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Abstract

An implicit finite-difference method is developed to solve a Korteweg de Vries (KdV)
equation, by constructing a system of equations that can be solved iteratively, so that the
solution is stable. This method is then applied to a model of interfacial wave, so that we
can study the effect of the physical parameters, such as the ratio of the flnid depths and
of the fluid densities. In case the wave is solitary, the numerical solution can be compared
to the analytical one. This is then used to observe the wave propagation of any incoming
wave, such as a cosines wave,

1 Introduction

The Korteweg de Vries equation is a model of wave propagation in many physical phenomena,
such as surface wave (original equation) derived by Kordeweg and de Vries [1] [1], wave gen-
eration derived by Shen et. al. 2], Wiryanto and Jamhuri [3] and interfacial wave derived by
Segur and Hammack [4]. The equation is well-known deseribing the slow evolution of waves of
small amplitude, that are long in comparizon with the fluid depth.

For interfacial waves, Segur and Hammack [4] derived the KdV equation based on a two-fluid
configuration, a layer of lighter fluid with depth hy and density p overlies a heavier one with
depth iy and densitv py, resting on a horizontal impermeable bed in a constant gravitational
flied. Since the fluids are assumed to be ideal and the flow is irrotational, the problem is to
determine the potential function for each laver. After scaling and using series expansion, they
obtain the KAV equation for the interfacial elevation 5 as
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and g is the gravity aceeleration. The aspect of KAV theory for long interfacial waves have been
discussed by many researchers such as Keulegan [5], Long [6], Peter and Stoker [7], Benjamin [8],
and Bemmey [9].

Kobota et. al. [10] derived the model of interfacial waves for the case in which the fluid
is confined between two rigid walls and background density distribution is continues, which
is different with the derivation in [4], using density discontimes. As the result, Kubota et.
al. obtain the model containing an integral term in the principal-value sense, similar to the
result obtained by Benjamin [11] and Ono [12]. Instead of integral term, Benjamin-Ono equa-
tion contains Hilbert transform. Tuck and Wirvanto [13] derived the Benjamin-Ono equation
in different way, and compare the analyvtical solution of Benjamin-Ono equation with the nn-
merical periodic solution. However, we will consider the numerical solution of (1. Segur and
Hammack [4] presented the analytical solntion, in solitary waves, and made the comparison to
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their <'::~:11L*1'i1f1011t. The numerical procedure of (1) requires initial and boundary conditions, and
thev pay an important role in performing the evolution of the interface waves. A numerical
method is developed in obtaining the stable solution. Following Feng and Mitsui [14] and also
Wiryanto and Achirul [15], an implicit finite difference method is used to construet a system
of equations. We then solve the system of equation bv Gauss-Seidel iteration, as the matrix is
tridiagonal and diagonal dominant. The wave propagation is then performed for some initial
WHVES.

2 Analytical Solution

The analvtical solution of (1) can be obtained firstly by transforming the equation into the
standard KdV equation. We define
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similarly for the other derivatives,

?jl:t = F .f}.

We then substitute those derivatives in (1), and simplify into
fr+6affy+ afon =0, (4)

where "
_ (hy +ha)”
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From (2), the right hand =side of @ is 1, so that (4) is the standard KdV equation, and the
solution is a solitary wave in form of

Flx.7) = 2K sech® [K (v — 4K*T — va)] - (5)

K is constant related to the height erest, and yp is the position of the crest. This analytical
solution (5) is then used to obtain the solution of (1) by re-transforming the variables using
(3), we have

Nz, t) = a® sech® [p(z — xq — vt)] (6]
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where .
o fa(h—ha) (g&hihg)lfz[l 1 hy — ha 2]
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The solution (6) is solitary wave traveling with speed v, without changing the form of amplitude
a® and width p. Larger p we have wave with thinner shape. This solution will be used as the
reference to compare to our numerical procedure, before we apply to general iitial condition
of (1).

3 Numerical Procedure

A finite difference method is developed in caleulating the solution of (1), The equation is first
differentiated with respect to space z, to reduce the dispersive effect generated by the term
containing third derivative. The equation that we solve is

371 1 1
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Mesnwhile, the equation is linearized so that the discretized equation is unconditionally stable,
see Feng and Mitsni [14]. We discetize the space r by denoting ry = jdr, j =0,1,2,--- ,J,
and the time ¢ by denoting t* = ndt, for n = 0.1,2,---. dr and dt are small number as the
length of space between two nodes and step time, respectively. From these discretisations, we
then denote i == y{xy, ). The time derivative is approximated by forward difference, and the
space r derivative is approximated by average central space, so that we have

et = Sdr 2dr
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The non-linear term is approximated by
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This is obtained by supposing w = 5, and approximating
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We then use Tayvlor series
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I
so that we have
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and we linearize (n°),., as written above.
For given ny, j = —2,-1,0,--- ,J + 2 at time step n, we calculate 1y at n + 1 for j =
0,1,-+« , J satistving
a n+tl n+1 n+1 n41 ntl R g
dMyyz +0nyy Faot)y Fan ) +aanly = A, (8]
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The values of 5”3, "1, ?3}ﬂ and ’.'j":}ﬂ are given as the boundary condition. Since we observe

that the wave propagates from left to right, ?;’_"31 and 1-3’_“{1 are given as input, and the other
two can be determined by linearizing two values of i in the observation domain, physically it
means that the right boundary is absorbed.

The svstem of equations constructed by (8) has coefficient matrix in form of penta-diagonal.
To solve it, we can use Gauss-Seidel iteration. We stop the iteration when the maximum error
of ™! between two two iterations is less than 10~7. This result is then used for the next
time step. The coordinates (z,, ?};‘j;r:D are plotted as the interfacial elevation at time ¢,. The
evolution of the mterfacial wave can be observed by plotting for some time steps.

4 Result

The numerical procedure described in the previous section is used to solve (1) for some physical
quantities, the upper fluid depth by = 1.5 and density o = 0.7 and lower fluid depth hy = 1
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and density gz = 1. The lower fluid is chosen as the reference. The gravity acceleration is
set. ¢ = 10, Most of our caleulations uses dr = 0.5 and df = (L125. The munber of points is
J=1000. As the initial condition, we follow the analytical solution ()

n(x,0) = 0.04 sech? [p (z — 100)]

and similarly for the left boundaries for piz_yq,t) and gir_s, £). Our caleulation gives the
coordinates of some points of the interfacial wave. We then plot those points for some times f,
by shifting upward for larger ¢, as shown in Figure 1. The solitary wave is obtained without
changing the form traveling to the right. This confirms to the analvtical solution as described
in the previous section in (&).
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Figure 1: Plot of solitary interfacial wave, as the result of the initial condition n(z,0) =
0.04 sech? [p (x — 100)]
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Figure 2: {a). Plot of the wave evolution, calculated using the initial condition gz, 0) =
0.04 sech? [0.28 (x — 100)]. (k). Plot of the numerical solution miz, 50007,

For various physical quantities of the upper and lower fluids, our caleulations give similar
plot to Fig 1, and they agree to the analyvtical solution (6) as long as the initial and boundary
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.
conditions following that form. The effect of the physical quantities appears in p and v of (G).
Now, we observe the solution of (1) for the initial condition

nix, 0) = 0.04 sech? [0.28 (z — 100)]

the quantities related to the amplitude and the width of the wave do not satisfy as in the
analytical solution (G). The wawve evolution is shown in Figure 2a, the solitary form breaks up
by appearing some small waves behind the main wave. To show that small waves more clearly,
we plot n(r, &) at the last time step n = 40000, equivalent to £ = 5000, of our calculation in
Figure 2b. The same initial condition is then used to caleulate the interfacial wave for upper
flnid density p; = 0.3. Some small waves appear behind the main wave, the difference with the
previous result, for py = 0.7, is the wave travels faster for smaller density. As the comparison,
we caleulate up to n = 30000, equivalent to ¢ = 3750, the main wave almost reach the right
observation boundary, at = = 500, Similarly for deeper upper fluid, the wave travels faster.
This agrees to the analvtical solution (6). The value v increases by inereasing by and decreasing
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Figure 3: {a). Plot of interfacial wave, as the result of the initial condition in form of sinusoidal
function (b). Plot of some interfacial waves niz, 625) for different phvsical quantities p, = 0.1
given in curve "-.", iy = 3.0 in curve "-" and the other is for gy = 0.7,

The munerical procedure described above is also used to caleulate the wave evolution from
the mitial condition

Con ] 0dEin (0.26rx) for  TH < 2 < 150,
n(z,0) = { 0 for 0<z<75J150 <z < 500, ©)

and we use zero for the left boundaries 1z, §) and gix_;, ). The same physical quantities for
the upper and lower fuids, as used in Figure 2, are used in that caleulation. As the result, the
wave propagates to the right and changes the form, such as presented in Figure 3(a). In the
evolution, some small waves appear behind the main waves, similar to our ealeulations befora,
except the initial condition is (6) with the amplitude a® and the width p satisfving a special
relation to the physical quantities involved in the equation (1). In Figure 3(b), we plot n{x, 625)
in continues curve, from the evolution shown in Figure 3(a). We then recaleulate to observe
the effect of the physical quantities, especially for py and hy. First, we calculate using upper

density m = 0.1, and the same value for the other, i.e. pos =1, ks = 1 and hy = 1.5, the initial
simiscidal (9) gives np(r, 625) as shown in Figure 3(b), plot in "-"eurve. Similarly for po = 1,
he =1, py = 0.7 and hy = 3.0, our caleulation for gz, 625) i=s plotted in "—"curve. From those
plots, we can compare the wave evolution. The physical quantities effect to the wave spead and
wave deformation.
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5 Conclusion

We developed a numerical procedure based on a finite difference method for a Korteweg de
Vries equation, the model for wave evolution at the interface between two fluids having different
density. The numerical procedure gives solution that is in good agrement with the analytical
solution, in form of solitary wave., Therefore, the code can be used to calculate for other types
of waves, depending on the initial waves. In general, the model produces some other waves
with smaller amplitude behind the main waves. The effect of the physical quantities is also
observed, i.e. in producing smaller waves and the wave speed.
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