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The zygomycetes (polyphyletic phylum Zygomycota Moreau) 
include the first terrestrial and “primitive” fungi. The group 
is an assemblage of six lineages whose status, relative to each 
other, is undefined: Mucoromycotina, Entomophthoromycota, 
Kickxellomycotina, Zoopagomycotina, Mortierellomycotina and 
Glomeromycota. So far, less than a dozen zygomycetes genomes 
are publically available, a very small proportion of the total number 
of sequenced genomes – there are ~400 Genomes for Dikarya 
(Ascomycota and Basidiomycota).

There are several probable reasons for this. Firstly, there are 
substantially fewer described species of early divergent fungi in 
comparison with those that have evolved more recently. There are 
nearly one thousand valid taxa names for zygomycetes (~1% of all 
known fungi), compared to over 30,000 taxa in each of the Ascomycota 
and Basidiomycota. However given zygomycetes are understudied, the 
diversity of this group might be much higher, as was recently shown 
for Cryptomycota [1]. Another reason there has been less interest in 
the zygomycetes from a genomic perspective is that dikaryotic fungi 
play more significant roles in human life. Many of these are important 
pathogens of humans, domestic animals and agricultural plants, 
biotechnology agents, edible mushrooms and model organisms. In 
addition, the representatives of Dikarya that produces fruit bodies drew 
early attention and were more straightforward to study. Zygomycota 
have been considered less important, however many of their taxa are 
ubiquitous and also play vital roles in ecosystems and human life. Here, 
we introduce subphyla, which have been grouped within Zygomycotas.

Mucoromycotina
Mucoralean fungi are the most numerous and the best known clade 

in the Zygomycota; nearly 300 species are known. They are common 
in all soils, rapidly colonizing any easily degradable carbohydrate 
or protein source; therefore most of them are easy to grow under 
laboratory conditions. Eight genomes have been sequenced so far 
– more than in any other clade [2-4]. Several more genomes will be 
released soon [2,4,5]. 

Mucoralean genomes are interesting, firstly from a medical 
perspective. It is notable that the number of mucormycoses with 
fatal outcomes is growing every year. A major reason for this is the 
introduction of newer anti-fungals (azoles). These have facilitated 
successful control of other infective fungal agents (candidioses and 
aspergilloses), generating new opportunities for Mucoromycotina 
which can infect humans and which do not respond to these 
treatments [6]. Additionally, it is likely that some of the mucoralean 
fungi can be opportunistic pathogens in animals and humans under 
certain conditions due to their ability to grow at body temperature 
and dimorphic growth potential [7]. Especially endangered are 
immunocompromised patients with conditions such as hematological 
malignancies, neutropenia or uncontrolled ketoacidosis in diabetes. 
Patients are also vulnerable to infections by direct inoculation via burns, 
car accidents or nosocomial transmissions [6]. Sequencing pathogenic 
fungi and their non-pathogenic relatives, to elucidate genetic regions of 
pathogenicity, would be particularly useful. Such pathogenic and non-
pathogenic ‘pairs’ can be easily found in the genera Mucor, Lichtheimia, 

Rhizopus and others. Some of the Mucoromycotina are also important 
crop pathogens, especially known for post-harvest diseases of sweet 
potatoes, strawberries and other agricultural plants. However this 
group can be useful for food production and biotechnological purposes. 
Many of the mucoralean fungi have been used for centuries for many 
fermented foods and drinks and nowadays are also used as vigorous 
producers of various secondary metabolites: enzymes, fatty acids and 
carotenoids. 

Mortierellomycotina
There are nearly 100 known species of these fungi, and aside 

from the genus Modicella, they are easy to grow in culture. As with 
other zygomycetes, studies using environmental sequencing suggest 
Mortierellomycotina might contain unculturable and currently 
undescribed microscopic fungi. All species in this subphylum are 
common and ubiquitous soil dwellers and saprotrophs, some of them 
are also plant associates and endophytes [8]. Mortierella wolfii is a cattle 
pathogen which causes abortive infections and in rare cases leads to 
disseminated systemic infections [9]. 

Obtaining genomic information would aid efforts to elucidate the 
structure of this clade, which rDNA data alone are unable to resolve 
[10]. The current molecular phylogeny of Mortierellomycotina shows 
that the dominating genus Mortierella contains several other genera, 
which are very different morphologically, but which have similar 
rDNA. Genus Mortierella needs a thorough revision based on at least 
a multiple gene phylogeny. Genome sequencing of mortierellalean 
fungi would also elucidate the origin of fungal fruit bodies, which 
apparently first occurred in this group [11]. Genome data will help 
us to understand the role of these fungi in natural ecosystems, and to 
utilize their industrial potential (production of poly-unsaturated fatty 
acids) more efficiently. Genome and transriptome data are available 
now for three species: Mortierella verticillata [12], M. elongata [13], 
and M. alpina [14]. 

Entomophthoromycota
This is the second largest group of zygomycetes with ca. 300 

species, including saprotrophic and entomopathogenic zygomycetes. 
Only one genome is available: Conidiobolus coronatus [15]. Three more 
are currently being sequenced through the 1000 Fungal Genomes 
project [16]: Basidiobolus meristosporus, Conidiobolus thromboides 
and Zoophthora radicans. These three taxa represent three major fungal 
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clades in Entomophthoromycota: saprotrophic Basidiobolomycetes, 
saprotrophic and facultatively pathogenic Ancylistaceae and the ‘core’ 
obligately entomopathogenic Entomophthoraceae [17,18]. Genome 
information from pathogens of economically important crop pests will 
provide insight into pathogenicity mechanisms, and could improve 
the use of these fungi as bio-control agents. Some Basidiobolus species 
are known to infect humans [19]. Besides being of practical interest, 
sequencing these genomes will help to resolve questions around the 
origin of terrestrial fungi, because Entomophthoromycota is probably 
one of the earliest terrestrial fungal groups [20]. 

Glomeromycota
This clade is famous for arbuscular mycorrhizae (AM) formation 

and the ~430 MYA old fossils generated by its ancestors. The 
morphology of these fossilized species is remarkably similar to that 
seen in current AM fungi [21,22]. All of the ca. 250 described species 
can grow only on the roots of host plants. This makes harvesting 
sufficient amounts of biomass for DNA extraction difficult. Genome 
and transcriptome data are available only for Rhizophagus irregularis 
(formerly Glomus intraradices) [23]. In general, the genome assemblies 
done for this fungus thus far are of poor quality relative to those available 
for other fungi. The relatively large size of this group’s asexual spores 
(up to 800 um in diameter) and the thousands of genetically identical 
nuclei they contain [24] means new techniques of genome sequencing 
from one cell are very promising for the Glomeromycota. Sequencing 
genomes of glomeralean fungi is of great importance for forestry and 
agriculture, because at least 80% of vascular plants host AM fungi [24]. 
Besides being of practical interest, genome information will help place 
Glomeromycota on the Fungal Tree of Life. Former zygomycetes, 
they have recently been separated from this group and placed as a 
sister group to Dikarya based on rDNA phylogeny [25]. However, 
phylogenies based on multiple orthologs suggest Glomeromycota are 
closely related to Mortierellomycotina and Mucoromycotina (Bonito; 
Gryganskyi, unpublished).

Kickxellomycotina and Zoopagomycotina
Despite there being a relatively high number of described taxa in 

these two related fungal groups (nearly 180 species in each subphylum), 
only one genome has been sequenced: Coemansia reversa [26]. Many of 
these fungi are parasites of invertebrates, commensal of arthropod guts 
or saprotrophs. Some of them are of importance as pathogens of insect 
pests. Sequencing their genomes would be useful from a bio-control 
perspective. The majority of these fungi are hard to grow in vitro, but 
several coprophilic species are cultivable on standard media. Several 
species of this subphylum will be sequenced within 1KFG project [16].

Common Problems in Zygomycete Sequencing 
There are several major obstacles hindering Zygomycota 

genome projects. Everything starts with cultivation, which is feasible 
mostly for saprotrophs and pathogens with a broad host range 
(most of Mucoromycotina, genera Basidiobolus and Conidiobolus 
(Entomophthoromycota); Kickxella, Dimargaris and Coemansia 
(Kickxellomycotina)). Obligate parasites or commensal of arthropods 
are either unculturable or need special conditions for their growth in 
the lab. Many of them loose their vigor after several culture transfers, 
therefore obtaining nucleic acids in sufficient quantities is complicated. 
Many representatives of entomophthoraleans and some Mortierellas 
develop ‘empty’ colonies, which actively grow only at the colony edge. 
This eventually reduces the output of DNA, even when a relatively large 
amount of biomass can be harvested.

Another reason for the difficulties in obtaining sufficient quantity 
and quality of DNA and RNA is perhaps the high activity level of 
DNAses and RNAses in this group. Common extraction protocols 
like CTAB-chloroform extraction do not inhibit these enzymes, and 
nucleic acids after extraction are usually either highly degraded or 
hardly visible on gels. In order to obtain good quality nucleic acids 
standard extraction kits need to be modified by adding higher amounts 
of nuclease inhibitors, reducing of some of the incubation steps and 
performing additional cleaning to remove protein and phenolic 
contamination. 

The genome sizes, ploidy and karyotypes for most fungi are 
unknown. It is generally assumed that zygomycetes are always haploid, 
making the assembly of their genome sequences easier than for diploid 
organisms. However, this still needs to be proven. Recent research 
and the discovery of genome duplication events in the zygomycota 
indicate that: 1) their genomes might be much bigger, on average, 
than those of other fungi; 2) whole genomes or significant parts of 
them might be duplicated which might complicate genome assembly 
[27]. For example, there are some indirect estimates of genome 
size for two entomophthoralean fungi: Basidiobolus (350-750 Mb) 
and Entomophaga (800 Mb) [28]. This is substantially higher than 
the average genome size of other fungi whose genomes have been 
sequenced, which is usually between 10 and 60 Mb [29]. 

The quality of genome data for zygomycetes, as for fungi in 
general, needs improvement. None of the sequences obtained from 
zygomycetes are assigned to chromosomes (as in Saccharomyces 
cerevisiae and Aspergillus nidulans). As for many fungi, the number of 
chromosomes is unknown. For some of them, the nuclear chromatin 
is never condensed during nuclear division. Karyotyping methods 
based on pulsed field gel electrophoresis often fail to separate fungal 
chromosomes. For some species, different varieties might have 
significant variation in chromosome numbers, one example being 
Rhizopus arrhizus [30]. Only a few sequenced genome databases 
contain separated mitochondrial genomes, in most cases mitochondrial 
contigs and scaffolds are not annotated. Many zygomycetes have 
bacterial endosymbionts, consequently their genome projects are in 
fact metagenome projects!

All these reasons make zygomycete genome sequencing, assembly 
and annotation complicated and delay genomic studies. Despite this, 
the number of fungal sequencing projects for this group increases 
each year, partly because of progress in sequencing and bioinformatics 
techniques and ongoing reductions in sequencing costs. A number 
of laboratories are currently sequencing and annotating genomes 
(Timothy James, Rytas Vilgalys and Kerstin Voigt, personal 
communication). For example, there is an interesting project underway 
at Broad Institute to sequence all known zygomycetous pathogens, 
which have been recorded infecting humans and other mammals. 
Most of these are mucoralean fungi, but some entomophthoroid fungi 
are also included [31]. The results of these studies will advance our 
knowledge of the early diverging fungi and it would be great to see 
more work take place in this area.

The authors are really thankful to Renee Johansen for her help with 
the manuscript.
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