u2

∂u5 + 2
u1u4u6

1 + u1u2

∂u6 + u11∂u7 + u21∂u8 ,

Y2 = ∂x2 +
4∑
r=1

br∂ξr + u5∂u1 + u6∂u2 + 2
u2u3u5

1 + u1u2

∂u3 + 2
u1u4u6

1 + u1u2

∂u4 + ξ3∂u5

+ξ4∂u6 + u12∂u7 + u22∂u8 ,

where
b1 = −u11, b2 = −u21, a3 = u12, a4 = u22.

As in the previous case, we have four free parameters, a1, a2, b3, b4. Thus, we get Q = N and,
according to Cartan’s Theorem, system (3.11) (as well as (2.4)) is in involution. Its general analytic
solution depends on four arbitrary complex analytic functions of one complex variable.

We have shown that systems (1.2) and (2.4) possess the same degree of freedom in terms of their
general analytic solutions. Using Cartan’s theorem, we can formulate the following conclusion.
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PROPOSITION 3. Suppose the systems (1.2) and (2.4) are both in involution at regular points
(z0, ξ0, ψ0) and (z0, ξ0, ρ0), respectively. Then their general analytic solutions exist in some neigh-
bourhood of these regular points and both depend on two arbitrary complex analytic functions of
one complex variable, and their complex conjugate functions.

Note that the mapping given by (2.1), from the solution of (2.4) to the solution of (1.2), does
not restrict the type of boundary value conditions imposed on (2.4) and (1.2).
4. COMPLETE INTEGRABILITY OF THE WEIERSTRASS-ENNEPER SYSTEM
IN THE CONTEXT OF THE SIGMA-MODEL.

4.1 The Linear Spectral Problem Associated with the Weierstrass-Enneper System. The
objective of this section is to demonstrate a connection between the Weierstrass-Enneper system
(1.2) and the completely integrable Euclidean sigma-model in 2-dimensions, and next, to derive
through this link the linear spectral problem for the Weierstrass-Enneper system.

Let us identify (2.3) with the stereographic coordinate representation [25] of the 2-dimensional
Euclidean nonlinear sigma-model

(4.1) [S, ∂∂̄ S] = 0,

where the spin matrix

S =

(
s3 s̄+

s+ −s3

)
, det S = −1,

belongs to the hermitian space SU(2)/U(1). In the stereographic coordinate representation, the
matrix S is given by

(4.2i) S =
1

1 + |ρ|2

(
1− |ρ|2 2ρ̄

2ρ −1 + |ρ|2
)
,

where

(4.2ii) s+ =
2ρ

1 + |ρ|2
, s3 =

1− |ρ|2

1 + |ρ|2
.

By substituting the matrix S given by (4.2) into (4.1), we obtain the following condition,

[ρ̄(∂̄∂ρ− 2ρ̄

1 + |ρ|2
∂ρ ∂̄ρ)− ρ(∂∂̄ρ̄− 2ρ

1 + |ρ|2
∂̄ρ̄ ∂ρ̄)]I = 0,

where I is the unit matrix in this equation. This is identically satisfied whenever equations (2.4)
hold.

In terms of the complex functions ψi and ψ̄i, i = 1, 2, which appear in (1.2), the spin matrix S
takes the form

(4.3) S =
1

p

(
−|ψ1|2 + |ψ2|2 2ψ̄1ψ̄2

2ψ1ψ2 |ψ1|2 − |ψ2|2
)

From (2.3), we obtain that the inverse mapping of (4.3) is double-valued and is provided by

(4.4i) ψ1 =
ε

2
s+[∂̄(

s̄+

1 + s3

)]1/2, ψ2 =
ε

2
(1 + s3)[∂(

s+

1 + s3

)]1/2, ε2 = 1.

where

(4.4ii) ρ =
s+

1 + s3

, ρ̄ =
s̄+

1 + s3

.
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PROPOSITION 4. If ψ1 and ψ2 are solutions of the WE system (1.2), then the spin matrix S
given by (4.3) is a solution of the sigma model equation (4.1).
PROOF. The results are directly obtained by substituting the spin matrix S given by (4.3) into
the commutator (4.1) and assuming that the functions ψi satisfy (1.2). This computation leads to
a vanishing commutator (4.1). Q.E.D.

The procedure for constructing solutions to (1.2) can be reduced to the following. Take any
solution of the sigma-model (4.1) and substitute it into equations (4.4ii). The function ρ thus
obtained provides us by means of transformation (2.3), with solutions ψ1 and ψ2 of the WE system
(1.2). The possibility of constructing such solutions is demonstrated in the next section.

We now consider the possibility of constructing a linear spectral problem for the WE system
(1.2). Let us introduce a new set of complex functions ϕ1 and ϕ2 : C → C which are related to the
complex functions ψ1 and ψ2 in the following way

ψ1 = f(z, z̄)ϕ1, ψ̄2 = f(z, z̄)ϕ̄2,

(4.5) ψ̄1 = f̄(z̄, z)ϕ̄1, ψ2 = f̄(z̄, z)ϕ2,

for any complex function f : C → C. From the definition (2.1), it is evident that the transformation
(4.5) leaves the functions ρ and ρ̄ invariant

(4.6) ρ =
ϕ1

ϕ̄2

, ρ̄ =
ϕ̄1

ϕ2

.

and the structure of the spin matrix S given by (4.3) is also preserved. This means that there exists
a freedom which resembles a type of gauge freedom in the definition of the ρ variable, since the
numerator and denominator of (4.6) can be multiplied by any complex function. The crux of the
matter is that it is not required that the set of functions ϕi satisfy the original system (1.2), but
that the ratio of ϕ1 over ϕ̄2 satisfy (2.4). Let us express equations (1.2) in terms of ϕi and f . The
derivatives of ψ1 and ψ2 take the form

∂ψ1 = (∂f)ϕ1 + f(∂ϕ1), ∂̄ψ2 = (∂̄f̄)ϕ2 + f(∂̄ϕ2).

We define the variable q = |ϕ1|2 + |ϕ2|2 and from (1.2a) it follows that p = |f |2 q. Taking the above
into account we can write (1.2) as

(∂f)ϕ1 + f(∂ϕ1) = pf̄ϕ2, (∂̄f̄)ϕ2 + f̄(∂̄ϕ2) = −pfϕ1,

Solving the above equations for ∂ϕ1 and ∂̄ϕ2, respectively, we obtain the equations of motion,

(4.7) ∂ϕ1 = qf̄ 2ϕ2 − (∂ ln f)ϕ1, ∂̄ϕ2 = −qf 2ϕ1 − (∂̄ ln f̄)ϕ2,

∂̄ϕ̄1 = qf 2ϕ̄2 − (∂̄ ln f̄)ϕ̄1, ∂ϕ̄2 = −qf̄ 2ϕ̄1 − (∂ ln f)ϕ̄2.

Using (4.7), the differentiation of equations (4.6) with respect to z and z̄, respectively, yields a pair
of relations similar to (2.3) which relate the functions ϕi to ρ and a nonzero f ,

(4.8) ϕ1 = ερ
(∂̄ρ̄)1/2

f(1 + |ρ|2)
, ϕ2 = ε

(∂ρ)1/2

f̄(1 + |ρ|2)
.

Relations (4.8) can also be obtained in a more straightforward way by substituting (4.5) into equa-
tions (2.3). Note that as well as (2.3), the transformations (4.8) are doubled valued. Now we can
formulate the following,
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PROPOSITION 5. If the function ρ defined by (4.6) is a solution of the system (2.4), then the
functions ϕ1 and ϕ2 satisfy the following system of equations

∂ϕ1 = qf̄ 2ϕ2, ∂̄ϕ̄1 = qf 2ϕ̄2,

(4.9) ∂̄ϕ2 = −qf 2ϕ1, ∂ϕ̄2 = −qf̄ 2ϕ̄1.

for any function f : C → C satisfying

(4.10) ∂f = 0.

PROOF. Indeed, by an easy computation, one obtains from (4.6) and (4.7), the first derivatives
of ρ and ρ̄

∂ρ = q2|f |2(ϕ̄2)
−2, ∂ρ̄ = (ϕ2)

−2(ϕ2∂ϕ̄1 − ϕ̄1∂ϕ2),

(4.11a) ∂̄ρ = (ϕ̄2)
−2(ϕ̄2∂̄ϕ1 − ϕ1∂̄ϕ̄2), ∂̄ρ̄ = q2|f |2(ϕ2)

−2

and the second derivatives of ρ and ρ̄,

(4.11b) ∂∂̄ρ = (ϕ̄2)
−3[2qf̄ 2ϕ̄1ϕ̄2∂̄ϕ1 − qf̄ 2(q + |ϕ1|2 − |ϕ2|2)∂̄ϕ̄2],

∂∂̄ρ̄ = (ϕ2)
−3[2qf 2ϕ1ϕ2∂ϕ̄1 − qf 2(q + |ϕ1|2 − |ϕ2|2)∂ϕ2].

Substituting expressions (4.11) into (2.4), we get a differential constraint for the function f and its
respective complex conjugate

(4.12) (f̄ 2 − 1)∂̄f̄ = 0, (f 2 − 1)∂f = 0.

Thus, the general solution of system (4.12) is given by any antiholomorphic function f such that
relation (4.10) holds. Consequently, the equations of motion (4.7) become those in (4.9). Q.E.D.
PROPOSITION 6. If the boundary value problem for the WE system (1.2) is given by two arbi-
trary complex analytic functions of one complex variable (and their complex conjugate functions),
then the solution of (1.2) is unique up to a gauge transformation (4.10).
PROOF. By virtue of Propositions 1 and 2, the map from equations (1.2) to (2.4) is one-to-one. The
map from equations (2.4) to the sigma-model (4.1) is also one-to-one because of the transformation
(4.2ii). The solution of the boundary value problem for (4.1) possesses a unique solution [25].
Hence, from Proposition 3 and equations (4.5) and (4.8), it follows that the solution of the the
boundary value problem for WE system (1.2) is unique up to multiplication by any function f(z̄)
satisfying (4.10). This means that the freedom of solutions to (1.2) and (2.4) is the same, up to a
gauge function f . Q.E.D.

Now we examine certain aspects of complete integrability of the equations of motion (4.9) in the
context of a two-dimensional Euclidean sigma model (4.1).

As it was shown by A. V. Mikhailov in [26], equation (4.1) is a compatibility condition for the
two linear spectral problems

(4.13) ∂Φ =
1

λ+ 1
UΦ, ∂̄Φ =

1

λ− 1
U †Φ.

Here, U = ∂S S, U † = S ∂̄S with S given by (4.3), and Φ(z, z̄, λ) is a matrix of fundamental
solutions, while λ represents the spectral parameter. Note that there is a direct connection between
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the matrix eigenfunction Φ(z, z̄, λ) in expression (4.13) and the fields ψi, through the mapping (4.4)
since there exists the relation [26]

(4.14) S = Φ(z, z̄, 0).

Then we could say that the WE system (1.2) is completely integrable, because of the mappings
(4.3) and (4.4). Indeed, by expressing the spin matrix S in terms of the functions ϕi and ϕ̄i, one
obtains the explicit form of the linear spectral problem (4.13) for the equation of motion (4.9)

(4.15) ∂Φ =
2

λ+ 1
MΦ, ∂̄Φ =

2

λ− 1
M †Φ,

where

(4.16) M =

(
b/2 a
−c −b/2

)
.

and we introduce the following notation,

a = −f̄ 2ϕ̄2
1 +

1

f̄ q2
[ϕ̄1ϕ̄

2
2∂(f̄ϕ2)− ϕ̄2|ϕ2|2∂(f̄ ϕ̄1)],

(4.17) b = 2[−f̄ 2ϕ̄1ϕ2 +
1

f̄ q2
(ϕ1|ϕ2|2∂(f̄ ϕ̄1)− ϕ̄2|ϕ1|2∂(f̄ϕ2))],

c = −f̄ 2ϕ2
2 +

1

f̄ q2
[ϕ1|ϕ1|2∂(f̄ϕ2)− ϕ2

1ϕ2∂(f̄ ϕ̄1))],

Making use of (4.5), one can find an explicit form for the coefficients (4.17) in terms of the functions
ψi. The matrix M can be written in the form

(4.18) M = A+
J

p2
A†, detM = −2J

p2
,

where J is the current (1.8) and A is a degenerate nilpotent matrix which can be decomposed as
follows,

(4.19) A = −ψ̄1ψ2σ3 − ψ̄2
1σ+ + ψ2

2σ−, σ± =
1

2
(σ1 ± iσ2),

where σ1, σ2, σ3 are Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

However, in order to be able to use results from the inverse scattering method to construct
soliton solutions of the WE system (1.2), it is convenient to simplify the form of the linear spectral
problem (4.15).

PROPOSITION 7. For any bounded entire function J , the linear spectral problem for the
WE system (1.2) has the form

(4.20) ∂Φ =
2

λ+ 1
AΦ, ∂̄Φ =

2

λ− 1
A†Φ
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PROOF. Indeed, if we substitute (4.18) into the system (4.15), then the system takes the form

(4.21) ∂Φ =
2

λ+ 1
(A+

J

p2
A†)Φ

(4.22) ∂̄Φ =
2

λ− 1
(A† +

J̄

p2
A)Φ.

From the conservation of the current (1.11), we obtain that the current J is a holomorphic function.
According to Liouville’s theorem if J(z) is an entire function, and if |J(z)| ≤M for all z ∈ C, then
J(z) ≡ constant. Consequently, one can take the current J to be equal to zero, hence equations
(4.21) and (4.22) become (4.20). The compatibility condition for the two equations in (4.20), namely,

∂̄A− ∂A† + [A,A†] = 0,

is satisfied, whenever the WE system (1.2) holds. Under these circumstances, the linear spectral
problem (4.20) holds for the WE system (1.2). So, matrices A and A† can be identified as the Lax
pair for the WE system. Q.E.D.

Moreover, an interesting feature of the WE system (1.2) has been observed. Namely, the system
(4.20) has the WE system of equations as compatibility conditions for any function J(z), not
necessarily bounded. This fact can be easily verified by direct calculation.

Note that the system of Riccati equations corresponding to (4.20) is

∂y = − 2

λ+ 1
(ψ̄1 + ψ2y)

2, ∂̄y =
2

λ− 1
(ψ̄2 − ψ1y)

2,

where y is a complex function (called the pseudopotential [29]) given by the ratio of the components
of the vector Φ, that is, y = φ1/φ2. We conclude that the existence of the linear spectral problem
(4.20) for the WE system implies that this system is completely integrable.

Finally, a property of the WE system (1.2) in the context of the sigma model, is the existence
of a topological charge. Indeed, it is well known that the sigma-model (4.1) possesses a topological
charge, [27-29] which we denote by I. Making use of the current J , the transformations (4.3) and
the equations of motion (1.2), one finds that if the integral

(4.23) I =
i

8π

∫
C

Tr(S · [∂S, ∂̄S]) dz dz̄ = − i

2π

∫
C

1

p2
[|J |2 − p4] dzdz̄,

exists, it is an integer, where J is given by equation (1.8).
4.2 Reduction of the Weierstrass-Enneper System to a Decoupled Linear System.

Now we discuss a set of conditions which allow the system (1.2) to become a linear decoupled
system of equations.
PROPOSITION 8. If the functions ψ1 and ψ2 satisfy an overdetermined system composed of the
equations of motion (1.2) and differential conditions

(4.24) ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2 = 0, ψ̄2∂ψ2 + ψ1∂ψ̄1 = 0,

then the overdetermined system is equivalent to a linear decoupled system of the form

(4.25) ∂̄∂ψi + p2
0ψi = 0, ∂∂̄ψ̄i + p2

0ψ̄i = 0, i = 1, 2,

|ψ1|2 + |ψ2|2 = p0 ∈ R.
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PROOF. Making use of (1.2) and conditions (4.24) we obtain that the derivatives of p given by
(2.14) vanish

(4.26) ∂p = ψ1(∂ψ̄1) + ψ̄2(∂ψ2) = 0, ∂̄p = ψ̄1(∂̄ψ1) + ψ2(∂̄ψ̄2) = 0.

This means that if (4.24) holds, then p is a real constant, say p0. Thus,

(4.27) |ψ1|2 + |ψ2|2 = p0

is a conserved quantity. Hence, the Weierstrass-Enneper system (1.2) becomes a linear system which
can be decoupled in terms of the functions ψi such that (4.25) holds. Q.E.D.

Let us now investigate the case in which all the derivatives of the functions ψi and ψ̄i are
specified. This means that we supplement the WE system (1.2) with some additional differential
constraints, so we can formulate the following.

If the conditions (4.24) hold then we show that the system (1.2) can be extended to the system
of the form

(4.28a) ∂

(
ψ1

ψ2

)
=

(
pψ2

α

)
, ∂̄

(
ψ1

ψ2

)
=

(
β

−pψ1

)
and the respective conjugate system,

(4.28b) ∂

(
ψ̄1

ψ̄2

)
=

(
β̄

−pψ̄1

)
, ∂̄

(
ψ̄1

ψ̄2

)
=

(
pψ̄2

ᾱ

)
where the quantities α and β are assumed to be some polynomial functions expressible in terms of
ψi and ψ̄i, with constant coefficients. The system (4.28) will be called the augmented system. Our
aim is to find an explicit form for α and β in such a way that they do not provide any additional
differential constraints on ψi and ψ̄i other than (1.2) and (4.24) when the compatibility conditions
for (4.28) are added, namely (2.8) and

∂∂ψ1 = ∂(pψ2) = (ψ1∂ψ̄1 + ψ̄2∂ψ2)ψ2 + p∂ψ2,

(4.29) ∂̄∂̄ψ̄1 = ∂̄(pψ̄2) = (ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2)ψ̄2 + p∂̄ψ̄2,

∂̄∂̄ψ2 = −∂̄(pψ1) = −(ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2)ψ1 − p∂̄ψ1,

∂∂ψ̄2 = −∂(pψ̄1) = −(ψ1∂ψ̄1 + ψ̄2∂ψ2)ψ̄1 − p∂ψ̄1.

Indeed, from the compatibility conditions (2.8) and (4.29), the analysis of the dominant terms in
the ψi and ψ̄i functions leads to the requirement that all unknown derivatives, (∂̄ψ1, ∂ψ̄1, ∂ψ2, ∂̄ψ2),
other than those appearing in (1.2), have to be cubic in terms of the fields ψi and ψ̄i. Moreover, if
one assumes that the discrete symmetry of the system (1.2), invariant under the reflection symmetry
in the space of dependent and independent variables, namely,

(4.30) ψi → −ψj, ψ̄i → −ψ̄j, i 6= j = 1, 2, ∂ → −∂̄, ∂̄ → −∂,

can be extended to the augmented system (4.28), then one obtains the following relations,

∂ψ̄1 = −p[c̄2ψ̄1 + c̄1ψ̄2 + c̄4ψ1 + c̄3ψ2],

(4.31) ∂̄ψ1 = −p[c2ψ1 + c1ψ2 + c4ψ̄1 + c3ψ̄2],
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∂ψ2 = p[c1ψ1 + c2ψ2 + c3ψ̄1 + c4ψ̄2],

∂̄ψ̄2 = p[c̄1ψ̄1 + c̄2ψ̄2 + c̄3ψ1 + c̄4ψ2].

It is assumed that the ci, i = 1, · · · , 4 are constants to be determined from the compatibility
conditions for (2.8) and (4.29). Substituting (4.31) into (4.29) leads us to a system of equations
which are polynomial in ψi and ψ̄i. The unique solution of this system has the form

(4.32a) ∂

(
ψ1

ψ2

)
= p

(
ψ2

−ψ1

)
= ∂̄

(
ψ1

ψ2

)
and its respective conjugate system

(4.32b) ∂

(
ψ̄1

ψ̄2

)
= p

(
ψ̄2

−ψ̄1

)
= ∂̄

(
ψ̄1

ψ̄2

)
.

Note that the same formula (4.32) can be found in [15]. Under the conditions (4.24), we show
that the system (1.2) admits a conserved quantity (4.27) with p a real constant. This means that
in this case by virtue of (1.5), the Gaussian curvature K = 0, which implies the space is flat.
PROPOSITION 9. If the functions ψ1 and ψ2 satisfy an overdetermined system composed of the
WE system (1.2) and the following differential constraint

(4.33) −(ψ̄1∂̄ψ1 + ψ2∂̄ψ̄2) + (ψ1∂ψ̄1 + ψ̄2∂ψ2) = 0,

then the function p is a real valued function of a real argument x = (z + z̄)/2,

(4.34) |ψ1|2 + |ψ2|2 = p(x).

PROOF. Indeed, using the derivatives of p, and taking into account (4.33), we obtain

(∂ − ∂̄)p = ψ1(∂ψ̄1) + ψ̄2(∂ψ2)− ψ̄1(∂̄ψ1)− ψ2(∂̄ψ̄2) = 0.

This completes the proof. Q.E.D.
Consequently, in the case when (4.33) holds, the first fundamental form (1.4) and the Gaussian

curvature (1.5) take the following form

Ω = 4p2(x) dzdz̄, K = −p̈(x)/p2(x),

respectively. Here, we introduce the notation p̈ = d2p/dx2.
5. EXAMPLES AND APPLICATIONS. At this point, we would like to illustrate the proposed
procedure for constructing solutions of the WE system (1.2) with several elementary examples.

Now, let us discuss some classes of solutions to the WE system (1.2), which can be obtained
directly by applying the transformation (2.3). First, we consider the class of solutions which corre-
spond to analytic choices of the function ρ. It is easy to check that for this class of solutions the
conserved density J in (1.11) is identically equal to zero.

1. The simplest solutions of this type are given by

(5.1) ρ = [
(z − z0)

λ
]n

where λ and z0 are arbitrary real and complex numbers respectively. From the point of view of
the sigma-model this form of ρ corresponds to the instanton of charge I = −n located at z0 and of
size λ. By virtue of the invariance of the system (1.2) under conformal transformations, we can set
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without loss of generality, z0 = 0 and λ = 1. Then, using (2.3) we find that the solutions of (1.2)
are given by

(5.2) ψ1 = εn1/2 z
nz̄(n−1)/2

1 + |z|2n
, ψ2 = εn1/2 z(n−1)/2

1 + |z|2n
.

Each of these solutions belongs to a different topological sector of index n. Furthermore, notice
that for all even n, the solutions are double valued. Nevertheless, this fact has no influence on the
surfaces parametrized by the relations (1.3). Actually, the solutions (5.2) correspond to only one
constant mean curvature surface, which is covered n times as z runs over the complex plane. This
surface is obtained (modulo translations) by revolving the curve

(5.3) X2 = (X3 − 2)(
X3

4−X3

)1/2

around the axis X3. It possesses a conic point in (0, 0, 2).
2. Another class of solutions is provided by the analytic function

(5.4) ρ = eλ z,

corresponding to a static domain wall in the isotropic O(3) magnet. The associated solution of the
system (1.2) is

(5.5) ψ1 = ελ̄1/2 eλ̄z̄/2

e−λz + e−λ̄z̄
, ψ2 = ελ1/2 eλz/2

e−λz + e−λ̄z̄
.

Also in this case, the whole class of solutions parametrized by λ represents a unique constant mean
curvature surface (modulo translations), obtained from (1.3) by revolving the following curve around
the X3 axis

(5.6) X3 = 2
X2

2

1±
√

1−X2
2

.

Many other solutions of (1.2) admitting ρ to be a meromorphic function can be found. For the
present, we do not discuss them.

3. Let us assume now, as opposed to the previous cases, that the conserved density in (1.8)
is a non-vanishing holomorphic function. In such a case, one can check that the matrix U in the
spectral problem (4.13) has a non-vanishing Tr U2. The simplest choice is to put

(5.7) U = g(z)σ3.

The solution of the corresponding spectral problem can be readily obtained [26]

(5.8) Φ = exp[2iχσ3]σ1,

where σi are Pauli matrices, χ = Im
∫

Γ
g(z) dz and Γ is an arbitrary curve in the domain in which

g is analytic. Then, resorting to the relations (4.14) and (4.4), one obtains the following solutions
to equation (1.2)

(5.9) ψ1 = − ε
2
i e−iχḡ1/2, ψ2 =

ε

2
ie−iχg1/2.
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The associated surface is given by the parametric equations

X1 = sin 2χ+X10, X2 = − cos 2χ+X20,

(5.10) X3 = ω +X30 (ω = Re

∫
Γ

f(z) dz).

which describe a cylinder having X3 as a symmetry axis. Non-trivial deformations of this type of
solution can be found by using the recurrence N -soliton wave function formula [26] in expression
(4.14).

Now, let us discuss a simple example to illustrate the construction introduced in Section 4.
4. Consider the possibility where f is real and f = q−1/2 with ϕi chosen to make ∂f = 0. In

this case, from (4.9) one has

(5.11) ∂ϕ1 = qf̄ 2ϕ2 = ϕ2, ∂̄ϕ2 = −qf 2ϕ1 = −ϕ1.

This system reduces to two second order linear equations of the form (4.25)

∂∂̄ϕi + ϕi = 0, i = 1, 2.

For example, let us write a simple set of solutions to this equation

ϕ1 = −iei(z+z̄), ϕ̄1 = ie−i(z+z̄)

ϕ2 = ei(z+z̄), ϕ̄2 = e−i(z+z̄).

Therefore, one has

q = |ϕ1|2 + |ϕ2|2 = 2, f =
1√
2
.

Note that for these functions ϕi, conditions (4.24) are identically satisfied. From (4.6), we obtain

ρ = −ie2i(z+z̄).

It is also easy to show that for this class of solutions ρ, equations (2.4) are identically satisfied.
Substituting the functions ρ and f into equations (4.8), one obtains an explicit solution of the WE
system (1.2)

ψ1 = −i ε√
2
ei(z+z̄), ψ2 =

ε√
2
ei(z+z̄).

This solution represents a phase plane wave, since the argument is one dimensional x = z + z̄, its
absolute value is constant, and the solution has exponential form.

5. A special class of exponential solutions to (1.2) can be found to hold when p is constant.
According to Proposition 6, we have to solve (4.25). Thus, a vacuum solution takes the form

ψ1 = c1e
i(hz+kz̄),

(5.12) ψ2 = ic1
h

p
ei(hz+kz̄),

where c1 is a complex constant and h, k are real constants such that

|c1|2 =
p3

(p2 + h2)
, p = h k.
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Due to the linearity of equations (4.25), we can look for a more general class of solutions which
represent a superposition of exponential functions. The one soliton solution of (4.25) is given by

ψ1 = c1e
i(h1z+k1z̄) + c2e

i(h2z+k2z̄),

(5.13) ψ2 =
i

p
(h1c1e

i(h1z+k1z̄) + h2c2e
i(h2z+k2z̄)),

where the ci are complex constants and the hi, ki are real constants which satisfy,

h1k1 = p2, h2k2 = p2, h1h2 = −p2,

and

|c2|2 =
p− |c1|2(1 + h2

1/p
2)

1 + p2/h2
1

.

From (2.1), we obtain the expression for ρ corresponding to the one soliton solutions,

ρ = −ic1e
ih1(z+z̄) + c2e

−ih1(z+z̄)

c̄1eih1(z+z̄) − c̄2eih1(z+z̄)
.

for which condition (2.4) is identically satisfied.
6. Now, let us discuss the construction of multi-soliton solutions to the WE system (1.2), which

can be obtained by exploiting the linear spectral problem (4.15). According to the first step of the
procedure, we choose an antiholomorphic function of the form

(5.14) f = ε(a− b)
(2z̄ − a− b)z − a(z̄ − a)− b(z̄ − b)

|z − a|2 + |z − b|2
, ε = ±1, a, b ∈ R

and look for a nontrivial solution ρ of the system (2.4),

ρ =
z − a

z − b
. (5.15)

The substitution of (5.14) and (5.15) into the relations (4.8) gives

ϕ1 =
z − a

(2z̄ − a− b)z − a(z̄ − a)− b(z̄ − b)
,

(5.16) ϕ2 =
z̄ − b

(2z − a− b)z̄ − a(z − a)− b(z − b)

Finally, from the solution of the linear spectral problem (4.15) and relations (4.14) and (4.4), we
obtain an explicit one soliton solution of the WE system (1.2)

(5.17) ψ1 = ε(a− b)
z − a

|z − a|2 + |z − b|2
, ψ2 = ε(a− b)

z̄ − b

|z − a|2 + |z − b|2
.

A similar computation can be performed for the case in which ρ satisfies (2.4) and has a more
general form than (5.15)

(5.18) ρ =
N∏
j=1

z − aj
z − bj

, aj, bj ∈ R.
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with distinct parameters such that a and b are replaced by aj and bj, respectively. The same process
is done with the function f in (5.14). Thus, we can determine explicitly the corresponding form
of a multi-soliton solution by applying the recurrence N -soliton wave function formula [26] in the
expression (4.14) to obtain,

(5.19) ψ1 = ε

N∏
j=1

z − aj
z − bj

1 +
N∏
j=1

|z − aj
z − bj

|2
(
N∑
s=1

1

(z̄ − bs)
(
N∏

j=1
j 6=s

(z̄ − aj)

(z̄ − bj)
−

N∏
j=1

(z̄ − aj)

(z̄ − bj)
))1/2

ψ2 =
ε

1 +
N∏
j=1

|z − aj
z − bj

|2
(
N∑
s=1

1

(z − bs)
(
N∏

j=1
j 6=s

(z − aj)

(z − bj)
−

N∏
j=1

(z − aj)

(z − bj)
))1/2

Note that this solution admits simple poles. The topological charge (4.23) for each of the instanton
solutions (5.19) corresponds to I = εN .
6. Future Outlook. In this paper, we have shown that the adapted WE system (1.2) proposed
by B. Konopelchenko and I. A. Taimanov as a tool to induce constant mean curvature surfaces, is
closely related to the nonlinear Euclidean sigma-model SU(2). This link enabled us to propose a
new approach to the construction of solutions, based on the intermediate system of equations (4.9)
with which the sigma model (4.1) is associated.

Let us now consider a system of the form

∂ψ1 = h(z, z̄) pψ2, ∂̄ψ̄1 = h(z, z̄) p ψ̄2,

(6.1) ∂̄ψ2 = −h(z, z̄) pψ1, ∂ψ̄2 = −h(z, z̄) p ψ̄1,

where h is assumed to be a real function of z and z̄. We are interested in conditions under which
system (6.1) becomes a completely integrable one.

Making use of the transformation (2.1), by calculations similar to those done in Section 2, we
find

(6.2) ψ1 = ερ
(∂̄ρ̄)1/2

h1/2 (1 + |ρ|2)
, ψ2 = ε

(∂ρ)1/2

h1/2(1 + |ρ|2)
, ε2 = 1,

and system (6.1) becomes,

(6.3a) ∂̄∂ρ =
2ρ̄

1 + |ρ|2
∂ρ∂̄ρ+ (∂(lnh))(∂ρ),

(6.3b) ∂∂̄ρ =
2ρ

1 + |ρ|2
∂̄ρ̄ ∂ρ̄+ (∂̄(lnh)) (∂̄ρ̄)

The above form is more convenient to analyze than the equations (6.1). Employing the con-
ditional symmetry method [30,31], we look for conditions necessary for solvability of a class of
equations (6.3) which admit compatible first order differential constraints. We consider here the
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simplest case where the differential constraints are based on an sl(2,C) representation. So, we as-
sume that they take the form of coupled Riccati equations (and their complex conjugate equations)
with nonconstant coefficients,

∂ρ = A0
1(z, z̄) + A1

1(z, z̄)ρ+ A2
1(z, z̄)ρ

2,

(6.4) ∂̄ρ = A0
2(z, z̄) + A1

2(z, z̄)ρ+ A2
2(z, z̄)ρ

2.

The compatibility condition for the system (6.4) requires appending to it the zero curvature condi-
tions,

(6.5) Al[µ,ν] +
1

2
C l
abA

a
µA

b
ν = 0, a, b, l = 0, 1, 2 µ, ν = 1, 2,

where (zµ) = (z, z̄) and C l
ab are structure constants of sl(2,C). The brackets [µ, ν] denote here the

alternation with respect to the indices µ and ν. We look for conditions on the function h which
ensures that the overdetermined system composed of the equations (6.3), differential constraints
(6.4) and conditions (6.5) are in involution. These involutivity conditions give us the specific
differential restrictions on the class of function h

(6.6) ∂̄∂(
1

h
) = 0.

The general solution of (6.6) is given by

(6.7) h(z, z̄) =
1

r(z) + r(z̄)
.

Here, r is an arbitrary real function. Then, system (6.1) becomes

∂ψ1 =
p

r(z) + r(z̄)
ψ2, ∂̄ψ̄1 =

p

r(z) + r(z̄)
ψ̄2,

(6.8) ∂̄ψ2 = − p

r(z) + r(z̄)
ψ1, ∂ψ̄2 = − p

r(z) + r(z̄)
ψ̄1,

and consequently, system (6.3) takes the form

∂̄∂ρ =
2ρ̄

1 + |ρ|2
∂ρ∂̄ρ− ∂r

r(z) + r(z̄)
(∂ρ),

(6.9) ∂∂̄ρ̄ =
2ρ

1 + |ρ|2
∂̄ρ̄∂ρ̄− ∂̄r

r(z) + r(z̄)
(∂̄ρ̄).

It is easy to show that system (6.8) cannot be transformed into the original WE system (1.1),
corresponding to constant mean curvature surfaces, by any change of independent variables.

An analysis of system (6.9) similar to the one carried out in Section 4, can provide us with
an explicit form of the spectral problem for (6.9). Since system (1.1) constitutes a special case of
system (6.1), it is evident that our approach can be applied to systems which describe much more
diverse types of surfaces. This task will be undertaken in future work.
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