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Abstract

In this paper, we study a generalized Camassa-Holm (gCH) model
with both dissipation and dispersion,which has (N + 1)-order non-
linearities and includes the following three integrable equations: the
Camassa-Holm, the Degasperis-Procesi, and the Novikov equations, as
its reductions. We first present the local well-posedness and a pre-
cise blow-up scenario of the Cauchy problem for the gCH equation.
Then we provide several sufficient conditions that guarantee the global
existence of the strong solutions to the gCH equation. Finally, we in-
vestigate the propagation speed for the gCH equation when the initial
data is compactly supported.

2000 Mathematics Subject Classification: 35G25, 35L05

Keywords: generalized Camassa-Holm (gCH) model, Local well-
posedness, Blow-up, Global solution, Propagation speed.

1 Introduction

Recently, Himonas and Holliman [25] studied the following generalized Camassa-
Holm equation

ut − utxx − uNuxxx − βuN−1uxuxx + (β + 1)uNux = 0 (1.1)

where N ∈ N, β ∈ R, and proved the local well-posedness and the nonuni-
form dependence of its Cauchy problem in Sobolev spaces Hs with s > 3

2 .

∗e-mail: huqiaoyi@scau.edu.cn
†e-mail: zhijun.qiao@utrgv.edu

1

http://arxiv.org/abs/1511.03325v1


Zhou and Mu studied the persistence properties of strong solutions and the
existence of its weak solutions to Eq. (1.1) [53]. Himonas and Thompson [29]
also showed the persistence properties and unique continuation of Eq. (1.1).
Eq. (1.1) is an evolution equation with (N + 1)−order nonlinearities and
includes three remarkable integrable equations: the Camassa-Holm (CH)
equation, the Degasperi-Procesi (DP) equation, and the Novikov equation
(NE).

As N = 1 and β = 2, Eq.(1.1) reads as the well-known Camassa-
Holm equation, which models the unidirectional propagation of shallow
water waves over a flat bottom, and is completely integrable with a bi-
Hamiltonian structure [2, 23]. The remarkable feature of the CH equation
is its peaked soliton (peakon) solution in the form of u(t, x) = ce−|x−ct|,
where c is a wave speed [2]. The Cauchy problem of the CH equation has
extensively been studied. For instance, its local well-posedness problem for
initial data u0 ∈ Hs with s > 3

2 was studied in [6, 12, 33, 43]. More in-
terestingly, the CH equation has not only global strong solutions modelling
permanent waves [8, 12] but also blow-up solutions modelling wave breaking
[7, 11, 12, 13, 33, 43]. On the other hand, the CH equation has globally weak
solutions with initial data u0 ∈ H1 [1, 15, 50] as well as the algebro-geometric
solution [40].

As N = 1 and β = 3, Eq. (1.1) is cast to the Degasperi-Procesi (DP)
equation [16]. The DP equation is another integrable peakon model with
quadratic nonlinearity, but with 3 × 3 Lax pairs [17]. The well-posedness,
global existence, and blow-up phenomena of DP equation may be seen in
[4, 20, 21, 26, 27, 34, 51, 52], and the DP equation may also be generalized
to an entire integrable hierarchy including both positive and negative flows
[41].

As N = 2 and β = 3, Eq. (1.1) is reduced to the Novikov equation
(NE) [36], which is also integrable with 3×3 Lax pairs and with the peakon
solution u(t, x) =

√
ce−|x−ct| as well [30]. In [36], some integrable equations

with cubic nonlinearities were produced including the NE and the cubic CH
or FORQ equation [22, 38, 42]. The local well-posedness of the NE’s Cauchy
problem on both the line and the circle, and its global solution existence and
global weak solutions were investigated in [28, 45, 48, 49].

In this paper, we study the Cauchy problem of the generalized Camassa-
Holm equation (1.1) with both arbitrary dissipation and dispersion















ut − utxx − uNuxxx − βuN−1uxuxx + (β + 1)uNux
+k(1− ∂2

x)ux + λ(1− ∂2
x)u = 0,

t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

(1.2)
where supp u0 ⊂ [a, b] is a compactly supported initial data, k ∈ R is an
arbitrary dispersion coefficient, and λ > 0 is a dissipative parameter. A
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physical motivation of studying dissipative equations is to include energy
dissipation mechanisms in the real world, which indeed occurs in our daily
life. In the literature there were many articles dealing with nonlinear models
with dissipation. Ott and Sudan [39] investigated how the KdV equation
was modified by the presence of dissipation and what the effect of such a
dissipation was on soliton solutions of the KdV equation. Ghidaglia [24]
studied the long time behavior of solutions to the weakly dissipative KdV
equation as a finite dimensional dynamical system. Wu and Yin discussed
the blow-up, and blow-up rate and decay of solutions to the weakly dissi-
pative periodic CH equation (i.e. Eq.(1.2) with N = 1, β = 2, k = 0) [46].
Thereafter, they also investigated the blow-up and decay of solutions to the
weakly dissipative DP equation (i.e. Eq.(1.2) with N = 1, β = 3, k = 0)
on the line [47]. Hu and Yin discussed the blow-up and blow-up rate of
solutions to a weakly dissipative periodic rod equation [18]. Later, Hu stud-
ied the global existence and blow-up phenomena for a weakly dissipative
periodic 2-component Camassa-Holm system [19]. In 2014, Zhou, Mu and
Wang [54] considered the weakly dissipative gCH equation (i.e. Eq.(1.2)
with k = 0). However, the work done above was only involved in dissipative
terms. Recently, Novruzov and Hagverdiyev [37] analyzed the behavior of
solutions to the dissipative CH equation with arbitrary dispersion coefficient
(i.e. Eq.(1.2) with N = 1, β = 2).

In this paper, we discuss the local well-posedness, the global existence,
and the propagation speed of strong solutions to Eq. (1.2). Our study
indicates that in comparison between Eq (1.1) (k = λ = 0) and Eq. (1.2)
(k, λ 6= 0), some behaviors of solutions to the gCH equation (1.2) with
dissipation and dispersion are similar to the ones of Eq. (1.1), such as, the
local well-posedness and the blow-up scenario. However, the dissipative term
λ(u−uxx) and the dispersive term k(ux−uxxx) in Eq. (1.2) do have impacts
on the global existence and the propagation speed of its solutions, which are
shown below in Theorem 3.1 and Theorem 4.1, respectively. In particular,
the propagation speed is seriously affected by both the dissipative parameter
λ and the dispersion coefficient k. On the other hand, it is worthy to note
that the main difficulty in establishing the above results lies in controlling
certain norms of (N+1)-order nonlinearities. In addition, some of our results
cover the earlier corresponding results studied in [29, 37].

The paper is organized as follows. In the second section we give some
preliminary results including the local well-posedness of Eq.(1.2), the pre-
cise blowup scenario and some useful lemmas to study the global existence
and the propagation speed. In the third section we provide several global
existence results, which reveal that Eq.(1.2) has global solutions modelling
permanent waves. In the fourth section we study the propagation speed of
strong solutions to Eq.(1.2) under the condition that the initial data has
compact support.
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Notation. Throughout the paper, ∗ is referred to the convolution. The norm
in the Lebesgue space Lp(R) is denoted by ‖·‖Lp , while ‖·‖Hs , s ∈ R, stands
for the norm in the classical Sobolev spaces Hs(R), where 1 ≤ p ≤ ∞.

2 Preliminaries

In this section, we display some necessary results in order to reach our
goal. Let us first present the local well-posedness for the Cauchy problem
of Eq.(1.2) in Hs(R), s > 3

2 . Hence, we rewrite Eq.(1.2) in the form of a
quasi-linear evolution equation of hyperbolic type. Letting y := u − uxx
yields







yt + yx(u
N + k) + β

N
y(uN )x + λy = 0,

t > 0, x ∈ R,

y(0, x) = u0(x)− ∂2
xu0(x), x ∈ R.

(2.1)

Note that G(x) := 1
2e

−|x| is the kernel of (1−∂2
x)

−1. Then (1−∂2
x)

−1f = G∗f
for all f ∈ L2(R) and G ∗ y = u. Therefore, Eq.(2.1) can be reformulated in
the following form:







ut + (uN + k)ux + ∂xG ∗ h+G ∗ g = 0,
t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

(2.2)

or an equivalent form:

{

ut + (uN + k)ux = −∂x(1− ∂2
x)

−1h− (1− ∂2
x)

−1g, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

(2.3)
where

h :=
β

N + 1
uN+1 +

3N − β

2
uN−1u2x − λux,

and

g :=
(N − 1)(β −N)

2
uN−2u3x + λu.

Note that, the local well-posedness of the Cauchy problem for Eq. (1.2)
(or Eq.(2.3)) in Hs(R), s > 3

2 with λ = k = 0 can be obtained by Kato’s
semigroup theorem [31] (see, for example, [53]), or by applying the contraction-
mapping principle (see, [25]).

Theorem 2.1. Given u0 ∈ Hs(R), s > 3
2 , there exists a maximal T > 0,

and a unique solution u to Eq.(1.2) (or Eq.(2.3)) such that

u = u(., u0) ∈ C([0, T );Hs(R)) ∩C1([0, T );Hs−1(R)).

Moreover, the solution depends continuously on the initial data, i.e. the
mapping u0 → u(., u0) : H

s(R) → C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is

4



continuous. Furthermore, T may be chosen independent of s in the following
sense. If u ∈ C([0, T );Hs(R))∩C1([0, T );Hs−1(R)) is a solution to Eq.(1.2),

and if u0 ∈ Hs
′

(R) for some s
′ 6= s, s

′
> 3

2 , then

u ∈ C([0, T );Hs
′

(R)) ∩ C1([0, T );Hs−1(R)).

In particular, if u0 ∈ C∞(R) =
⋂

s≥0
Hs(R), then u ∈ C([0, T );C∞(R)).

Next, we address the global existence of Eq. (1.2). To see this, let us
recall the following useful lemmas.

Lemma 2.1. [32] If r > 0, then Hr ∩ L∞ is an algebra. Moreover

‖fg‖Hr ≤ c(‖f‖L∞‖g‖Hr + ‖f‖Hr‖g‖L∞),

where c is a constant depending only on r.

Lemma 2.2. [32] If r > 0, then

‖[Λr, f ]g‖L2 ≤ c(‖fx‖L∞‖Λr−1g‖L2 + ‖Λrf‖L2‖g‖L∞),

where c is a constant depending only on r.

Lemma 2.3. [15] Let g ∈ Cm+2(R) and g(0) = 0. Then for every 1
2 < r ≤

m, we have
‖g(u)‖r ≤ g̃(‖u‖L∞)‖u‖r, u ∈ Hr.

where g̃ is a monotone increasing function depending only on the g and r.

Lemma 2.4. [32] Let f ∈ Hs, s > 3
2 . Then

‖Λ−r[Λr+t+1,Mf ]Λ
−t‖L2 ≤ c‖f‖Hs , |r|, |t| ≤ s− 1,

where Mf is the operator of multiplication by f and c is a positive constant
depending only on r, t.

Lemma 2.5. [31] Let r,t be real numbers such that −r < t ≤ r. Then

‖fg‖Ht ≤ c‖f‖Hr‖g‖Ht , if r >
1

2
,

‖fg‖
H

t+r−1
2
≤ c‖f‖Hr‖g‖Ht , if r <

1

2
,

where c is a positive constant depending on r, t.

Let us now give the global existence result.
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Theorem 2.2. Let u0 ∈ Hs, s > 3
2 , and let T be the maximal existence

time of the solution u to Eq.(1.2)(or Eq. (2.3)) with the initial data u0. If
there exists M > 0 such that

‖u(t, ·)‖L∞ + ‖ux(t, ·)‖L∞ ≤ M, t ∈ [0, T ),

then the Hs− norm of the solution u does not blow up in finite time.

Proof. Let u be the solution to Eq. (2.3) with the initial data u0 ∈ Hs, s > 3
2 ,

and let T be the maximal existence time of the corresponding solution u,
which is guaranteed by Theorem 2.1.

Applying the operator Λs to Eq. (2.3), multiplying by Λsu, and inte-
grating over R, we obtain

d

dt
‖u‖2s = −2((uN + k)ux, u)s + 2(u, f11)s + 2(u, f12)s

:= I + II + III,

where
f11 = −Λ−2g, f12 = −∂xΛ

−2h.

Let us estimate I, II and III. Noting (Λsux,Λ
su)L2 = 0, we have

|I| = | − 2((uN + k)ux, u)s| = 2|(Λs(uNux),Λ
su)L2 |

= 2|([Λs, uN ]∂xu,Λ
su)L2 + (uNΛs∂xu,Λ

su)L2 |
≤ 2‖[Λs, uN ]∂xu‖L2‖Λsu‖L2 + |((uN )xΛ

su,Λsu)L2 |
≤ c(‖(uN )x‖L∞‖‖Λs−1ux‖L2 + ‖ΛsuN‖L2‖ux‖L∞)‖Λsu‖L2

+ ‖(uN )x‖L∞ |(Λsu,Λsu)L2 |
≤ c(‖NuN−1ux‖L∞‖u‖Hs + g̃1(‖u‖L∞)‖u‖Hs‖ux‖L∞)‖u‖Hs + ‖(uN )x‖L∞ |‖u‖2Hs

≤ c(2NMN +Mg̃1(M))‖u‖2Hs := C‖u‖2Hs ,

where we use Lemma 2.2 with r = s, f = uN , g = ux when estimating
‖[Λs, uN ]∂xu‖L2 and Lemma 2.3 with r = s, g1(u) = uN when estimating
‖ΛsuN‖L2 .

Obviously, when N = 1, |II| is easy to get. When N = 2, we refer to
the proof of Theorem 3.1 in [48]. Without loss of generality, we assume that
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N ≥ 3.

|II| = |2(f11(u), u)s| = 2|(Λs−2(
(N − 1)(β −N)

2
uN−2u3x + λu),Λsu)L2 |

≤ 2|([Λs−1(
(N − 1)(β −N)

2
uN−2u3x + λu),Λs−1u)L2 |

≤ c(|([Λs−1, uN−2]u3x,Λ
s−1u)L2 + (uN−2Λs−1u3x,Λ

s−1u)L2 |+ ‖Λs−1u‖2L2)

≤ c(‖[Λs−1, uN−2]u3x‖L2‖Λs−1u‖L2 + ‖uN−2Λs−1u3x‖L2‖Λs−1u‖L2 + ‖u‖2Hs−1)

≤ c(‖(uN−2)x‖L∞‖u3x‖Hs−1 + ‖u3x‖L∞‖uN−2‖Hs−1)‖u‖Hs−1

+ c(‖uN−2‖L∞‖u3x‖Hs−1‖u‖Hs−1 + ‖u‖2Hs−1)

≤ c[‖(N − 2)uN−3ux‖L∞ g̃2(‖ux‖L∞)‖ux‖Hs−1 + ‖ux‖3L∞‖g̃3(‖u‖L∞)‖u‖Hs−1 ]‖u‖Hs−1

+ c[‖uN−2‖L∞ g̃2(‖ux‖L∞)‖ux‖Hs−1‖u‖Hs−1 + ‖u‖2Hs−1 ]

≤ c((N − 2)MN−2g̃2(M) +M3g̃3(M) +MN−2g̃2(M) + 1)‖u‖2Hs

:= C‖u‖2Hs ,

where we use Lemma 2.2 with r = s− 1, f = uN−2, g = u3x when estimating
‖[Λs−1, uN−2]u3x‖L2 and Lemma 2.3 with r = s−1, g2(ux) = u3x and g3(u) =
uN−2 when estimating ‖u3x‖Hs−1 and ‖uN−2‖Hs−1 .

Note that Hs and Hs−1 are algebraic with s > 3
2 . Hence

|III| = |2(f12(u), u)s| ≤ 2‖f12(u)‖Hs‖u‖Hs

≤ ‖ β

N + 1
uN+1 +

3N − β

2
uN−1u2x − λux‖Hs−1‖u‖Hs

≤ c‖u‖Hs(‖uN+1‖Hs−1 + ‖uN−1u2x‖Hs−1 + ‖ux‖Hs−1)

≤ c‖u‖Hs(g̃4(‖u‖L∞)‖u‖Hs−1 + ‖u2x‖L∞‖uN−1‖Hs + ‖u2x‖Hs−1‖uN−1‖L∞ + ‖u‖Hs)

≤ c‖u‖s[g̃4(‖u‖L∞)‖u‖Hs−1 + ‖u2x‖L∞ g̃5(‖u‖L∞)‖u‖Hs

+ g̃6(‖ux‖L∞)‖ux‖Hs−1‖uN−1‖L∞ + ‖u‖Hs ]

≤ c(g̃4(M) +M2g̃5(M) +MN−1g̃6(M))‖u‖2Hs

:= C‖u‖2Hs ,

where we use Lemma 2.1 with r = s − 1 when estimating ‖uN−1u2x‖s−1

and Lemma 2.3 with r = s − 1, g4 = uN+1, g5 = uN−1, g6(ux) = u2x, when
estimating ‖uN+1‖Hs−1 , ‖uN−1‖Hs−1 and ‖u2x‖Hs−1 .

Therefore

d

dt
‖u‖2Hs ≤ C‖u‖2Hs .

Application of the Gronwall’s inequality and assumption of the theorem lead
to

‖u‖2Hs ≤ exp(Ct)‖u0‖2Hs ,

which completes the proof of the theorem.
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Now, we come to present the precise blow-up scenario.

Theorem 2.3. If u0 ∈ Hs(R), s > 3
2 , then the solution u = u(., u0) of

Eq.(1.2) blows up in the finite time T < +∞ if and only if

lim sup
t↑T

‖ux(t, ·)‖L∞ = +∞ or lim sup
t↑T

‖u(t, ·)‖L∞ = +∞.

Proof. Assume u0 ∈ Hs for some s ∈ N, s ≥ 2. Multiplying both sides of
Eq.(2.1) by y and using integration by parts with respect to x, we obtain

∫

R

2yyt = −2

∫

R

yxu
Nydx− 2β

N

∫

R

y2(uN )xdx− 2k

∫

R

yyxdx− 2λ

∫

R

y2dx

= (1− 2β

N
)

∫

R

y2(uN )xdx− 2λ

∫

R

y2dx

= (1− 2β

N
)

∫

R

y2NuN−1uxdx− 2λ

∫

R

y2dx (2.4)

which implies the following result: if ‖u‖L∞ and ‖ux‖L∞ are bounded on
[0, T ), i.e. there exists a positive constant M such that ‖u‖L∞ , ‖ux‖L∞ ≤
M , then we have

d

dt

∫

R

y2dx ≤ c(MN + 1)

∫

R

y2dx.

Substituting y = u− uxx into the above inequality, noticing

‖u‖2H2 ≤ ‖y‖2L2 ≤ 2‖u‖2H2 ,

and using the Gronwall’s inequality, we arrive at

‖u‖2H2 ≤
∫

R

y2dx ≤ ec(M
N+1)T

∫

R

y20dx

≤ 2ec(M
N+1)T ‖u0‖2H2 ,

which implies that the H2-norm of the solution to Eq.(2.1) does not blow up
in a finite time. By the Sobolev’s embedding theorem, Theorem 2.2 ensures
that ‖u‖Hs does not blow up in a finite time.

On the other hand, by Sobolev’s imbedding theorem, if

lim sup
t↑T

{sup
x∈R

‖ux(t, ·)‖L∞} = +∞ or lim sup
t↑T

{sup
x∈R

‖u(t, ·)‖L∞} = +∞,

then the solution will blow up in a finite time.
Applying Theorem 2.2 and a simple density argument, one may know

that Theorem 2.3 holds for all s > 3
2 .

Remark 2.1. Theorem 2.3 covers Lemma 5.1 in [29].
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Let us now give the following key lemmas which will be used later on in
some theorems.

Lemma 2.6. Let u0 ∈ H1(R), and β = N + 1, then as long as the solution
u(t) given by Theorem 2.1 exists for any t ∈ [0, T ), we have

‖u‖2H1 = e−2λt‖u0‖2H1 .

Proof. Multiplying both side of Eq.(2.1) by u and integrating by parts, we
obtain
∫

R

uytdx+

∫

R

uuNyxdx+k

∫

R

uyxdx+
N + 1

N

∫

R

u(uN )xydx+

∫

R

λyudx = 0.

Noticing
∫

R

uN+1yxdx+

∫

R

N + 1

N

∫

R

u(uN )xydx = 0 and k

∫

R

uyxdx = 0,

we have
1

2

d

dt

∫

R

(u2 + u2x)dx+ λ

∫

R

(u2 + u2x)dx = 0,

namely,
d

dt
‖u‖2H1 + 2λ‖u‖2H1 = 0,

which implies the desired result in the lemma.

So, given initial data u0 ∈ Hs(R), s ≥ 2, Theorem 2.1 ensures the
existence and uniqueness of strong solutions to Eq.(1.2). Let us consider
the following initial value problem:

{

qt(t, x) = uN (t, q(t, x)) + k, t ∈ [0, T ), x ∈ R,

q(0, x) = x, x ∈ R,
(2.5)

where u denotes the solution to Eq.(1.2) with the initial data u0. Because
u(t, .) ∈ H2(S) ⊂ Cm(S) with 0 ≤ m ≤ 3

2 , u ∈ C1([0, T ) × R,R). Applying
classical results in the theory of ordinary differential equations may yield the
following lemma, which is a key in the proof of global existence of solutions
to Eq.(1.2) in Theorem 2.1.

Lemma 2.7. [35] Let u0 ∈ Hs(R), s ≥ 2, and let T > 0 be the maxi-
mal existence time of the solution u to Eq.(1.2) under the initial data u0.
Then Eq.(2.5) has a unique solution q ∈ C1([0, T ) × R,R). Moreover, the
map q(t, ·) is an increasing diffeomorphism of R with the following positive
derivative with respect to x:

qx(t, x) = exp

(
∫ t

0
(NuN−1ux)(s, q(s, x))ds

)

> 0, (t, x) ∈ [0, T ) ×R.
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Proof. Differentiating Eq. (2.5) with respect to x, we have

{

d
dt
qx(t, x) = NuN−1(t, q(t, x))qx(t, x), t ∈ [0, T ), x ∈ R,

qx(0, x) = 1, x ∈ R,

Solving the above equation leads to the desired result in the lemma.

Lemma 2.8. Let u0 ∈ Hs(R), s ≥ 2, and let T > 0 be the maximal existence
time of the solution u to Eq.(1.2) corresponding to the initial data u0. Then
we have

y(t, q(t, x))q
β

N
x (t, x) = y0(x)e

−λt, (t, x) ∈ [0, T )× R, (2.6)

which implies
e−λt‖y0‖

L
N
β (R)

= ‖y‖
L

N
β (R)

. (2.7)

In particular, if N = 2β, we have

e−λt‖y0‖L2(R) = ‖y‖L2(R). (2.8)

Proof. By Eq. (2.1), a direct calculation gives

d

dt
[y(t, q(t, x))q

β

N
x ] = (yt + yxqt)q

β

N
x +

β

N
yq

β

N
−1

x qtx

= [yt + yx(u
N + k)]q

β

N
x +

β

N
yq

β

N
−1

x (uN )xqx

= (yt + yxu
N + kyx +

β

N
y(uN )x)q

β

N
x = −λyq

β

N
x .

Solving for y from the above equation, we obtain

y(t, q(t, x))q
β

N
x (t, x) = y0(x)e

−λt,

which exactly yields Eq. (2.7):

e−λt‖y0‖
N
β

L
N
β

= ‖y(t, q(t, ·))q
β

N
x (t, ·)‖

N
β

L
N
β

=

∫

R

|y(t, q(t, x))|
N
β qx(t, x)dx

=

∫

R

|y(t, z)|
N
β dz (by setting q(t, x) = z).

Apparently, letting N = 2β leads to Eq. (2.8).
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3 Global existence

In this section, we provide two global existence results for strong solutions
to Eq. (1.2).

Theorem 3.1. Assume u0 ∈ Hs(R), s ≥ 3, and y0 = u0 − u0,xx satisfies

y0(x) 6= 0 a.e. x ∈ R and ‖y0‖L2 ≤ ( 2N+1λ
|N−2β|)

1

N , where β 6= N
2 . Then the

solution u(t, x) to Eq. (1.2) globally exists.

Proof. Multiplying both sides of Eq. (2.4) by e2λt yields

d

dt
(e2λt

∫

R

y2dx) = (1− 2β

N
)e2λt

∫

R

y2NuN−1uxdx.

Employing G = 1
2e

−|x|, G ∗ y = u, and Gx ∗ y = ux, and using the Young’s
inequality, we have

‖u‖L∞ ≤ ‖G‖L2‖y‖L2 =
1

2
‖y‖L2 , (3.1)

and

‖ux‖L∞ ≤ ‖Gx‖L2‖y‖L2 =
1

2
‖y‖L2 , (3.2)

which implies

d

dt
(e2λt

∫

R

y2dx) ≤ |N − 2β|e2λt(1
2
‖y‖L2)N

∫

R

y2dx.

Thus, we obtain

d

dt
(e2λt

∫

R

y2dx) ≤ |N − 2β|e2λt(1
2
‖y‖L2)N‖y‖2L2

=
|N − 2β|

2N
e−Nλt(e2λt

∫

R

y2dx)
N+2

2 . (3.3)

Let f(t) := e2λt
∫

R
y2dx. We claim that if y0(x) 6= 0 a.e. x ∈ R, then

f(t) > 0 for all t ∈ [0, T ). Apparently from Eq. (2.6), if y0(x) 6= 0 a.e.
x ∈ R, then y(t, q(t, x)) 6= 0 a.e. x ∈ R. Therefore, we have

∫

R

y2(t, z)dz =

∫

R

y2(t, q(t, x))qx(t, x)dx > 0,

which implies f(t) > 0. Solving (3.3) for f(t) leads to

d

dt
(f(t)−

N
2 ) ≥ −N

2

|N − 2β|
2N

e−Nλt,
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which can be integrated with respect to t to give

f(t)−
N
2 − f(0)−

N
2 ≥ −N

2

|N − 2β|
2N

∫ t

0
e−Nλsds

=
N |N − 2β|

2N+1

e−Nλt − 1

Nλ
,

that is,

f(t)−
N
2 ≥ f(0)−

N
2 − |N − 2β|

2N+1λ
.

Due to β 6= N
2 and y0(x) 6= 0 a.e. x ∈ R, therefore if f(0)−

N
2 − |N−2β|

2N+1λ
> 0,

then we have ‖y0‖L2 ≤ ( 2N+1λ
|N−2β|)

1

N and

[f(0)−
N
2 − |N − 2β|

2N+1λ
]−1 ≥ f(t)

N
2 ,

i.e.

[(

∫

R

y20dx)
−N

2 − |N − 2β|
2N+1λ

]−1 ≥
(

e2λt
∫

R

y2dx

)
N
2

.

Therefore, we obtain

‖y‖NL2 ≤ (e−Nλt)[‖y0‖−N
L2 − |N − 2β|

2N+1λ
]−1. (3.4)

By (3.1), (3.2) and (3.4) one may readily see that u and ux are bounded:

‖u‖L∞ , ‖ux‖L∞ ≤ 1

2
‖y‖L2 ≤ 1

2
(e−λt)[‖y0‖−N

L2 − |N − 2β|
2N+1λ

]−
1

N ,

which guarantee the global existence of the solution u(t, x) to Eq. (1.2).

Remark 3.1. Theorem 3.1 includes the result of Theorem 1 in [37], since
the CH equation is a special case of Eq. (1.1) with N = 1 and β = 2.

Remark 3.2. Theorem 3.1 shows that the dispersion term kyx does not
affect the global existence of strong solution to Eq. (1.2), but the dissipation
term λy does.

Let us now discuss the special case either β = N
2 or β = N + 1. To do

so, we shall use a family of diffeomorphisms on a line to study the global
existence of strong solutions to Eq.(1.2).

Theorem 3.2. Assume u0 ∈ Hs(R), s ≥ 3, is a given initial data such that
the associated potential y0 = u0 − u0,xx does not change sign. Then when
β = N +1 or β = N

2 the corresponding solution u(t, x) to Eq. (1.2) globally
exists.
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Proof. Without loss of generality, let us assume y0 ≥ 0. Lemma 2.8 tells us
that y(t, x) ≥ 0 for x ∈ R, t ≥ 0 . Since u = G ∗ y and G ≥ 0, one may
immediately see u(t, x) ≥ 0 for all time t ≥ 0. Obviously with the aid of
u = 1

2e
−|x| ∗ y, we may express u and ux as follows:

u(t, x) =
e−x

2

∫ x

−∞
ezy(t, z)dz +

ex

2

∫ ∞

x

e−zy(t, z)dz, (3.5)

ux(t, x) = −e−x

2

∫ x

−∞
ezy(t, z)dz +

ex

2

∫ ∞

x

e−zy(t, z)dz. (3.6)

Therefore, we have

u(t, x) + ux(t, x) = ex
∫ ∞

x

ezy(t, z)dz ≥ 0,

u(t, x)− ux(t, x) = e−x

∫ x

−∞
ezy(t, z)dz ≥ 0.

i.e. |ux| ≤ u.
When β = N + 1, Lemma 2.6 yields the following inequalities

|ux| ≤ u ≤ ‖u‖L∞ ≤ 1√
2
‖u‖H1 ≤ 1√

2
‖u0‖H1 . (3.7)

When N = 2β, Eq. (2.8) leads to

|ux| ≤ u ≤ ‖u‖L∞ ≤ 1√
2
‖u‖H1 ≤ 1√

2
‖u‖H2 ≤ 1√

2
‖y‖L2 ≤ 1√

2
‖y0‖L2 ,

(3.8)
where we used the following relations

‖u‖2H2 ≤ ‖y‖2L2 =

∫

R

(u− uxx)
2dx =

∫

R

(u2 − 2uuxx + u2xx)dx

=

∫

R

(u2 + 2u2x + u2xx)dx ≤ 2‖u‖2H2 .

So, (3.8) and (3.9) combining with Theorem 2.3 complete the proof.

Remark 3.3. Theorem 3.2 covers Theorem 1.4 in [29].

Remark 3.4. Comparing Theorem 3.1 with Theorem 3.2, we see a very
interesting physical phenomenon. In the case of β 6= N

2 , the size of the
initial potential y0 in L2 space impacts the lifespan, namely, the small initial
potential guarantees the global existence. However, in the case of β = N +1
or β = N

2 , neither the smoothness nor the size of the initial data affects the
lifespan, but the sign of the initial potential y0 does.
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4 Propagation speed

In this section, we shall investigate impact of the dispersion coefficient k

and the dissipative parameter λ on the propagation speed of solutions to
Eq. (1.2).

Theorem 4.1. Assume that for some T > 0 and s ≥ 3, u ∈ C([0, T ];Hs(R))
is a strong solution of the initial value problem associated with Eq. (1.2). If
the initial data u0(x) is compactly supported on [a, b], and if either β = N ,
where N is a positive odd number or N = 1, 0 ≤ β ≤ 3, then for any t ∈
[0, T ], we have u(t, x) = 1

2E+(t)e
−x, for x ≥ q(t, b), and u(x, t) = 1

2E−(t)e
x,

for x ≤ q(t, a), where E+(t) and E−(t) stand for continuous non-vanishing
functions with E+(t) > 0 and E−(t) < 0 for t ∈ [0, T ].

Proof. If u0 is initially compact-supported on the closed interval [a, b], then
so is y0. It follows from Lemma 2.8 that y(t, ·) is compactly supported within
the interval [q(t, a), q(t, b)].

Let us define the following two functions

E+(t) =

∫ q(t,b)

q(t,a)
ezy(t, z)dz, E−(t) =

∫ q(t,b)

q(t,a)
e−zy(t, z)dz. (4.1)

Then by (3.5)-(3.7) we have

u(t, x) =
e−x

2
E+(t), x > q(t, b),

u(t, x) =
ex

2
E−(t), x < q(t, a), (4.2)

which generate the following derivative formulas

e−x

2
E+(t) = u(t, x) = −ux(t, x) = uxx(t, x), x > q(t, b),

ex

2
E−(t) = u(t, x) = ux(t, x) = uxx(t, x), x < q(t, a).

Since u(0, ·) is compactly supported on the interval [a, b], this immediately
gives us E+(0) = E−(0) = 0.

Noticing that y(t, ·) is compactly supported on the interval [q(t, a), q(t, b)],
for each fixed t we have

dE+(t)

dt
=

∫ q(t,b)

q(t,a)
ezyt(t, z)dz =

∫ ∞

−∞
ezyt(t, z)dz, (4.3)
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which yields

dE+(t)

dt
=

∫ q(t,b)

q(t,a)
ezyt(t, z)dz

=

∫ ∞

−∞
ezyt(t, z)dz

= −
∫ ∞

−∞
(−yxu

N − β

N
y(uN )x − kyx − λy)ezdz

=
β

N + 1

∫ ∞

−∞
ezuN+1dz +

3N − β

2

∫ ∞

−∞
ezuN−1u2zdz

+
(N − β)(N − 1)

2

∫ ∞

−∞
ezuN−2u3zdz − (λ− k)

∫ ∞

−∞
ezydz.

Let

F :=
β

N + 1

∫ ∞

−∞
ezuN+1dz +

3N − β

2

∫ ∞

−∞
ezuN−1u2zdz

+
(N − β)(N − 1)

2

∫ ∞

−∞
ezuN−2u3zdz.

If either β = N (N is a positive odd number) or N = 1, 0 ≤ β ≤ 3, then

d

dt
E+(t) + (λ− k)E(t) = F ≥ 0,

which implies
d

dt
(e(λ−k)tE+(t)) ≥ 0,

that is
e(λ−k)tE+(t) ≥ 0.

Therefore, E+(t) ≥ 0.
Adopting the similar procedure for E−(t) as above, we can arrive at

dE−(t)

dt
=

∫ q(t,b)

q(t,a)
e−zyt(t, z)dz = −F + (−λ− k)

∫ ∞

−∞
e−zydz.

So, E−(t) ≤ 0. This completes the proof of Theorem 4.1.

Remark 4.1. From the proof of Theorem 4.1, we see that there are signifi-
cant differences between the cases k, λ 6= 0 and k, λ = 0. More precisely, the
first order derivatives of the functions E+(t) and E−(t) in the case k, λ 6= 0,
in general, can change their signs. While Theorem 4.1 in [29] with k = λ = 0
showed that E+(t) and E−(t) are strictly decreasing for t ∈ [0, T ).
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