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Abstract 

 

This paper will discuss about solving the modified-KdV equation numerically. Modified-KdV 

equation or mKdV equation is a KdV-type equation which has an exact dispersion relation. A well-known 

pseudo-spectral methods is chosen because the implementation can easily deal with the exact dispersion 

relation. The exact dispersion  described by a non-polynomial pseudo-differential operator that can easily 

be dealt with in spectral space. An appropriate scheme is designed to predict wave evolutions using 

influxing technique. By using the Duhamel's principle, a homogeneous boundary value problem 

transformed into inhomogeneous problem.. We also compare the measurements from experiments and 

mKdV simulation result. The result show that the wave profile of mKdV equation has the same pattern 

with the measurement data.  

Keywords :mKdV equation, dispersive waves, pseudo-spectral methods. 

 

1. Introduction 
Korteweg de Vries equation (KdV equation) is derived in 1985 as an equation 

which described travelling waves phenomenon [1]. This equation described a mass of 

water that travelling along a channel apparently without change of form or diminution 

of speed. In 1993, the mKdV equation, a new KdV-type equation is derived [1]. This 

equation is exact up to and including quadratic nonlinear terms and has exact dispersive 

properties. mKdV equation has been applied to study surface waveevolutions in 

[2].mKdV equation is derived from Boussinesq-type equation by using 

unidirectionalisation process.  

We consider a fluid with condition irrotational flow, inviscidand incompressible 

that propagate in the  ,x   x y  directionover a finite depth 0h . We denote thewave 

elevation by  ,  x t and the fluid potential by  , ,Φ x  z  t with  , ,x  z   t  the fluid 

potential at the surface.In [4], the dynamic equations canbe derived from variations of 

the action principle,  , 0A       , 

 ( , ) ( , )tA dx H dt    
 

  
 
     (1.1) 

The variation of  ,A   in equation (1.1)with respect to   and   is given by 

( , )t H      

( , )t H       

According to [5], the Hamiltonian ( , )H    is the total energy which expressed in 

  and . The total energy of the systems is the sum of the potential energy and kinetic 

energy. The potential energy is calculated with respect to the undisturbed water level,  

   21
,   ,

2
H g dx K     

 
where 
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21

  ,
2

D

K dxdz   
 

We can write the dynamic equation as a Hamiltonian systems (see [2]) : 

0 1
.

1 0
t

H

H









     
      
    

 

Since the kinetic energy cannot expressed explisitly, in [2, 5], the kinetic energy is 

approximated. By using unidirectionalisation process as in [2] we get 

  23
Ω 0

4
t x xi i         (1.2) 

where 

tanh
Ω̂( )

kh
k ghk

kh
       (1.3)

 
In equations(1.2),   is pseudodifferentialoperator. According to [5], the 

pseudodifferential operator are a generalization of differential operators which acting 

upon a function as the inverse Fourier transform of a polynomial in the Fourier variable 

times the Fourier transform of the function. The pseudodifferential operator can be 

approximated by expanding Ω̂( )k  as in equations (1.3) using Taylor series in Fourier 

space and apply the invers Fourier transform into it. 

Since the analytical solution of mKdV equation is difficult to obtained (see [2]), so 

the solution of mKdV equation will be approximated numerically. The main concern of 

this paper is to develop a spectral approximation of the mKdV equation. By using 

pseudospectral methods, the solution of mKdV equation can be done easily since the 

pseudodifferential operator can be dealt with in spectral space (see [6]). This spectral 

approximation is implemented in Matlab, and will be compared with experimental data.  

 

2. Mathematical Interpretation of Given Signals 
In this paper, we will compare the solution of mKdV equations with measurement 

from the experiment, so that we have to embedded a source function to mKdV 

equations(see [5]). By using influxing technique as in [5] the source function is choosen 

which has a dispersive property as the following 

  ( ,, ). ( )xS tt sx   

where 

ˆ( ) ( ) ikxx x e dk    
and ( )s t is a given signal. The dispersive properties is given by 

ˆ( ) ( ) .
d

x V k
dk




 
 

The condition of the source function  are the following equations 

  2

(0, ) ( )

( ,0) 0

(

3
Ω

4

, )

0

0

flap

t x x

t s t

x

beac

i

h t

i 
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At 0x   position, the wave generator gives a signal (say ( )flaps t ). At the time 

0t  is the still water condition. At the end of the tank (wave tank in hydrodynamics 

laboratory) there is a beach or absorber. By using Duhamel’s principle, mKdV equation 

became 

  23
Ω

4
( , )xt x s x ti i       

   
(2.1) 

where  ,S x t isthe source function. Equations (2.1) ismKdV equation with given signal. 

In this paper, the source functionbichromatics signal. 

 

3. Spectral Implementation 

Consider  ,N x t is the of mKdV equation as in equations (2.1) 

 
2

2

ˆ, .

N

ikx

N
Nk

kx t e 


 
   

(3.1)

 

In equations(3.1), ˆ
k is afunction of t . Now, to improve the calculation the mKdV 

equation as in (2.1) can be written as 

 
3

Ω ( ).
2

xi i s t
t x
   

 
    

    
(3.2)

 

Inserting Nu  into the mKdV equations as inequations (3.2) gives 

 
2 2 2 2

2 2 2 2

3
ˆ ˆ ˆ ˆΩ ( ).

2

N N N N

ikx ikx ikx iux

x
N N N Nk k k

k k

u

k ue i i e e e s t
t x

   
   

        
           
        
       
    (3.3) 

Meanwhile, from the properties of pseudodifferential operator as in [2] we obtain 

   Ω Ωikx ikx

xi e k e    

Using the properties of pseudodifferentialoperator we obtain  

 
2 2 2 2

2 2 2 2

3
ˆ ˆ ˆ ˆΩ ( ).

2

N

k k k u

N N N

ikx ikx ikx iux

N N N Nk k k u

e i k e e e s t
t x

   
   

        
         
        
       
    (3.4) 

And finally on obtains 

   
2

2

2

ˆ 3
ˆ ˆ ˆ ˆΩ ( ).

2

N

u
Nk

m u k
Nk

ki iu s tk
t


  



 




  




  

(3.5) 

The coefficient ˆ
k canbe found by solving equations (3.5). In equations (3.15), there is a 

nonlinear term which gives convolution form in spectral space. According [6], the 

convolution operation makes the computation more expensive. So that we need to 

evaluate the sum of this component by using pseudospectral evaluation. The 

pseudospectral evaluation is done via the following steps (see [5,6]) : 

a) Transform ˆ
k and ˆ

u into physical spaceusing Fast Fourier Transform (FFT)  

   1 1ˆ ˆ    dan   ,      k k u u     F F  
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b) Multiply ˆ
k and ˆ

u  

   1 1ˆ ˆ ,k u k u     F F  

c) Apply the Fourier transform into k u  and we obtain 

      1 1ˆ ˆ .k u k u    F = F F F  

The final results now reads 

      1 1ˆ 3
ˆ ˆ ˆ ˆΩ ( ).

2
k ui k sk i t

t


   

  


F F F
  

(3.6) 

The solution of mKdV equation can be found by applying Fourier transform into the 

solution of equations (3.6).The solution ofequations(3.6) can be done easily using ode45 

in Matlab.  

 

4. Numerical Solution of mKdV Equation 

In this part, the numerical solution of mKdV equation will be shown. Since the 

given signal is a bichromatics wave so that the given signal is the following equation 

   ( )  2 cos( ) cos( )s t a v t v t        

or it can be written as 

( )  4 cos( )cos( )s t a vt t  

By choosing 0.157v  and    (see [12])we obtain 
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Figure 4.1Bichromatics wave signal 
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An appropriate parameter is chosen by considering the condition in towing tank. 

We consider a tank with dimension 5 m deep and appoximatelly 200 m long. The 

following are the evolution of mKdV equation with given parameters 

 

 
 

The following are the result of mKdV equation at the position 10,x  40,x 

60,x   and 80x   
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Figure 4.2 Spatial Evolution of mKdV equation 
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The following we will compare the result mKdV equation with measurement data. 

We do not take the posisition at 0x   because at this position the evolution of mKdV 

equation is being generating. In other words, we can not obtain a correct result at that 

position.  

 

5. Comparison between mKdVsimulation and measurement data  

Figure 5.1 shows the comparisonmKdV simulation and measurement data at a 

certain position.  
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Figure 4.3 Comparison between mKdV simulation (left) and measurement data 

(right). atik 
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From the figure above shows that at the position 10X  the mKdV evolution 

gives the same profile with the measurement data. But at the position 40X  , 60X   

and 80X  does not gives an exact result although the mKdV evolution still gives the 

same profile with the measurements data. 
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6. Conclusion 
According to the result of the simulation of mKdV equation that mKdV equation 

can be solved by using pseudospectral approximation. The approximation of mKdV 

equation starts by approximating the solution as a Fourier series. In this approximation, 

the nonlinear form in mKdV equation gives a convolution sum. The problem with the 

convolution sum is expensive in memory usage. It can be dealt by using pseudospectral 

evaluation. The solution of mKdV equation can be found by using invers Fourier 

transform to the solution of mKdV equation at spectral space.  

The comparison between mKdV simulation and measurement data shows that the 

solution of mKdV equation does not gives an exact height. the same height is shown at 

the position 10X  .The result at the position 40X  , 60X   and 80X  has the same 

profile but differ in height. A further extension of this work could be to approximate the 

numerical solution of KdV-type equation at uneven bottom. 
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