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and Genomes(KEGG), late-onset Alzheimer's disease (LOAD), S-Methyl 

methanethiosulfonate (MMTS), neurocalcin delta (Ncald/NCALD), neural cell 

adhesion molecule 1 (NCAM1), neurofascin (Nfasc), N-methyl-D-aspartate (NMDA), 
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(SNOSID), Selected peptides list (SPL), succinate-CoA ligase (Suclg1), 
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Summary 

Alzheimer's disease (AD) is characterized by an early synaptic loss, which 

strongly correlates with the severity of dementia. The pathogenesis and causes of 

characteristic AD symptoms are not fully understood. Defects in various cellular 

cascades were suggested, including the imbalance in production of reactive oxygen 

and nitrogen species. Alterations in S-nitrosylation of several proteins were 

previously demonstrated in various AD animal models and patients. In this work, 

using combined biotin-switch affinity/ nano-LC-MS/MS and bioinformatic approaches 

we profiled endogenous S-nitrosylation of brain synaptosomal proteins from wild type 

and transgenic mice overexpressing mutated human Amyloid Precursor Protein 

(hAPP). Our data suggest involvement of S-nitrosylation in the regulation of 138 

synaptic proteins, including MAGUK, CamkII or synaptotagmins. 38 proteins were 

differentially S-nitrosylated in hAPP mice only. 95 S-nitrosylated peptides were 

identified for the first time (40% of total, including 33 peptides exclusively in hAPP 

synaptosomes). We verified differential S-nitrosylation of 10 (26% of all identified) 

synaptosomal proteins from hAPP mice, by Western blotting with specific antibodies. 

Functional enrichment analysis linked S-nitrosylated proteins to various cellular 

pathways, including: glycolysis/gluconeogenesis, calcium homeostasis, ion and 

vesicle transport, suggesting a basic role of this post-translational modification in the 

regulation of synapses. The linkage of SNO-proteins to axonal guidance and other 

processes related to APP metabolism exclusively in the hAPP brain, implicates S-

nitrosylation in the pathogenesis of Alzheimer’s disease. 



4 

 

Introduction 

The role of nitric oxide (NO) as a signaling molecule in the central nervous 

system was discovered in 1988 (1). The brain and cerebellum in particular, contain 

one of the highest activities of NO-forming enzyme (NO synthase, NOS) in all tissues 

examined (2, 3). Nitric oxide is a freely diffusible, very reactive radical molecule. It 

readily reacts with various endogenous substrates forming i.e. iron and copper 

adducts in prosthetic groups of proteins (4), peroxynitrite in the reaction with reactive 

oxygen species, ROS (5) and S-nitrosothiols with endogenous low-molecular weight 

thiols like cysteine and glutathione (6). One of the aspects of NO physiology is 

formation of S-nitrosylated proteins. Cysteine residues, post-translationally modified 

by S-nitrosylation, exert control over the activity of proteins and pathways in which 

they are involved, analogous to the addition of a phosphate group during 

phosphorylation (7, 8). S-nitrosylation is a key mechanism in the transmission of NO-

based cellular signals in vital cellular processes, including: transcription regulation, 

DNA repair, autophagy and apoptosis (8).  

The role of protein S-nitrosylation underlying pathology of various diseases, 

including cancer (9, 10), heart condition (11-13) and neurodegenerative disorders 

has been extensively reviewed (8, 14). In the brain, aging processes and 

environmental factors cause protein S-nitrosylation which in turn may enhance 

misfolding of proteins, induce apoptosis or autophagy, mitochondrial fragmentation 

and affect normal synaptic functions (8). S-nitrosylation of proteins plays an important 

role in neurons. For example, N-methyl-D-aspartate receptor (NMDAR) and caspase 

enzyme activity can be decreased by S-nitrosylation, thereby facilitating 

neuroprotection (15). This finding led to development of nitro-memantine, a nitric 

oxide donor and selective NMDAR interacting drug. It selectively S-nitrosylates the 

NMDA receptor and prevents its’ hyperactivation, also observed in Alzheimer’s 

disease (16). On the contrary, S-nitrosylation of protein-disulfide isomerase (17), 

dynamin-related protein 1 (18), glyceraldehyde dehydrogenase (19), cyclo-

oxygenase-2 (20), N-ethylmaleimide sensitive protein (21), Parkin (22-24), Gospel 

(25), cyclin dependent kinase- 5 (26), mitochondrial complex I (27), stargazin (28), 

and serine racemase (29), has been related to severe neuropathological alterations 

in the brain due to induction of: protein misfolding/ aggregation, mitochondrial 

dysfunction, bioenergetic compromise, synaptic injury and subsequent neuronal loss.  
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Alzheimer’s disease is the most prevalent form of human dementia, with a 

frequency that progressively increases in aging societies (30). The temporal 

progression of AD exhibits a highly variable pattern among patients and is not fully 

understood (31). Environmental, age-related and genetic factors have been proposed 

to contribute to pathogenesis of the disease. Defects in various signaling pathways 

regulated by post translational modifications of proteins (PTM) i.e. phosphorylation, 

were suggested to be the determinant parameter for disease progression (32-35). A 

pivotal role in development and progression of late-onset AD and various other age-

dependent dementias has been attributed to inflammatory and oxidative stress 

cascades in the brain (36, 37). Reactive oxygen (ROS) and reactive nitrogen species 

(RNS) play a crucial role in these processes (38). The consequences of oxidative and 

nitrosative stress, such as lipid peroxidation, DNA oxidation and nitrosative/oxidative 

PTM of brain proteins were detected in global and targeted proteomic analyses in AD 

patients (14, 39-43). On the other hand, a multitude of evidence suggests that 

physiological levels of ROS and RNS are implicated in various cell signaling 

cascades (reviewed in (44-47)).  

Various transgenic mouse models, based on the overexpression of mutant 

form(s) of human APP and recapitulating the AD phenotype are currently used to 

investigate mechanisms underlying disease pathology (48, 49). The present study 

utilized one such model, a transgenic mice expressing human APP with London 

mutation and its wild-type, aged-matched counterparts, for targeted, differential 

proteomic analysis of S-nitrosylation of proteins located at the synaptic terminals.  

The Biotin Switch Technique (BST) and its modification, SNOSID (SNO Site 

Identification) (50); in combination with mass spectrometry have been used in 

targeted proteomics studies of cellular “S-nitrosomes”. BST relies on selective 

ascorbate reduction of S-nitrosothiols to generate free thiol groups in the presence of 

other thiol derivatives (51), whereas SNOSID (SNO Site Identification) involves 

biotinylation of protein SNO-Cys residues, trypsin digestion, affinity purification of 

biotinylated-peptides and sequencing by tandem MS (50). The majority of such 

studies were undertaken to identify targets of S-nitrosylation induced by nitric oxide 

donor treatment (52-54).  

It is however, difficult to extrapolate results of donor induced studies to an in 

vivo situation, where cysteine S-nitrosylation is dependent on the overall redox state 
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of a cell and its unknown levels of nitrosylating compounds (55). In this work, we 

optimized the BST for MS-based global analysis of endogenous protein S-

nitrosylation. Our study was designed to test the hypothesis that redox imbalance 

and changes in activity of nitric oxide synthase(s) influence the level and pattern of 

endogenous S-nitrosylation of synaptic proteins. Among 138 identified synaptosomal 

SNO-proteins, 38 were differentially S-nitrosylated in the hAPP mouse brain. Our 

data suggest a possibility of sequential S-nitrosylation, similarly as for other post-

translational modifications, i.e. phosphorylation. Focused systematic proteomics 

approaches addressing the role of cysteine post-translational modifications in the 

brain can lead to new mechanism-based therapies for various neurodegenerative 

disorders including AD. 

 

Experimental procedures 

Reagents 

Bradford reagent, sucrose, Ficoll, neocuproine and sodium ascorbate were 

from Sigma. S-Methyl methanethiosulfonate (MMTS) was from Fluka. Neutravidin-

agarose and biotin-HPDP were purchased from Thermo Scientific. Sequencing grade 

modified trypsin was obtained from Promega. Complete protease inhibitor cocktail 

was from Roche diagnostics. ECL chemiluminescence reagents were purchased 

from Amersham Biosciences. Antibodies directed against gamma enolase (Eno2) 

and glial fibrillary acidic protein (Gfap) were obtained from DAKO. Anti-adaptor 

protein complex AP-2 (Ap2a1), anti-peroxiredoxin 3 (Prdx3), anti-peroxiredoxin 6 

(Prdx6) and streptavidin HRP-conjugated secondary antibodies were purchased from 

Abcam. Primary antibodies, directed against neural cell adhesion molecule 1 

(Ncam1), synaptotagmins-1/2 (Syt1/Syt2), neurocalcin delta (Ncald), glyceraldehyde-

3-phosphate dehydrogenase (Gapdh), ras-related C3 botulinum toxin substrate 1 

(Rac1), inducible nitric oxide synthase 2 (Nos2; iNos) and neuronal nitric oxide 

synthase 1 (Nos1; nNos), as well as secondary antibodies: rabbit anti-mouse IgG, 

rabbit anti-goat IgG and goat anti-rabbit IgG antibody were purchased from Santa 

Cruz Biotechnology. PVDF (0.22 µm) membrane was from Millipore. 

Transgenic mice 

Transgenic AD mice used in this study were generated in Prof. Fred van 

Leuven’s laboratory (K.U. Leuven) as described by Moechars et al. (56), and kept at 
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the Animal House of Polish Academy of Sciences Medical Research Center. The 

transgenic mice express human Amyloid Precursor Protein with London mutation 

[Tg(APPV717I)], under the control of the mouse Thy1-gene promoter (called later as 

hAPP mice). 14-15 month female heterozygous mice were included in the study. 

Control aged-matched mice (FVB/N, called later as FVB mice) were of the same 

genetic background. All experiments were performed in accordance with Polish 

guidelines for care and use of laboratory animals. 

Synaptosome isolation 

Synaptosomes were prepared from brains of 14-15 months old, female FVB 

and hAPP mice, as described (57, 58). Four mice of the same age were decapitated 

and their brains immediately removed and homogenized using Dounce homogenizer, 

in 6 ml of buffer A containing 5mM Hepes pH 7.4, 0.32 M sucrose, 0.2 mM EDTA, 20 

mM MMTS (a free thiol blocking reagent) and protease inhibitor cocktail. The 

homogenate was centrifuged (2.500 x g for 5 minutes) to yield pellet and supernatant 

fractions. Supernatant was subsequently centrifuged at 12.000 x g for 5 min. The 

obtained pellet was resuspended in buffer A, placed onto a discontinuous Ficoll 

gradient and centrifuged at 70.000 x g for 45 minutes. Synaptosomal fraction was 

collected, resuspended in buffer A and centrifuged at 20.000 x g for 20 min. Purified 

fraction of synaptosomes was used in all proteomic experiments. 

Biotin Switch Technique 

Substitution of S-nitrosylated Cys (SNO-Cys) sites with S-biotinylated Cys in 

synaptosomal protein lysates was based on a previously described BST procedure 

(51). In our study we optimized concentration of used reagents and the time reactions 

to increase the specificity and sensitivity of the method. Mouse synaptosomal 

fractions were dissolved in HEN buffer containing 250 mM Hepes pH 7.7, 1 mM 

EDTA and 0.1 mM neocuproine. To avoid rearrangements of  thiol modifying groups, 

the protein mixture was treated with 2 volumes of a thiol blocking solution containing 

250 mM Hepes pH 7.7, 1 mM EDTA and 0.1 mM neocuproine (copper ion chelator), 

5% SDS, 20 mM MMTS at 50 ºC for 20 minutes with agitation (in the dark). To 

remove excess of reagents, proteins were precipitated with acetone and 

resuspended in the same volume of HEN buffer containing 2.5 % SDS. The obtained 

protein solutions were divided into two equal parts. One part was treated with a 

mixture of 400 µM Biotin-HPDP and 5 mM sodium ascorbate. The second half was 
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used as a negative control for experiments and treated with 400 µM biotin HPDP 

without sodium ascorbate. All samples were incubated in the dark for 1.5 hours at 

room temperature (RT). The proteins were again acetone-precipitated, resuspended 

in the same volume of HEN buffer containing 2.5 % SDS and diluted with two 

volumes of neutralization buffer (20 mM Hepes, pH 7.7, 100 mM NaCl, 1 mM EDTA). 

100 μl of neutravidin-agarose beads was added to the solution and incubated for 1 hr 

at room temperature with agitation. Afterwards, the beads were washed five times 

with 20 mM Hepes, pH 7.7, 600 mM NaCl, 1 mM EDTA and incubated with elution 

buffer containing 50 mM Tris, pH 8.0, 1 mM EDTA, and 50 mM DTT, for 20 minutes 

at RT with gentle agitation. The supernatants containing enriched SNO-proteins were 

used in subsequent Western blot analyses for validation of detected SNO-sites.  

Western blot detection of nNos and iNos in FVB and hAPP mouse brains  

Brain homogenates were analyzed for nNos and iNos protein expression using 

Western blot method. 20 µg of protein extracts from whole brains of FVB and hAPP 

mice, respectively, were separated by reducing 10% SDS–PAGE. Separated proteins 

were transferred onto PVDF membrane. The membranes were first blocked with 

caseine-based buffer (Sigma) and incubated with primary antibodies to nNos and 

iNos. Membranes were then probed with secondary antibodies raised against the 

appropriate species. Equal protein loads were assessed with antibodies against 

Gapdh and by Ponceau S staining on the blots. Western blots were developed using 

ECL chemiluminescence. The scanned blots were quantified densitometrically using 

GelQuant software and relative protein abundance of nNos and iNos normalized to 

the expression of Gapdh. Heteroschedastic two-tailed t-test was used to assess the 

changes in expression. 

Western Blot analysis of protein S-nitrosylation pattern in FVB and hAPP 

synaptosomes 

Total synaptosomal protein fractions after BST procedure but without 

neutravidin-based affinity purification were resolved using reducing 10% SDS-PAGE. 

Selectively biotinylated proteins were captured using streptavidin-HRP conjugated 

antibodies and visualized by ECL chemiluminescence.  

 Western blot detection of differential S-nitrosylation in the brain 

All fractions (including total synaptosomal fractions and those from different 

steps of BST procedure) were separated using 12% SDS-PAGE and transferred to 
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PVDF membrane (0.22 μm). The membranes were first blocked with caseine-based 

buffer (Sigma) and incubated with primary antibodies followed by secondary HRP-

conjugated antibodies. Protein bands were detected using the ECL 

chemiluminescence system (Amersham Biosciences). The fractions containing 

enriched S-nitrosylated proteins, from FVB and hAPP synaptosomes were quantified 

densitometrically with GelQuant software. Heteroschedastic two-tailed t-test was 

used to statistically assess the changes in endogenous protein S-nitrosylation. 

SNOSID 

The synaptosomal protein fractions containing biotin labeled proteins (biotin 

labeling step described in the BST section) were digested using sequencing grade 

modified trypsin for 16 hours at 37 ºC. Digestion was terminated using protease 

inhibitors cocktail. Tryptic peptides were incubated with 100 μl of neutravidin beads 

for 1 hour at RT. Beads were then washed 5 times with 1 ml of wash buffer. Peptides 

bound to neutravidin resin were eluted with 150 μl of elution buffer containing 30 mM 

dithiotreitol. Eluted, cysteine-containing peptides were alkylated using 200 mM 

iodoacetamide. In the next step, peptides containing fractions were concentrated 

using SpeedVac and diluted with 1% trifluoroacetic acid/water (v/v) to a final 

concentration of 0.1 % TFA.  

LC-MS and LC-MS/MS analysis 

Each enriched SNO-peptides containing sample was measured twice: once 

with LC-MS/MS (tandem mass spectrometry), to identify the enriched SNO tryptic 

peptides, and once in LC-MS mode (resulting in profile spectrum), to attain label-free 

quantitative data based solely on peak intensities. All MS runs were separated by 

blank ones to reduce carry-over of peptides from previous samples. The 

measurements were carried in Nano Aquity Liquid Chromatography system (Waters) 

coupled to LTQ-FTICR mass spectrometer (Thermo Scientific). SNO-peptides in 

0.1% TFA were loaded from a cooled (10 ºC) autosampler tray to a pre-column 

(Symmetry C18, 180 µm × 20 mm, 5 µm Waters) and resolved on BEH130 column 

(C18, 75 µm x 250 mm, 1.7 µm, Waters), in a gradient of 5-30% acetonitrile / 0.1% 

formic acid for 70 minutes at a 0.3 µl/min flow rate. The UPLC system was directly 

connected to the ion source of the mass spectrometer. The resolution of mass 

spectrometer was set to 50.000 for MS acquisitions with m/z measurement range of 

300-2000 Th. The quantitative LC-MS runs were converted into 2D heat-maps (with 
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retention time and m/z as vertical and horizontal axes, respectively) using in-house 

designed finnigan2Pipe data conversion tool (59, 60). The format of resulting data 

met the requirements of NMRPipe software (http://spin.niddk.nih.gov/NMRPipe).  

For LC-MS/MS runs, we utilized the data dependent acquisition (DDA) mode, 

selecting the 5 most intense signals in each MS spectrum for fragmentation. Dynamic 

exclusion was activated, with m/z tolerance of 0.05-1.55 and duration of 15. Up to 5 

fragmentation events were allowed for each parent ion. The peak-picking was 

performed using MascotDistiller software (version 2.3, MatrixScience). Mascot search 

engine was used to survey data against UniProtKB/Swiss-Prot database version 

2013_10 (45889 sequences). Mascot search parameters were set as follows: 

taxonomy Mus musculus, fixed modification - cysteine carbamidomethylation, 

variable modification - methionine oxidation, parent ion mass tolerance - 40 ppm, 

fragment ion mass tolerance - 0.8 Da, number of missed cleavages - 1, enzyme 

specificity - semi-trypsin. The false-positive rate (FDR) values for Mascot 

identifications were calculated using the concatenated target/decoy database search 

strategy (merged target/decoy databases generated with in-house developed 

software (http://proteom.ibb.waw.pl/decoy/index.html). This analysis demonstrated 

that for peptides with Mascot score > 30, the FDR did not exceed 0.29%. 

 Using in-house developed software Mscan (http://proteom.ibb.waw.pl/mscan), 

the peptides identified in all LC-MS/MS runs (both from FVB and hAPP samples) 

were merged into one selected peptide list (SPL). Each peptide in the SPL was 

characterized by its amino acid sequence, LC retention time, m/z value and charge 

state values of corresponding ions. The SPL was then used to localize the peptide 

ions on 2D heat-maps generated from LC-MS runs (Supplemental Figure 1), and to 

obtain the quantitative values (LC peak intensities). Peptide ion localization was 

performed with in-house developed TagProfile software (60). Further manual data 

inspection (mainly to account for retention time variation in different LC runs and deal 

with faulty assignment cases) and quantitative analysis was achieved using in-house 

developed software Msparky (http://proteom.ibb.waw.pl/msparky), a modified version 

of Sparky NMR software (http://www.cgl.ucsf.edu/home/sparky) (59-63). Acceptance 

criteria for manual data inspection included: m/z value deviation - 20 ppm, retention 

time deviation - 10 minutes, envelope root mean squared error (a deviation between 

http://spin.niddk.nih.gov/NMRPipe
http://proteom.ibb.waw.pl/decoy/index.html
http://proteom.ibb.waw.pl/mscan
http://proteom.ibb.waw.pl/msparky
http://www.cgl.ucsf.edu/home/sparky
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the expected isotopic envelope of the peak heights and their experimental values) - 

0.7. Charge state value was also inspected. 

The SPL with obtained quantitative values was then reduced so that each 

cysteine was represented by single peptide entry with one quantitative value. In the 

final step, two lists of SNO-peptides/proteins from 14 month old mice were 

generated, one for hAPP and one for FVB. By comparing these lists, three sets of 

SNO-Cysteine peptides were determined: 1) identified only in FVB (corresponding 

proteins named as S-nitroso-wt), 2) identified in both FVB and hAPP (corresponding 

proteins named as S-nitroso-all), and 3) observed exclusively in hAPP synaptosomes 

(corresponding proteins named as S-nitroso-diff). These sets are presented in 

Supplemental Table S1. The annotated spectra displaying sequence information of 

all identified SNO-peptides are presented in Supplemental Figure S2. All raw data 

from LC-MS and LC-MS/MS measurements are available at the public repository 

ProteomicsDB (project entitled: “synaptosomes”; 

https://www.proteomicsdb.org/proteomicsdb/#projects/4161?accessCode=f5247f4f64

cc04f627a141ffa16b4d7d836dfabaf4c33729a990b1794723ea1b). 

To compare the number of identified SNO-proteins and SNO-sites in all three 

sets we utilized Venny (http://bioinfogp.cnb.csic.es/tools/venny/) (64). Positions of 

SNO-Cys sites, the number of cysteines in protein sequence, and previously 

identified entries with literature references are listed in the same supplemental table. 

Comparison of mouse and human differential SNO-peptide sequences was achieved 

with Uniprot/blast program (http://www.uniprot.org/blast/). 

Functional analysis of proteomic data 

In order to connect the human orthologs of mouse differentially S-nitrosylated 

gene products with Amyloid Precursor Protein (APP) we utilized GeneMania 

(www.GeneMania.org; which indexes 1,464 association networks containing 

292,680,904 interactions mapped to 149,747 genes from 7 organisms, last update 

06/2013) (65, 66). Human orthologs of mouse genes were assigned with NCBI 

homologene (http://www.ncbi.nlm.nih.gov/sites/homologene/). NCBI Gene unique 

identifiers of human orthologs of mouse genes representing differentially mouse 

SNO-proteins identified in FVB or hAPP mice were used as an input for functional 

network analyses. The networks were calculated and drawn using GeneMania 

https://www.proteomicsdb.org/proteomicsdb/%23projects/4161?accessCode=f5247f4f64cc04f627a141ffa16b4d7d836dfabaf4c33729a990b1794723ea1b
https://www.proteomicsdb.org/proteomicsdb/%23projects/4161?accessCode=f5247f4f64cc04f627a141ffa16b4d7d836dfabaf4c33729a990b1794723ea1b
http://bioinfogp.cnb.csic.es/tools/venny/
http://www.uniprot.org/blast/
http://www.genemania.org/
http://www.ncbi.nlm.nih.gov/sites/homologene/
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reference real- and binary-valued interaction networks consisting of physical, genetic, 

predicted and pathway interaction datasets. For weighting of the networks we used 

Gene Ontology biological process (GO BP) algorithm from GeneMania, which 

assigns weights in order to maximize connectivity between all input genes in a given 

ontology class.  The number of measured SNO-sites was included as one of the 

parameters in network depiction. In cases when the number of SNO-sites in a 

peptide after neutravidin affinity could not be unambiguously assigned, for simplicity, 

we chose the highest possible number of SNO-sites, according to a number of 

available Cys in a given sequence. 

SNO-datasets were functionally analyzed using ClueGOv1.4, a Cytoscape 

plug-in (http://www.ici.upmc.fr/cluego/) (67), which applies GO/KEGG hierarchical 

characteristics for clustering of term distributions. As a reference set for term 

enrichment  calculations we utilized genes (NCBI unique Gene identifiers), 

corresponding to human orthologs of MS- measured mouse synaptosomal proteins 

(Malinowska et al., submitted), enriched with non-redundant genes from 2 most 

comprehensive, expert- curated synaptic databases (SynsysNet; 

http://bioinformatics.charite.de/synsys/  (68) and SynaptomeDB; 

http://psychiatry.igm.jhmi.edu/SynaptomeDB/ (69)). Thus constructed “synaptic 

reference set” comprises of more than 5600 NCBI unique human genes. The 

enrichment of GO biological process functional categories in this reference set is 

presented in Supplemental Figure S3. A Venn diagram demonstrating the 

distribution of genes among three database sources in “synaptic reference set” is 

presented in Supplemental Figure S4. P values for term enrichment were calculated 

using right-sided hypergeometric test. The nodes in functionally grouped networks 

were linked based on their kappa score level (≥0.3) in ClueGO.  

http://www.ici.upmc.fr/cluego/
http://bioinformatics.charite.de/synsys/
http://psychiatry.igm.jhmi.edu/SynaptomeDB/
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Results 

 

The protein expression of nitric oxide synthases is elevated in hAPP mouse 

brain 

Expression levels of nNOS and iNOS in total brain cortex lysates from 14 

months old FVB and hAPP mice were compared by Western blot analysis. A 

significant increase in the protein expression levels of iNOS (fold change= 4.94, n=4, 

P=4.74E-06), and nNOS (fold change= 2.05, n=2) was observed in hAPP mouse 

brain in comparison to FVB mouse brain, consistent with previous observations (70, 

71). Bands of 130 and 160 kDa corresponded to iNOS and nNOS, respectively 

(Figure 1). 

Endogenous protein S-nitrosylation is increased in hAPP synaptosomes  

To assess whether the increased expression of nitric oxide synthases visible 

in the hAPP mouse brain results in pattern changes of endogenous protein S-

nitrosylation, we used a BST assay in which SNO-proteins are selectively labeled by 

biotin, followed by Western blot detection with anti-biotin antibodies. Numerous 

protein bands across a broad mass range were revealed, both in FVB and hAPP 

derived synaptosomal fractions indicating the presence of endogenously S-

nitrosylated proteins (Figure 2, lane 3 and 4). The number and intensities of specific 

bands were significantly increased in hAPP synaptosomes. No bands were detected 

in negative control experiments confirming selectivity of the ascorbate reduction of 

SNO-bonds. 

Endogenously S-nitrosylated proteins in FVB and hAPP synaptosomes were 

identified using SNOSID-LC-MS/MS assay  

BST and anti-biotin Western blot analysis suggested that synaptosomal 

proteins of a wide molecular mass range are affected by S-nitrosylation.  

In our work, we utilized SNOSID technique developed by Hao et al. (50) for 

non- targeted proteomic identification of specific cysteine residues in proteins which 

are modified by posttranslational S-nitrosylation. The method is based on exclusive 

affinity capture of formerly nitrosylated, cysteine containing tryptic peptides, which are 

labeled with biotin similarly as in the initial steps of BST assay. The overall scheme of 
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S-nitrosylation enrichment methodology used in this work is presented in the Figure 

3.  

We explored SNOSID peptide enrichment technique combined with LC-

MS/MS peptide identification to precisely ascertain the targets of S-nitrosylation 

among synaptosomal proteins. Among 138 identified SNO-proteins, 38 were present 

only in hAPP mice synaptosomes (Figure 4A, Table 1 and Supplemental Table 

S2). A total of 249 SNO-sites were identified, including 108 sites found exclusively in 

hAPP brain (Figure 4B). Sequence alignment of mouse differentially S-nitrosylated 

peptide sequences with their human counterparts demonstrated that almost all SNO- 

Cys are conserved between both species (Supplemental Table S3). 95 SNO- 

peptides were identified for the first time (40% of total, 33 of which were solely 

present in hAPP synaptosomes). 49 of the hAPP differential SNO-sites were 

detected in proteins S-nitrosylated in FVB mice but at a different Cys residue, i.e. in 

calcium/calmodulin-dependent protein kinase II (CamkII), succinate-CoA ligase 

(Suclg1) or neurofascin (Nfasc). Interestingly, for aconitate hydratase (Aco2) we 

detected an exchange of a single SNO-site from Cys385 to Cys592. The number of 

differential SNO-peptides, i.e. SNO-sites in FVB and hAPP mice differs from that of 

differential proteins, which suggests that some proteins are possibly sequentially S-

nitrosylated.  

The overall pattern of S-nitrosylations in FVB and hAPP synaptosomes is 

depicted in Supplemental Figure S5. Figure 4C schematically portrays the 

possibilities for SNO-based regulation of synaptosomal proteins as a result of the 

hAPP overexpression in mice.  

Synaptosomal S-nitrosylated proteins in FVB mouse brain represent a variety 

of protein classes 

In order to decipher molecular mechanisms in the synapse, in which S-

nitrosylation of proteins might play a distinct role, we performed functional enrichment 

analyses of terms from Gene Ontology Biological Process (GOBP) and KEGG. For 

this purpose we utilized a comprehensive “synaptic reference set”, comprising over 

5,600 genes (see description in Material and Methods) and ClueGO algorithm. Two 

sets of identified human orthologs of mouse S-nitrosylated synaptosomal proteins 

(S-nitroso-wt and S-nitroso-diff sets) were analyzed. The analyses of S-nitroso-wt set 

(Figure 5 and Supplemental Tables S4) revealed multiple enriched functional 
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categories. Terms related to: generation of precursor metabolites (P=3.11E-15), 

gluconeogenesis (P=7.41E-08), synaptic transmission (P=1.22E-4) and 

neurotransmitter transport (P=1.07E-03) were significantly statistically enriched in 

GO BP analyses of S-nitroso-wt set (Figure 5 and Supplemental Table S4A). In-

depth analysis of KEGG pathways pinned down additional enriched terms related to 

other metabolic processes, i.e. TCA cycle, oxidative phosphorylation and synaptic 

organization, to name but only a few of those most associated with the normal 

physiology of neurons.  

The multiplicity of enriched terms suggests that S-nitrosylation is a global post-

translational modification, with a role in modulating the function of different classes of 

proteins within the synapse microenvironment. Interestingly, 16 SNO-proteins from 

FVB mice (~12% of all identified mouse brain synaptosomal SNO-proteins; 

Supplemental Table S4B) formed a cluster of functionally grouped terms (Figure 5) 

previously implicated in Alzheimer’s, Parkinson’s and Huntington’s diseases.  

Differentially S-nitrosylated proteins in hAPP mouse brain are linked to axon 

guidance and vesicle trafficking and form a highly- connected network  

Analysis of S-nitroso-diff proteins with ClueGO and GO BP revealed two major 

functional clusters. Similarly as in the wild-type mouse brain, a six node sub-network 

related to gluconeogenesis/glycolysis and generation of precursor metabolites and 

energy was revealed (comprising 9 out of 38 analyzed proteins, Supplemental Table 

S5A). The second sub-network contained 11 nodes including axon guidance 

(GO:0007411), which presented the most enriched group term (P=4.76E-03; Figure 

6A-B). Other nodes which belong to this functional cluster included i.e. vesicle 

mediated transport and exocytosis, both of which are linked to APP neuronal 

trafficking (Figure 6B and Supplemental Table S5B) (72, 73). Parallel functional 

analyses using KEGG pathways supported the finding that proteins in the S-nitroso-

diff set are linked to axon guidance and regulation of actin cytoskeleton (P=3.71E-02, 

Figure 6B and Supplemental Table S5B).  

In this study, human APP protein expression in mouse brain was the 

distinguishing parameter used to model some aspects of Alzheimer disease. 

Therefore, we aimed to assess the connectivity of the identified differentially S-

nitrosylated synaptosomal proteins to APP. We searched for human orthologs of 

mouse SNO-proteins (Supplemental Table S1) and connected them using 
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GeneMania. We connected 36 (out of 38) differentially S-nitrosylated orthologs with 

APP using multiple interaction data (Figure 6C and Supplemental Tables S6A-D). 

59 nodes in the calculated network (Supplemental Table S6A) were connected by 

genetic (57 links) and physical interactions (34 links), as well as pathway sharing (27 

links). 34 interactions in the network were derived from predicted, mostly interologous 

interactions (Supplemental Table S6B). Five SNO-proteins were directly connected 

to APP either via physical interactions (Gapdh/GAPDH), genetic interactions 

(Ube2d3/UBE2D3, Negr1/NEGR1), and pathway sharing (Gapdh/GAPDH and 

Negr1/NEGR1) or predicted to interact from homologous interactions 

(Ncam1/NCAM1). Actb/ACTB (β-actin) has been detected as part of the same 

molecular complex with APP (74). The most enriched functional category of the 

network, participation in cytoplasmic vesicle (P=2.74E-04) was shared by 9 proteins, 

including APP and 6 SNO-proteins, namely AP2A1, ALDOA, HSPA8, NCALD and 

SYT1, SYT2. Subsequent analysis of the axon guidance sub-network (P=1.73E-03) 

revealed that it contained 10 proteins, including APP, PRNP, LIMK1 and AGRN and 

6 human orthologs of differentially nitrosylated proteins (from S-nitroso-diff set): 

ACTB, AP2A1, CFL1, KRAS, NCAM1 and RAC1 (Figure 6C and Supplemental 

Table S6C).  

Validation of differential protein S-nitrosylation detected using Biotin Switch-

LC-MS/MS by Western blotting  

Western blot analysis was used to validate the results of MS based 

identifications of selected, differential SNO-proteins implicated in AD (75-79). 

Immunoreactivity was traced in different fractions during BST enrichment of 

S-nitrosylated synaptosomal proteins from FVB and hAPP mice. Ten differentially S-

nitrosylated proteins from different functional classes were chosen for MS data 

validation (including a novel one described in this study, neurocalcin delta, Ncald). 

Figure 7 demonstrates the results of immunoblotting with specific antibodies 

recognizing mouse Ncam1, Ap2a1, Gfap, Eno2, Syt1/Syt2, Gapdh, Ncald, Prdx3 and 

Rac1, respectively. The total expression of studied proteins was unchanged in the 

hAPP and FVB brains (lanes 1 and 2), which is consistent with the results of 

differential proteomics expression analysis in these mice (Malinowska et al., 

submitted). Following BST enrichment, positive signals were observed only in 

fractions derived from hAPP brain synaptosomes (lane 7), but not in the FVB brain 
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(lane 5), confirming the MS-based identification of differentially SNO-proteins. An 

internal control in which S-nitrosylation does not change between FVB and hAPP 

(includes 2 synaptosomal proteins, synaptophysin, Syp, and peroxiredoxin, Prdx6; 

compare lanes 5 and 7, Figure 7A-B) was included. 

Interestingly, a specific monoclonal antibody against enolase 2, Eno2 was 

used to positively identify S-nitrosylation of this protein in the hAPP brain. In MS 

based analyses we could not distinguish whether this protein is differentially S-

nitrosylated in hAPP mice or an additional site is modified by S-nitrosylation upon 

APP overexpression (Supplemental Table S2A). The identified SNO-peptide in the 

FVB synaptosomes was also shared between three enolases, Eno1, Eno2 and Eno3, 

precluding a proper assignment. The results of Western blot analysis indicate that 

there is no S-nitrosylation of Eno2 in the wild-type mouse brain. Overall, we have 

validated the differential SNO of 10 proteins in hAPP synaptosomes.  

 

Discussion 

Signaling by RNS is mainly carried out by targeted modifications of critical 

cysteine residues in proteins, including S-nitrosylation, S-oxidation, and lipid nitration 

(80). Despite thousands of SNO-proteins currently identified (~3000), the observed 

specificity of S-nitrosylation in terms of target proteins and specific Cys residues is 

not entirely understood (81, 82). S-nitrosylated proteins are implicated in the 

pathogenesis of various neurodegenerative diseases, including Alzheimer’s, 

Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, Friedreich 

ataxia and many others, where they influence the onset or development of 

neurodegeneration (8, 23, 83-85).  

One of the key pathological features of patients with neurodegenerative 

disorders including AD is impaired signaling at the synapse. Our proteomics study 

was designed to search for and identify endogenous regulation of synaptic proteins 

by S-nitrosylation. We also probed for a direct association of protein S-nitrosylation 

with an important aspect of AD development, namely overexpression of A.  

Synaptosomes are a well-recognized model for studies of synaptic complexity 

in the brain (86, 87). They contain complete presynaptic terminals, with postsynaptic 

membranes and densities, as well as other components necessary to store, release, 

and retain neurotransmitters. Viable mitochondria for production of ATP and active 
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energy metabolism, are also present in synaptosomes (88). Moreover, it has recently 

been proposed that S-nitrosylation is effectively dependent on the subcellular 

localization of proteins, with short-range linkage to synaptic transmission in neurons 

(89). Therefore, in order to reduce the complexity of the analyzed system we decided 

to narrow our studies to proteins involved in synaptic functions, employing fresh 

synaptosomal preparations routinely used for proteomic screening of affected 

pathways in the brain (90, 91).  

A combination of different approaches based on BST and immunoprecipitation 

with S-nitrosothiol antibodies, followed by 2D-electrophoresis and LC-MS/MS was 

recently introduced by Zahid et al. (92), to study differentially S-nitrosylated proteins 

in the human AD brain. However, in their study, total brain lysates from cortex, 

hippocampus and substantia nigra (post-mortem frozen brain tissue) were utilized, 

and only 45 SNO-proteins identified (without recognizing sites of modification), 

impeding detailed analysis of the affected pathways in the synapse. 

Human brain tissue samples are difficult targets for differential proteomics. 

Samples are obtained post mortem with usually longer interval times in comparison 

to the life-span of most SNO-proteins. Special autopsy programs for AD patients, 

aimed at analysis of labile PTM within 4-h post mortem interval are still rare (i.e. 

Rapid Autopsy Program of the University of Kentucky Alzheimer’s Diseases 

Research Center, UKADRC (93)). Moreover, freezing and thawing of tissues leads to 

artifacts in tyrosine nitration and cysteine nitrosylation if homogenization is not 

performed in the presence of thiol blocking agents (94). As such, instead of analyzing 

highly variable human tissue samples (vide i.e. SNO Drp1 level analysis in AD 

patients (95)) we opted for a well-defined tg AD mouse model for differential analysis 

of synaptic SNO-proteins. Moreover, the inclusion criteria used for selection of 

differential protein sets proposed in our work were very stringent. A protein has been 

defined as differentially S-nitrosylated only if it was repeatedly observed in hAPP 

brain synaptosomes, and not detected in the age-matched wild-type controls. In the 

authors opinion this led to highly selective identification of differentially SNO synaptic 

proteins in the hAPP brain.  

Despite its utility in identifying SNO-Cys modification in proteins, the BST and 

SNOSID methods are constrained by several limitations. Each step of these 

techniques is a potential source of methodological errors. One of such limitations is 
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linearity (with respect to protein input and biotinylation). The blocking step of the BST 

shall also be taken into consideration, as some protein thiols can be resistant to 

complete blocking, resulting in high levels of SNO-independent biotinylation. Another 

question which was raised by some authors is the specificity of the method. The 

other constraint is a usage of ascorbate, which was suggested to have a potential to 

reduce the disulfide bonds. This has been later challenged by observations that thiol-

dependent reduction of dehydroascorbate to ascorbate, a scenario supported by 

extensive in vitro and in vivo experimentation is thermodynamically favored. Another 

limitation of BST method is related to the presence of metal ions, which can 

compromise the BST specificity, including production of ascorbate and hydroxyl 

radicals. Following a number of publications which discussed limitations of 

BST/SNOSID enrichment methods (96-99), in this work we developed special sample 

procedures to detect and identify S-nitrosylated proteins in the synapse. We utilized 

SNOSID enrichment of previously S-nitrosylated tryptic peptides to pinpoint not only 

the S-nitrosylated proteins but also precise sites of SNO modification. Furthermore, 

the aim of our study was not to identify the largest number of proteins susceptible to 

S-nitrosylation in the synapse milieu but rather to prove that the NO-based regulation 

is not random i.e. related only to higher amount of produced RNS. We also aspired to 

demonstrate that this process is highly confined to specific key molecules and/or 

pathways, and is modified upon AD symptoms progression in mice.  

By combining an optimized SNOSID method coupled with LC-MS/MS, we 

identified 138 S-nitrosylated proteins with 249 SNO-sites (Figure 4) and 

corresponding changes in pattern of their S-nitrosylation. With this approach 95 SNO-

peptides were identified for the first time, while 76% of all identified SNO-proteins 

were previously described to be endo/exogenously S-nitrosylated in the literature 

(Supplemental Table S2, see literature references). We also observed that almost 

all SNO-Cys sites in the SNO-diff set (Supplemental Table S3) were conserved 

between human and mouse, suggestive for importance of these sites in the PTM 

regulation of synaptic functions in the AD brain. An overlap of 25 S-nitrosylated-

proteins (Table 1 and Supplemental Table S2) was observed between this study 

and the one by Zahid et al. (92).  

To establish the functional connection between identified S-nitrosylated 

synaptosomal proteins, we applied stringent bioinformatic filtering employing Gene 
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Ontology and pathway data (Figures 5 and 6). From 100 SNO-proteins identified in 

wild-type synaptosomes, the majority was linked to various metabolic pathways 

including: oxidative phosphorylation and energy derivation by oxidation of organic 

compounds (6 and 24 proteins respectively) and synaptic functions, involving 

synaptic transmission (18 proteins; Figure 5 and Supplemental Table S4A). The 

participation of synaptic SNO-proteins in numerous protein classes has been 

previously described (8, 82). Interestingly, we found for the first time that 5 proteins 

linked to synaptic transmission in wild-type synaptosomes (GO:0007268; P=1.22E-4, 

Supplemental Table S4A) can also be S-nitrosylated (Camk2b, Cplxn1, Kclna2, 

Nptn and Synj1). S-nitrosylation of both protein kinases and phosphatases influences 

a wide range of signal transduction pathways mediated by 

phosphorylation/dephosphorylation (reviewed in (81)). In this view, regulation of 

Camk2b, Calcium/calmodulin-dependent protein kinase type II beta chain might be 

important for regulation of synaptic transmission. 

To link the changes in S-nitrosylation with advancement of Alzheimer’s 

disease we used a 14 month old transgenic hAPPV717I (hAPP) mouse strain with 

high neuronal expression of human transgene which recapitulates important 

pathological and clinical hallmarks of AD, correlated with high burden and 

accelerated accumulation of A40/42. In order to identify a possibly full spectrum of 

S-nitrosylation changes we narrowed our investigations to the advanced stage at 

which mice start to develop A pathology with neuritic plaques (56, 100).  

AD patients’ brains display elevated level of nitric oxide synthases (70, 71). 

Moreover, it was found that the iNOS reactivity, expression and calcium-independent 

enzymatic activity was increased in APP transgenic (Tg2576 APP) mice and related 

to cortical neurons and microglial cells (101). Deletion of iNOS in these mice 

worsened spatial memory, learning, and tau pathology, suggestive for 

neuroprotective effect of NO (102). Increased levels of iNOS were also detected in 

cortical neurons stimulated with A peptide (103), and confirmed in functional 

experiments demonstrating that A stimulated induction of long-term potentiation was 

inhibited in iNOS knock-out mice (104). Furthermore, treatment with resveratrol 

protected rats from A-induced neurotoxicity by suppressing iNOS production (105). 

Interestingly, in another model of AD (double transgenic APP-PS1 mice) deletion of 

iNOS gene alleviated AD-related pathology including increased A levels, plaque 
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formation, gliosis and premature mortality (103). We confirmed that level of iNOS 

expression was higher in hAPP synaptosomes as compared to aged-matched 

controls. Changes in the expression of iNOS and nNOS (Figure 1) indicate 

aberrations in the nitric oxide production which may result in subsequent changes of 

protein S-nitrosylation, observed in hAPP synaptosomes (Figure 2). Gow et al. (106) 

demonstrated that increased expression of various nitric oxide synthases leads to 

changes in the level of protein S-nitrosylation in multiple cell types and tissues. 

The key factors determining S-nitrosylation sites in proteins are: (i) spatial 

proximity (i.e. complexing with nNOS regulates the S-nitrosylation of NMDARs and 

PSD-95), (ii) presence of signature SNO motifs adjacent to target Cys residue and (iii) 

local hydrophobicity (i.e. closeness to the membrane) (8, 107). Therefore, in parallel 

to functional clustering analyses we linked the differentially S-nitrosylated proteins 

from hAPP synaptosomes using network approaches. Interestingly, the majority of 

SNO-proteins (95%; 36/38 of all) could be linked to APP via one bridging partner 

resulting in a small network with 59 nodes, when stringent GO BP filtering criteria 

were applied to multiple interaction data (Figure 6). Both functional clustering and 

network approaches revealed that axon guidance term was one of the most enriched 

functional features shared by differentially S-nitrosylated proteins in hAPP 

synaptosomes. Axon guidance term was shared by 6 SNO-proteins of the interaction 

network (Figure 6C), including 5 proteins previously described in literature as 

possible targets of endo/exogenous S-nitrosylation and one novel, GTPase KRas 

precursor (Table 1). The second enriched functional term, “participation in 

cytoplasmic vesicle” (GO:004443) was allotted to 6 SNO-proteins, one of which is a 

novel S-nitrosylation target, Neurocalcin-delta (Ncald/NCALD). S-nitrosylation of this 

target has been exclusively confirmed in the hAPP brain, by Western blotting 

experiments with specific antibodies (Figure 7). Involvement of APP in axonal 

guidance and vesicle trafficking was previously described (Figure 6C; (73, 108-112)). 

Recent in silico analysis of differentially expressed genes in sporadic early onset AD 

revealed an alteration in biological pathways related to intracellular signaling 

including axon guidance among the others (113). Moreover, defects in axon 

guidance were linked to early stage progression of another neurodegenerative 

disorder, Parkinson’s disease (114).  
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The synaptic cytoskeleton is particularly important for synaptic plasticity and 

plays a role in rapid activity-dependent changes of synapse volume or shape. 

Disruptions in the synaptic cytoskeleton affect the stability and maturation of 

synapses and subsequently disturb neuronal communication (115-117). Actin 

cytoskeletal pathology may be an early cause of transport defects in AD (118). One 

of the identified, differentially S-nitrosylated proteins participating in axonal guidance 

is β-actin (Actb). Actin microfilaments supported by actin-associated proteins, are the 

dominant cytoskeletal elements structuring synapses. Local β-actin synthesis in 

developing axons plays an important role in growth cone steering (119). 

S-nitrosylation of β-actin, which increases formation of short actin filaments lead to 

alterations in the cytoskeletal network and inhibited dopamine release (120).  

Another identified SNO-protein, actin severing protein; cofilin (Cfln) affects 

APP transport, synaptic stability and activity (121). siRNA knockdown of cofilin 

abolished both A and RanBP9-induced apoptosis (122). In hippocampal neurons, 

fibrillar A was able to alter the PAK1/LIMK1/cofilin axis and thereby actin 

organization (123).  

Rac1, a small Rho GTPase functions as a positive regulator of neurite 

outgrowth downstream of growth-promoting axon guidance cues. It regulates 

dendritic spines and excitatory synapses, but little is known about its regulation in 

synapses (124). Rac1 is related to increased alterations in the actin cytoskeleton 

induced by fibrillar Aβ (125). It has been hypothesized that Rac1 activation 

exacerbates AD by shifting actin into a polymerized conformation, a phenomenon 

observed in various neurodegenerative disorders (125). Previous studies have also 

shown that the reduction of ROS generation leads to an inhibition of the Rac1 

activation (126).  

An important group of proteins engaged in the axon guidance are those 

connected to the endo/exocytosis processes. AP-2 is the major adaptor protein 

important for sorting of synaptic vesicle proteins during recycling (127). In neurons, 

AP-2-dependent trafficking of NMDA and AMPA receptors is an essential 

determinant of synaptic strength and plasticity (128, 129). S-nitrosylation of AMPA 

receptors resulted in increased endocytosis by binding AP-2 protein (130). 

Levels of Neurocalcin, a calcium binding protein identified to be S- nitrosylated 

for the first time are reduced in AD brain, suggestive for biochemical deficits related 
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to the synaptic degeneration (131). Taken together, the identified changes of S-

nitrosylation of proteins linked to axon guidance and related to endo/exocytosis 

processes underlie an important role of this modification in the regulation of synapses 

in the AD brain. 

Another significantly enriched category of the differentially S-nitrosylated 

proteins identified in hAPP synaptosomes constituted of those involved in energy 

metabolism and oxidative phosphorylation (Figure 6A, B and Supplemental Table 

S5). Modulation of protein function through PTM is probably an important feature of 

energy production at the synapses. Although the brain represents only 2% of the 

body weight, it uses approximately 20% of the total body basal oxygen consumption 

(132). Previous proteomic analyzes reported significant decrease in level of glycolytic 

enzymes in the AD brain and increase in the oxidation of proteins involved in the 

glycolysis and TCA cycle (37, 41).  

In the current study, we showed changes in the S-nitrosylation of 7 proteins 

involved in energy metabolism (Supplemental Table S5A). We, for example, 

identified aberrant S-nitrosylation of GAPDH a key enzyme in glycolysis process 

which catalyzes NAD-mediated oxidative phosphorylation of glyceraldehyde 

phosphate to 1,3-diphosphoglycerate. However, apart from its’ classical role in 

glycolysis, GAPDH takes part in highly diverse, non-glycolytic functions. For example, 

S-nitrosylation of GAPDH enhances binding to SIAH1 protein, an E3 ubiquitin ligase, 

and the complex is translocated to nucleus where it activates apoptosis. In the 

nucleus SNO-GAPDH not only mediates apoptosis but also serves as a 

trans-nitrosylase of other nuclear proteins, including SIRT1, HDAC2 or DNAPK (19). 

SNO-GAPDH dependent molecular pathway leading to neuronal apoptosis may 

contribute to Alzheimer’s disease pathogenesis (76). 

A recent study demonstrated that both GAPDH and gamma enolase were 

oxidatively modified in post mortem AD patients brains (76, 133). Oxidative 

modifications of these enzymes led to inhibition of glycolytic pathways. This is 

consistent with the altered glucose tolerance and metabolic changes confirmed in 

PET analyses of AD patients (134). The impact of S-nitrosylation on the function of 

those proteins is unclear. Aberrant S-nitrosylation of a large number of glycolytic 

enzymes suggests that synapses may be sensitive to glycolytic perturbation, which in 

turn exacerbates Aβ toxicity. 
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We also found a large group of mitochondrial proteins with altered 

S-nitrosylation. There is mounting evidence that mitochondrial dysfunction 

accompanies AD progression and development (135). Mitochondrial dysfunctions are 

consequences of aberrant redox reactions triggered by high level of NO. 

Disturbances in the activity of Complexes I and IV caused by S-nitrosylation have 

been reported in the AD brain (reviewed in (136)). Additionally, a decrease in the 

activity of F1 ATPAse caused by S-nitrosylation was reported in cardiomyocytes (54). 

We found that S-nitrosylated Ndufv1/NDUFV1 and Uqcrc1/UQCRC1, mitochondrial 

complex I and III proteins were either uniquely present (Ndufv1) or more nitrosylated 

(Uqcrc1/UQCRC1) in APP brains (Supplemental Table S2). 

Summarizing, these results suggest that altered S-nitrosylation of proteins 

involved in energy metabolism might be one of the main events associated with AD, 

leading to reduced activity of metabolic pathways and therefore decreased ATP 

production, confirming the previous observations. 

Cellular “S-nitrosome” homeostasis is regulated by enzymatic and non-

enzymatic nitrosylation, denitrosylation and the overall redox milieu. The current work 

was based on systematic profiling of S-nitrosylations in brain synaptosomes from 

wild-type and AD mice. We have identified several endogenous SNO-sites 

exclusively in the hAPP brain, which further contributes to our understanding of 

synaptic complexity and its alterations in AD. It also implicates S-nitrosylation in the 

interplay of various PTM controlling the signaling cascades in the brain, in normal 

and neurodegenerative conditions, and identifies novel putative drug targets for 

therapeutic interventions. Further research is necessary to decipher the precise role 

of S-nitrosylation in the function of identified synaptic proteins. 
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Legends: 

Figure 1. Western blot analysis of iNOS and nNOS expression in the brain. The 

expression of both enzymes was analyzed in wild-type (FVB, lane 1) and transgenic 

APP (hAPP, lane 2) total mouse brain cortex lysates. Gapdh protein expression was 

used for normalization. kDa- molecular weight in kilo-Daltons.  

Figure 2. Western blot analysis of S-nitrosylation pattern in the FVB and hAPP 

brains. S-nitrosylation sites were selectively labeled with S-S-biotin (BST). 

Visualization of biotinylated proteins was achieved with anti-biotin antibodies. 

Controls were prepared without selective ascorbate (Asc) reduction of SNO bonds 

(lane 1 and 2). Pattern of S-nitrosylation of synaptosomal proteins from FVB and 

hAPP mouse brain is presented in lanes 3 and 4, respectively. 

Figure 3. Scheme of S-nitrosylation enrichment methodology. Mouse brain 

synaptosomes were isolated and S-nitrosylated proteins enriched using Biotin Switch 

Technique. After trypsin digestion and enrichment on Neutravidin agarose, the SNO-

peptides were analyzed by LC-MS/MS using in house developed MSparky software. 

Figure 4. Venn diagram comparisons of the numbers of S-nitrosylated proteins (A) 

and S-nitrosylation sites (B) identified in synaptosomes isolated from FVB and hAPP 

mouse brains. C. Scheme of S-nitrosylation pattern in S-nitroso-wt and S-nitroso-all 

sets showing differential and sequential S-nitrosylation, respectively. The details on 

number of SNO-Cys and SNO-sites identified in this study with respective 

UniProtKB/Swiss-Prot IDs and NCBI Gene Symbols are given in Supplemental 

Figure S5. 

Figure 5. ClueGO analysis of S-nitrosylated proteins from FVB mouse brain 

synaptosomes. GO biological process (GO BP, upper panel) and KEGG pathway 

(KEGG, lower panel) terms specific for S-nitrosylated proteins from the FVB brain 

synaptosomes (**-P≤0.01, *-P≤0.05). The number of corresponding genes 

associated with a specific term is indicated. The percentage of genes associated with 

a specific term is listed on the bars. Ungrouped terms are shown in yellow.  

Figure 6. (A) ClueGO analysis of S-nitrosylated proteins from hAPP mouse brain 

synaptosomes. GO biological process/KEGG pathway terms specific for S-

nitrosylated proteins from the FVB brain (*-P≤0.05; **-P≤0.01). The number of 

corresponding genes associated with a specific term is indicated as percentage 

(numbers on bars) and on x axis. Ungrouped terms are indicated in yellow. (B) The 
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networks of functionally grouped terms with nodes linked based on their kappa score 

(≥0.3). Terms not grouped are shown in yellow. (C) Interaction network linking human 

orthologs of differentially SNO-proteins detected in hAPP synaptosomes and Amyloid 

 precursor protein (APP). The network was sorted according to GO BP criteria. The 

size of nodes, representing SNO-proteins (in orange) is proportional to the number of 

SNO-sites, measured in LC-MS/MS experiments. The nodes sharing two most 

enriched functional terms, axon guidance and cytoplasmic vesicle part are presented 

as constituents of network modules (represented by dotted spheres). 

Figure 7. Western blot analysis of S-nitrosylated proteins from hAPP brain 

synaptosomes. (A) Synaptosomal SNO-proteins enriched using BST were detected 

with specific antibodies. Differential SNO set: Ncam1 - Neural cell adhesion 

molecule, Ap2a1 - AP-2 complex subunit alpha-1, Gfap - Glial fibrillary acidic protein, 

Eno2 - Gamma enolase, Syt1, Syt2 - Synaptotagmin-1 and 2, Gapdh - 

glyceraldehyde-3-phosphate dehydrogenase, Ncald - neurocalcin-delta,  Prxd3 - 

peroxiredoxin 3, Rac1- Ras-related C3 botulinum toxin substrate 1 precursor.  Non-

differential SNO set: Syp- synaptophysin, Prxd6 - peroxiredoxin 6. Lane 1 - total FVB 

mouse brain lysate, lane 2 - total hAPP brain lysate, lane 3 - soluble fraction (FVB), 

lane 4 - soluble fraction (hAPP); lane 5 - proteins enriched on neutravidin resin using 

BST (FVB), lane 6 - neutravidin resin after elution (FVB), lane 7 - proteins enriched 

on neutravidin resin using BST (hAPP), lane 8 - neutravidin resin after elution 

(hAPP). kDa- molecular weight in kilo-Daltons. (B) Densitometric quantitation of lanes 

5 (Neutr_FVB) and 7 (Neutr_hAPP); n=3 experiments, P values from t-test. **-

P≤0.01; ***-P≤0.001. 

Table 1. List of identified, differentially SNO-proteins and corresponding peptides in 

the synaptosomes of hAPP transgenic mice. Legend of the Table 1 is included on the 

bottom. 

 

 
 
 
 
 
 
Table 1: List of identified, differentially S-nitrosylated proteins and corresponding 
peptides in the synaptosomes from hAPP transgenic mice. 
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Name  ID 
Gene 

Symbol 
Peptide sequence 

SNO-
pept 

SNO-
Cys 

Cys Ref 

Acylphosphatase-2  P56375# Acyp2 SVDYEVFGTVQGVC30FR #    + 1 1 (107) 

Glial fibrillary acidic 
protein  

P03995* Gfap QLQALTC291DLESLR    + 1 1 (92, 137) 

Neurocalcin-delta  Q91X97 Ncald LLQC185DPSSAGQF    + 1 2   

40S ribosomal protein 
S11  

P62281# Rps11 C60PFTGNVSIR #    
+ 

1 3 (107) 

Heat shock cognate 
71 kDa protein  

P63017#* Hspa8 
GPAVGIDLGTTYSC17VGVFQ
HGK    

+ 1 4 
(53, 92, 

107, 138-
140) 

Ubiquitin-conjugating 
enzyme E2 D3  

P61079# Ube2d3 IYHPNINSNGSIC85LDILR #    + 1 4   

Cofilin-1  P18760# Cfl1 AVLFC39LSEDKK #    + 1 4 (107, 141) 

Thioredoxin-
dependent peroxide 
reductase, 
mitochondrial 

P20108# Prdx3 
AFQFVETHGEVC230PANWTP
ESPTIKPSPTASK #    

+ 1 4 (107) 

MAGUK p55 
subfamily member 2  

Q9WV34# Mpp2 
DLELTPTSGTLC310GSLSGK 
#    

+ 1 5 (50, 142) 

GTPase KRas  P32883 Kras TGEGFLC80VFAINNTK    + 1 5   

Methylglutaconyl-CoA 
hydratase, 
mitochondrial 

Q9JLZ3# Auh SEVPGIFC113AGADLK #    + 1 5 (107) 

Synaptotagmin-1  P46096* Syt1 LGDIC277FSLR    + 1 6 (139) 

Acetyl-CoA 
acetyltransferase, 
mitochondrial 

Q8QZT1#* Acat1 
QATLGAGLPISTPC116TTVNK 
*#   

+ 1 6 (107, 138) 

Fructose-
bisphosphate aldolase 
C  

P05063# Aldoc C290PLPRPWALTFSYGR #    + 1 7 
(92, 107, 

139) 

Synaptotagmin-2  P46097# Syt2 LTVC293ILEAK #    + 1 9 (142) 

P2X purinoceptor 6  O54803 P2rx6 LC347DLLLLYVDR    + 1 13   

Choline transporter-
like protein 2  

Q8BY89 Slc44a2 VVDDTAC401PLLR    + 1 26   

Neuronal growth 
regulator 1 

Q80Z24 Negr1 
DYSLQIQNVDVTDDGPYT 
C112SVQTQHTPR    

+ 1 12   

LanC-like protein 2  Q9JJK2 Lancl2 TIVC187QESELPDELLYGR    + 1 13   

Ly-6/neurotoxin-like 
protein 1  

Q9WVC2 Lynx1 KSC64VPSC68FETVYDGYSK    + 1v2 10   

Metallothionein-1  P02802#* Mt1 SC33C34SC36C37PVGC41SK *#    + 
1v2v3
v4v5 

20 (107) 

Creatine kinase B-
type  

Q04447#* Ckb 
FC254TGLTQIETLFK    + 

2 5 
(53, 139, 

141) LGYILTC283PSNLGTGLR *#    + 

Vacuolar ATP 
synthase subunit B, 
brain isoform  

P62814# Atp6v1b2 
KTSC112EFTGDILR    + 

2 6 (50, 142) 
LALTTAEFLAYQC289EK   + 

Actin, cytoplasmic 1  P60710#* Actb 

LC217YVALDFEQEMATAASS
SSLEK #    

+ 
2 6 

(53, 92, 
107, 138, 
139, 141, 

143) C285DVDIR #    + 

Myelin-
oligodendrocyte 
glycoprotein  

Q61885 Mog 
ALVGDEAELPC52R    + 

2 7   
FSDEGGYTC126FFR    

+ 

Sodium/potassium-
transporting ATPase 
subunit beta-2  

P14231 Atp1b2 

SC10GQVVEEWKEFVWNPR + 
2 7   NDVC129RPGR + 

ALANSLAC338QGK *# + 

Neural cell adhesion 
molecule 1, 180 kDa 
isoform precursor  

P13595* Ncam1 

FFLC41QVAGDAK + 

2 14 (139) NAPTPQEFKEGEDAVIVC139D
VVSSLPPTIIWK + 

Elongation factor 2  P58252#* Eef2 
STLTDSLVC41K # + 

2 17 
(107, 138, 

141) ETVSEESNVLC591LSK *# + 

Sarcoplasmic/endopla
smic reticulum 
calcium ATPase 2 

O55143#* Atp2a2 
VGEATETALTC447LVEK *# + 

2 29 (107, 138) 
NYLEQPGKEC998VQPATK # 

+ 
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Fructose-bisphosphate 
aldolase A  

P05064*# Aldoa 

YASIC178QQNGIVPIVEP
EILPDGDHDLKR # 

+ 
2 8 

(92, 107, 
139) 

ALANSLAC339QGK *#    + 

Hexokinase-1  P17710*# Hk1 

QTSLDC669GILITWTK + 

2 23 (107) C942TVSFLLSEDGSGK 
#     

+ 

Glyceraldehyde-3-
phosphate dehydrogenase  

P16858#* Gapdh 

IVSNSC150TTNC154LAPL
AK *# 

+ 

2v3 5 

(92, 107, 
138, 
143, 
144) 

VPTPNVSVVDLTC245R 
*# 

+ 

ADP/ATP translocase 1 P48962*# Slc25a4 

EFNGLGDC160LTK *# + 

3 4 (107) 
YFAGNLASGGAAGATS
LC129FVYPLDFAR # 

+ 

GADIMYTGTLDC257WR 
*# 

+ 

Triosephosphate isomerase  P17751#* Tpi1 

IAVAAQNC117YK *# + 

3 6 

(92, 107, 
138, 
143, 
144) 

VSHALAEGLGVIAC177I
GEK # 

+ 

IIYGGSVTGATC268K *# + 

Ras-related C3 botulinum 
toxin substrate 1 

P63001# Rac1 

HHC105PNTPIILVGTK  # + 

3 7 (107) YLEC157SALTQR # + 

AVLC178PPPVK # + 

AP-2 complex subunit 
alpha-1 

P17426# Ap2a1 

ALQVGC941LLR # + 

3 19 (107) LVEC283LETVLNK + 

HLC970ELLAQQF + 

2',3'-cyclic nucleotide 3' 
phosphodiesterase 

P16330# Cnp 

LDCAQLKEKPELQFPF
LQDEDTVATLHEC49K 

+ 

4 7 (145) 
LDEDLAGYC111R # + 

LDC157AQLK + 

AHVTLGC334AADVQPV
QTGLDLLDILQQVK 

+ 

NADH dehydrogenase 
[ubiquinone] flavoprotein 1, 
mitochondrial 

Q91YT0*# Ndufv1 

NAC187GSDYDFDVFVV
R # 

+ 3v4 12 (107) 
GAGAYIC206GEETALIE
SIEGK # 
LKPPFPADVGVFGC238

PTTVANVETVAVSPTIC

255R # 

Legend: Name- UniProtKB/Swiss-Prot name, ID- UniProtKB/Swiss-Prot database unique 
identifier; Gene Symbol- NCBI official Gene Symbol, Mus Musculus; Peptide sequence- 
sequence of the Cys containing peptide identified in our MS/MS experiments; SNO-peptide- 
SNO-peptides detected in MS/MS measurements; Cys- number of Cysteines in a given 
protein sequence; #- literature described endogenous S-nitrosylation of Cys from a given 
peptide sequence; *- literature described exogenous S-nitrosylation of Cys from a given 
peptide sequence. Ref- Literature citation (see references). All Cys in the sequence are bold 
marked. Differentially SNO-Cysteines are marked in red. The aminoacid position of Cys-
SNO is given in subscript. In cases where SNO modification could not be unambiguously 
assigned (i.e. 2v3), the potentially SNO-Cys (in bold red) are underlined. Ref- cited 
literature.  
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 


