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0. ABSTRACT

Two families of two-time level difference schemes are developed
for the numerical solution of first order hyperbolic partial
differential equations with one space variable. The space derivative
is replaced by (i) a first order, (ii) a second order backward
difference approximant and the resulting system of first order
ordinary differential equations is solved using Aj-stable and Ly-

stable methods.

The methods are tested on a number of problems from the
literature involving wave-form solutions, increasing solutions with
discontinuities in function values or first derivatives across a

characteristic, and exponentially decaying solutions.
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L. INTRODUCTION

In recent years much attention has been devoted in the literature to
the extrapolation in time of low-order methods for the numerical solution
of first order hyperbolic partial differential equations and for second

order parabolic equations.

Essentially the same procedure may be followed for such parabolic
equations [11,4] and hyperbolic equations [8]: that is to say, the space
derivatives in the differential equations are approximated by a suitable
finite difference replacement, and the resulting system of first order
ordinary differential equations solved using a stable numerical method.
The accuracy in time can then be controlled by a suitable choice of method
for solving an ordinary differential equation; improvement in the accuracy
in space, on the other hand, requires a different replacement of the space

derivative in the partial differential equation.

From the point where the replacement of the space derivative has been
chosen, accuracy in time can be varied by a multistage method [4] which
involves a spread over three or more time increments, or by a method
involving a similar spread over more than three mesh points at a given
time level [8,12,15]. The former type of method is, in effect, an applic-
ation of linear multistep methods for systems of ordinary differential
equations, while the latter is an application of multiderivative methods

[15].

Both approaches have a weakness which is the other's strength: using
a multistage method, seeking the solution at certain fixed times requires
the time interval to be divided into two or more subintervals depending
on the accuracy required, whereas the integration can be carried out without
subdividing the time interval if an A-stable or L-stable multiderivative
method is used. On the other hand, implicit multistage methods need only

tridiagonal solvers to obtain the solution (five at each time level for



third order accuracy in time and nine for fourth order accuracy [4])
whereas those multiderivative methods based on central difference replace-

ments of the space derivative [8] need only one quindiagonal solver.

In the present paper attention will be given only to first oder
hyperbolic equations. The methods to be discussed are based on backward
difference replacements of the space derivatives and can therefore be
used explicitly so that here, too, they have an advantage over multistage
formulations. The use of backward difference replacements has the advantage
that the oscillations which are always present with central difference
replacements, do not arise. Also, the difficulties which arise in parabolic
equations because of stiffness are not present in solving hyperbolic
equations by multiderivative techniques. The methods will use function
values at only two time levels as in [8], unlike the methods developed by

Oliger [13] where three time levels were used in the formulation.

The families of backward difference methods to be developed, like
those of Oliger[13], depend on the theorems of Gustaffson [5] for the
establishment of stability. The first methods developed are based on the
usual first order replacements of the space derivative and the lower order
Padé approximants to the matrix exponential function. Accuracy is then
improved by approximating the space derivative at the mesh point adjacent
to the boundary, at each time level, by the same low-order replacement,
and by the usual second order replacement at all other mesh points.
Finally, accuracy is improved further by using higher order Pade approximants
to the matrix exponential function. The methods are divided into two
classes, the first class using only the low order space replacement, the
second using both space replacements. Extrapolation in time is also dis-

cussed for Ly -stable methods.

The methods are tested on five problems involving wave-form solutions,



increasing solutions with discontinuities in function values or first

derivatives across a characteristic, and exponentially decaying solution.

2. LOW ORDER APPROXIMATIONS IN SPACE AND TIME

Consider the first order hyperbolic partial differential equation

—+a — =0; x>0, t>0, D

where a > 0 is a real constant, with initial conditions

ux,0) = gx) ; x=0 2)

and boundary conditions

u 0,9 = v(t) ;t>0; &)

equations (1), (2), (3) form the initial-boundary value or outflow

problem.

Suppose that the solution of (1) is sought in some region

R= [0<x<X] x [t>0] of the first quarter plane x > 0, t > 0. The
interval 0 < x < X is divided into N equal parts each of width h, so

that Nh = X, and the time variable t is discretized in steps of length

¢. The open region R and its boundary aR, consisting of the axes t = 0,
x = 0 and the line x = X, have thus been covered by a rectangular mesh of
points having coordinates (jh,n?/), where j = 0,1,...,N and n = 0,1,2,... .
The theoretical solution of a finite difference scheme approximating
the differential equation (1) at the mesh point (jh,n/) will be denoted

by U?, the theoretical solution of the differential equation at this

j >

point being uj = u(jh,n/).



Replacing the space derivative in (1) by the low order backward

difference formula
ou
P {u(x,t)—u(x—h,t)}/h+0(h), 4)
X

and applying (1) with (4), (2), (3) to all N interior mesh points at
time level t = n/ (n = 0,1,...), leads to the system of first order

ordinary differential equations

dU()

~

dt

=-aCU(t) +a . (5)

where U (t) = [U;(t) ,U, (t)Ux (t)]" ,T denoting transpose, is the vector of

approximate solutions of (1) at time t > 0. In (5) C is the square

matrix of order N given by

1
-1 1 0
-1 1
hc = . . , (6)
0
and ¢ is a vector with N elements given by
hgt: [Vta OJO""a]T ’ (7)

where v¢ is the numerical (frozen) value of the boundary condition
attimet=n/.

The solution of (5) with (2) is



UM=C"e+ exp (-atC) {g-C' o}, (8)

Where g the vector of initial values. The solution given by (8)

satisfies the recurrence relation
Ut+0)=C"¢ +exp(-a l O {U® - Clc} . 9)
t

Using the (m, k) Padé approximat to the exponential function defined
by Rum,k(0) = Pr(0)/Qm(0) + 0(6™"*"" ) where Py (0), Qu () are polynomials of
degrees k, m, respectively, to replace the matrix exponential function in
(9) leads to a two-time level finite difference scheme which is uncon-
ditionally stable for m 2 k and which may be used explicitly because of
the nature of the initial and boundary conditons (2), (3). The principal

part of the local truncation error of such a method has the form

1 o’u o)
——a/lfh—+C 11— 10
( 2 ox* ¢ atqj (10

j
where the constants Cq (q = m+k+1) are given in [15] and are reproduced
in Table L.

The component of the local truncation error due to the chosen Padé

n
j >

approximant, namely (C¢%"u/ct’);, can be improved by at least one

n

power of / by extrapolating in time; the other component (—%aéhazu/&f}

j
which is related to the space discretization, will not change.

The extrapolating procedure determines U(t+2/) in terms of U(t):

it first calculates g(l) = g(l) (t+27) by writing equation (9), in which

the matrix exponential function has been replaced by an appropriate Pade
approximant, over two single time steps, and then calculates E(z) ZINJ(z) (t+27)
by writing (9) over a double time step. The extrapolated value

U® = Uu®  (t+27) is then found from one of the formulas

~ ~



[NJ (E): (2m+kg(1) _E(Z))/(szrk_l) N O(£1n+k+2) (11)

for m#k, or

[NJ (E): (szg(l)_ g(2)/(22m_1) + O(£21n+3) (12)

form=k.

The extrapolating formulas for m = 1,2 and k = 0(1)m are contained

in Table I. The term [—%aﬁh@zu/axz]}‘. will still be present in the

principal part of the local truncation error of the extrapolated form
of each finite difference method. There will also be a term of the
form [Eq ésasu/ﬁts]}l (s = mtk+2 for m # k, s = 2m+3 for m = k). The con-
stants Eg; (Twizell and Khaliq [15]) are also contained in Table I.

Associated with each extrapolated method is the amplification

symbol

Smi” = A[P(0)/Qm (0)]* - (A-1)P(2 0)/Qm(26), (13)

where 0 = a/A,A an cigenvalue of C (actually, the eigenvalues of
the matrix C are all equal to 1/h, but this will not be so in later
sections of the paper). In (13), A = 2™ %/ (2™"% _1),

The extrapolated form of a method is Ap-stable, or stable in the
conventional sense of perturbations in the initial conditons not being

magnified as t —» o, if |sy  (0)] < 1. The extrapolated form of the
five methods given in Table I are therefore unconditionally stable,
except the extrapolated form of the method based on the (1,1) Pad¢
approximant which is stable only for 0 < ar < 6 + 4 f3where r = //h.

If, in addition to the extrapolated form of a method being

Ay -stable, its symbol satisfied gﬁwsm,k(epo, the method is Lo —stable.
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Of the five methods listed in Table I only those based on the (1,0),

(2,0), (2,1) Pade approximants have extrapolated forms which are

Lo-stable, the symbol S, , (0) tending to +1 as 6—>o. Lambert [10]

notes that the method resulting from the (m,k) Pade approximant is
(a) conditonally stable for m <k,
(b) Ay-stable for m >k,

(¢) Lo-stable for m > k.

3. HIGHER ORDER SPACE REPLACEMENT
Whereas extrapolation in time does, indeed, bring about some

improvement in the principal parts of the local truncation errors of
all finite difference schemes resulting from (9), the improvement of

any one method may not be sufficient to justify its use for larger

values of h. This is because the component of the local truncation

error given by [-l/zaJ&hﬁzu/c'?xz]}1 is still present and tends to overshadow

any improvement brought about by extrapolating in time.

Following Oliger [13], this difficulty is now partially overridden
by introducing a second order backward difference approximant to du/0x
at the mesh points (jh,nf) for j = 2,3,...,N and n = 0,1,..., whilst
retaining the first order approximant (4) at the points (h,nf) adjacent
to the boundary x = 0. This mixture of approximants to du/0x is just-
ified in the theorems of Gustafsson [5], so that, provided a Pad approx-
imant is chosen which would lead to unconditonal stability if the low
order approximant (4) were used at every mesh point, the scheme resulting
from the use of the mixture of approximants to du/dx will also be uncon-
ditionally stable and will have the convergence rate of the more accurate

interior approximant (see also Oliger [13]).

The schemes resulting from the use of different backward difference



replacements of du/dx can all be used explicitly though some have the

stability properties of implicit schemes.

Consider, then, the second order replacement

ggz{mxamo-mx&mo+3M&oymy+mﬁ) (14)

This replacement uses three mesh points at any time t = nl, so that
it can only be used at mesh points (jh,nf) for which j = 2,3,... and

n=20,1,... . At the mesh points (h,nl), equation (4), written con-

veniently as

u = {2u(x,t) - 2u(x-h,t)}/2h + 0(h) (15)
ox

1s retained.

Applying (1) with (15) or (14), as appropriate, to the N mesh

points at time level t = n, leads to the first order system
L0 ! D u(t) 1 d (16)
=——aDu(t)+—a
dt 2~ 2

In (16) D is the matrix of order N given by

2
—4 3 0
1 -4 3
hD=| . . . (17)
0 1 —4 3]

and dis the N—component vector given by



T
h dt = [2v to— Vt,O, 0] . (18)

One eigenvalue of the matrix D has the value 2/h and the other N — 1

eigenvalues have the value 3/h.

The solution of (16) with (2) is

— 1 —
g(t)zD 1(~1t+exp(—?atD) {g—D lgt}’ (19)

and it is easy to show that (19) satisfies the recurrence relation

ut+0)=D"y4 +exp(—;—a€D){U(t)—Dld } (20)

~ ¢ ~

in which the matrix exponential function is replaced by an appropriate
Padé approximant.
Only schemes based on Fade approximants for which m >. k will be

considered. The amplification factors of the extrapolated forms of
: : 1 :
such schemes may be obtained from (13) w1th8=5a£7», Anow an eigen-

value of D. The schemes developed from (20) will be two-time level

schemes which may be used explicitly because of (2), (3).
Using the (1,0) approximant in (20) gives the LQ-stable scheme

(I+%a£D)U(t+6)—%a£d ) 1)

t+/

which, from Table I, is seen to be first order accurate in time. The

principal part of the local truncation error at the mesh point (h,n /)
is, from ( 10),

1 u 1 ,0%)
(‘zafh a2 W] -

1
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and at the mesh point (mh,n/) is

3 2
Ll L, 07u (23)
3 2 |

ox’ ot’
forj=2,3,..,.Nandn=1,2,....
In view of its favourable stability properties, it is worthwhile
to extrapolate (21) wusing (11). The extrapolated form can be used
explicitly and is Lo -stable; its local truncation error is

2 3 n
[—;—afhzg ‘§+j—z3gt‘j) (24)
X

1

at the mesh point (h, nt) adjacent to the boundary, and

1 0°u 4 o%u )
— —alh? + —7° 25
( 3 ox°’ 3 ot J1 25)
at the interior mesh points (jh, nt) where j = 2,...,N and n = 1,2,... .

Some improvement, in accuracy may be achieved by using the (1,1)
Padé¢ approximant to the matrix exponential function in (20) to give

1

(+LaD)Ut+ ) —Lard =1 ald)Ut)+—a d (26)
4 4 47T

which is second order accurate in time and which i1s A, -stable, the

amplification factor tending to -1 as t—oo.

The principal part of the local truncation error of (26) at the
mesh point (h,n/) is

1 0’u 1 ,0°u )"
Lo 1, 27
( 2 ek 12 aﬁ} 27

1

and at the mesh points (jh ,nt) away from the boundary is
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3 3
—l—azhza‘i—lwa‘j n (28)
3 0 X 12 ot ;
for j = 2,...,N and n = 1,2,... . The expressions in (27), (28)

may be improved by extrapolation but, as noted in section 2, the

extrapolated form is not A, -stable.

4. HIGHER ORDER TIME REPLACEMENTS

In view of the fact that all finite difference schemes resulting
from the use of backward difference replacements of the space derivative
in (1) can be used explicitly, it is now proposed that higher entries
from the Pade Table be used to approximate exp(—%aﬁD) in (20), even
though it will be necessary to square the matrix D.

Using, first of all, the (2,0) Pade approximant in (20) gives

I+ ;—MD +;—a2f2D2)g<t +0) - (;— am;—azsz) d =U®. @9

t+/

The matrix D? is given by

- ]
~20 9
0

21 - 24 9
| =8 22 - 24 9 G0)

1 -8 22 -24 9

0
I 1 -8 2 -24 9 |

and has one eigenvalue equal to 4/h” and N - 1 eigenvalues equal to 9/h?.

Applying (29) to the mesh point (jh, n€) in R leads to a linear

system which may be written in matrix form as
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EU(t+0)=¢". (31)

The matrix E is of order N and has the lower triangular form

<
e, e, 0
e, e e,
e, e e e,
E- € e, € e e, (32)
0
I e, e, e, e, e, |
Where
1 5 1 21
e,=l+ar + —a’r’,e,=—2ar — —a’r’,e,=—ar + —a’'r’,
2 2 2 8
1
e,=1+ —ar + —a’r’,e,=—2ar —3a’r’,e, =—ar + —a,r,
2
2.2 1 2.2
e, =—a'r°,eg,=—a’r", (33)

and the vector ¢" =(¢/,93,....,¢5) has elements

n n 1 n N 1 11
¢, =U +ar(1 +5ar)v w0y =03 —ar(EJr ?ar)v et s

01 =UT+Zalrtv, 41Ul catriy,,
0" =U"( = 5.6,...., N). (34)

The finite difference scheme based on the (2,0) Pade approximant

is L, -stable; the principal part of its local truncation error is
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3 3. \"
(—éamﬁ 2 - +%£3 Ztlj] ,j=45,..., N (35)
X

i

which, on extrapolation, becomes

3 4
[—%aﬁhz Zx‘j —%f“ gt}f] " i=4,5,.., N (36)
j

Expressions (35), (36) show that the loss of accuracy at the mesh points
(h,nt), n = 0,1,.., experienced by the methods based on the lower order
Pade approximants, has spread to the mesh points (2h, nf), (3h, nt). This

1s not a grave problem, however, for a space discretization involving a
1 . .
large value of N. Furthermore, the constant C3 = s in (35) is greater

in modulus than its counterpart in (28) which relates to the Ay -stable

method (26).

These observations indicate that the A, -stable method (26) is to be
preferred to the L ,-stable method (29). However, when a central
differ-ence replacement to the space derivative in (1) is made (see
Khaliq and Twizell [8]), this is not so; neither is it so in the case of
second order parabolic equations (Lawson and Morris [11]), for then the
equiv-alent method based on the (1,1) Padé approximant (the Crank-
Nicolson method), also requires a restriction on { to ensure the decay of
oscill-ations in U as t—o. Numerical results to support all these

observations are given in Khaliq [9].

Turning, next, to the (2,1) Pade approximant, (20) becomes

1 1 1 1
I+ —alD+—a?¢’D?*)U t+/)—(—all+ —a’/*D)d .,
( 3 24 W ( ) (3 24 d

1 1
=(I-—alD)y(t)+—ald . 37
(I- aD)y O+ ard, (37

Applying (37) to the mesh points (jh, nl) requires the solution vector
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U@t+/) to be determined implicitly from a linear system of the form (31).

The matrix E is still of the form (32) but its non-zero elements are now

given by
2.2 5 2.2 1 2.2
e, =l+— ar+—a’r’, e,=——a ——a'r’, e, =— ar + — a‘r-,
3 6 3 8
4 1 11
e, =l+ar+=>a’r’, e, = — — ar —a’r’, e, =— ar + — a’r’,
3 3 12
1 1
e,=——a’'r’, e =— a’ 1’
3 24

while the elements of 9“ are given by
1 2 1 1
¢, = (l—g ar)U | +ar(§+gar)vt+/ +§ ar v, ,
2 1 1 11 1

b5 =§ arU;| +(1—5 ar)U/ +ar(§+£ar)vm, +g ar v, ,
¢! _1 arU? +§arU‘; +(1—% ar)U} +ia2rsz ,

1 2 1 1
¢, =—— arU;} +§arU§ +(1—5 ar)U —gazrsz )

1

o= — g arU?_z +§ arU?_1 + (1—% ar)U? , J=5,....N.

4

The vector U(t+/) is found from (31) using forward substitution.

The finite difference scheme based on the (2,1) Padé approximant

is Lo —stable; the principal part of its local truncation error is

3 4 n
Lamr Q8L e 0y N
ox’ 72 ot ;

which, following extrapolation using (11), becomes

3 5.\"
L C0 8 s O i= 4,..,N.
3 ox* 945 ot

s
i

(39)

(40)

(41)

(38)

Expressions (40), (41) do indicate an improvement on (28) and justify

the use of (37) even though the three points near the boundary suffer
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greater error at each time step that the remaining N - 3 points away
from the boundary x = 0.

The final method of the family arising from (20) to be considered
in this paper, is that obtained by replacing the exponential matrix
function with its (2,2) Padé approximant. The recurrence relation
becomes

1 1 1 1
I+— alD+— a’"DHU(t+/) — (~ all+— a’**D
(b 2D @D = (all g DX

~t!
1 1 1 1
= (I_Z a¢€D+4—8 azszz)EKt)+ (:1 a€I+4—8 azﬁzD)Elt (42)
which gives rise to an A -stable method with amplification factor
tending to +1 as t —» .
Applying (42) to each mesh point (jh,n/?), j = 1,2,...,N, at
time t = nf, n=0,1,..., leads to the solution vector [NJ (t+ /) at the
advanced time t = (n+1)/¢ being determined implicitly from a system

of the form (31). The non-zero elements of E are arranged as in (32)

and have the values

e = 1+l ar +i a’r’ (32:—ar—i a’r’ e, = 1 ar+ — a’r’,

2 12 12 4 16

2.2 1 2.2 1 11 2.2

e, = l+—a +— ar |, e,=—ar——ar €, = — ar+ — a‘r

4 16 2 4 24

1 2.2 1 2.2

e, = ——ar , e =— ar . 43
7 p © = g (43)

The elements of the vector ¢" are

1 1 5, 1 1 1 1
' = (1-= ar+ — a71)U +ar= + — ar)y,, + af= — — ar)y ,
o = ( 5 > )18 1(2 5 W 1(2 " N

5 3 3, 1 11 1 11
, =ar(1-— arn)U +(1-= ar+ — a1’ )U +ar+— ar)y, + arCc — — ar)y ,
¢, =ar( " Y +( 2 6 185 (4 13 WVor (4 28 I\
d; =ar(—%+% ar)U; +ar(l—% ar)U, +(1—% ar+% azrz)Ungl a’r’v,, —é a’r’yv, ,

n 1 2.2 n 1 11 n 1 n 3 3 2.2 n
=——a‘r" Ul +ar(——+— anU, +ar(l—-— an)U; +(1—-— ar+—a 1)U
Oy P | +ar( REY YU, +ar( ) U3 +( 2 | U,

1
40 t+0 % t o
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| | R I 11 N 1 a
0] "% azrzUH—g azrzUj_3+ar(—Z+& ar)Uj_2+ar(1—5 ar)U
+(1—g ar+i a’rHul; j=5 N (44)
2 T i J=5..,N.
The local truncation error of (42) for j = 4,...,N and n = 0,1,...,

is

o’ 120 ot

i

(—l amm? 8 Ly aS“T
3 9

the time component in which may be improved by extrapolating, using

(12), to give

3 7. \"
BV S R (46)
3 o 1890 ot ),

. ) 1 0’ .
In view of the dominant term -3 alh’ ax—l;, however, the resulting

improvement in accuracy is unlikely to justify extrapolating in time

unless h is very small.

In the event of an even higher order approximant to the space
derivative being used in (1), instead of (14), the elegant methods of
Gourlay and Morris [4] for improving the accuracy in time of numerical
methods for parabolic equations, can be used with the relations (9), (20)
of the present paper. Such an approach requires the matrix D to have
increased band width. This band width would be increased still further
on squaring D and more than three points near the boundary would
suffer loss of accuracy when solving (31) using the higher order (2,0),
(2,1), (2.2) Pade approximants, though stability would not be affected.
It may, therefore, be advisable to use the technique of Gourlay and
Morris [4] with a space replacement of order higher than (14), but the
methods developed in the present paper can be implemented more

quickly and are to be preferred for use with (14).
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5. NUMERICAL EXPERIMENTS

To examine the behaviour of the methods discussed in sections2,3,4,
the methods based on the 1,1), (2,0), (2,1),(2,2) Pade approximants are
tested on a number of problems from the literature. When these four
Pade approximants are used in conjunction with the matrix C given by (6) they
will be named C11,C20,C21,C22, respectively, and when used in conjunction
with the matrix D they will be named D11,D20,D21,D22, respectively. All
computations were carried out using single precision on a CDC 7600 computer.

The differential equation on which the methods are tested is
a O

the initial and boundary conditions being different for each problem.

Problem 1 (Oliger [3])

Here, the initial conditions are taken to be
g(x) = sin 2kznx ; x >0
and the boundary conditions to be
v(t) = -sin 2kznt ; t > 0
where k is a positive integer. The theoretical solution of this problem
1s

u(x,t)=sin 2k 7(x-t)

and the numerical solution will be calculated for 0 < x < 1. The integer
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k gives the number of complete waves in the interval 0 < x < 1.

The boundedness of the solution and the build—up of error may be

examined with reference to two norms, as in Oliger [13], Let
z; =u(jh,n?) —U;‘ with j = 0,1, ....,N and n = 0,1,..., so that 2z" is
the vector of such errors and has N +1 elements, and let

V' =[U;,Uf,...,Uy]" be the vector (or order N + 1) of solutions,

including the boundary condition, at time t = n/. The no are

defined by

n
Z;

2 N
=0

2 i

The solution was computed with h = 1/640, ¢/ = 1/80, r = 8 and

’ Hg ’ Hg
2 2

and 4.0 are given in Table II. Choosing this small value of h has

k = 2; the values of HY

at time t = 0.5,1 .0,2.0

0

the effect of lessening the emphasis of the component —1arthd® wox?

in (22) et seqq, and the component —%a£h283u/ax3 in (23) et seqq. The

increased number of mesh points at each time level can be appreciably

offset by using a large value of 7/, and consequently of r. In the

paper by Oliger [13], for example, r was given the value + compared

with the value 8 in the present experiment.

Visual analysis of Table II, and comparison with Table 3.1 in [13],
shows that the errors for all eight formulations involving the matrices
C and D show very little increase in magnitude after time t = 1.0.

That is to say, the errors reach their maximum values very quickly,
there being very little accumulation of errors after time t = 1.0.

This observation contrasts with the results of Table 3.1 in [13] where
the errors, generally, show a gradual growth as time increases. The

stagnation of errors experienced using the two-time level methods of
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the present paper make them suitable for use with large values of t.
The maximum error of each method was seen to be in keeping with the
truncation errors given in sections 2,3,4. The methods based on the
(2,1) and (2,2) Padé approximants showed the greatest improvement when
used with the matrix D (for any value of t), the corresponding improve-
ments in the performance of the methods based on the (1,1) and (2,0)

Padé approximants being less pronounced.

Problem 2 (Abarbanel et al. [1])

The boundary conditions and the initial conditions for this problem
are the same as for Problem 1. The parameter k is given the value 4
and the solution computed with h = 1/640, ¢ = 1/80, r = 8§; the numerical
results at time t = 10.0 are given in Table III. The corresponding
results for k = 4 are given in Table 4 of Abarbanel et al. [1] where
the ratio r was given the value 0.9. In their Table 4 Abarbanel et al.
[1] compare their results with earlier work by a number of authors
including Boris and Book [2], Kreiss and Oliger [9], Oliger [13], and
Richtmyer [14]. The results of the present paper show that the methods
developed are very competitive with all methods tested in [1] for k = 4.
The growth of errors as a result of increasing the wave frequency was
not as pronounced as any of the methods tested in [1]. Allowing a
factor of 3 for the faster CDC 7600 over the CDC 6600 used by
Abarbanel et al. [1], the CPU times quoted in Table IIIl are generally
superior to the figures quoted in [1]. This observation is

strengthened when it is further noted that the CPU times in Table III

z

include the time taken to compute by 640 comparison statements in

0

the computer program.

It is confirmed again that the use of a small value of h in the methods

which have higher accuracy in time, produces accuracy as high as do
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those methods, tested in [1,13] with a larger value of h, which have

0(h*) error in space.

Problem 3 (Khaliq and Twizell [8])

The boundary condition for this problem is

u(0,t)y =t; t>0

and the initial condition is

u(x,0)=1+x; x 20 .

The theoretical solution of the problem is

u(x,t) =1 +x —t, X >t

u(x,t) =t — x, x <t

so that there exists a discontinuity in the solution across the line

t = x in the (x,t) plane.

Problem 4 (Khaliq and Twizell [8])

Here, the initial condition 1is

u(x,0) =¢e*, x 20

and the boundary condition is

u(0,t) =e', t>0.
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The theoretical solution of the problem is

u(x, t) = e*’' , X >t

u(x,t) =e' ™ , X <t

so that there exist discontinuities in the first derivatives across

the line t = x in the (x, t) plane.

Problems 3 and 4 were tested with h = 1/80, ¢/ = 1/20, r = 4 and
the results are given at time t = 1.0 in Tables IV, V respectively.
It is noted again that the methods based on the 2,1) and (2,2) Pade
approximants showed greater improvements than the improvements shown
by the methods based on the (1,1) and (2,0) Pade approximants. Using
the higher order space approximation the highest accuracy was achieved
by method D22 followed, in succession, by D21, D11, D20. This is in
keeping with the local truncation errors of these methods and with
the numerical results obtained for Problems 1 and 2. It was also found,
as the computation proceeded, that, away from the boundary, the greatest
errors were at those mesh points close to the line t = x across which

there were discontinuities.

Problem 5

The boundary condition for this problem is taken to be

u(0,t) = e, t>0

and the initial condition to be

IA
bl

IA
p—

u(x,0) =e*, 0
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The theoretical solution of the problem is

U(x, t) = e*"

which decays as time increases. The problem was run with h = 1/80,
/= 1/20 and r = 4; the numerical results at time t = 10.0 are given

in Table VI.

The errors were found to behave in much the same way as in the
other problems; that is, using the higher order space approximant
produced a more noticeable improvement in the methods based on the
(2,1),(2,2) Pade approximants than in the other two methods. The two
formulations based on the (1,1) Pade approximant are seen to give very

good results at time t = 10.0 when for 0 < x < 1, the solution lies in

the approximate interval 4.540 x 107> < u < 1.234 x 10°* . This is due to
these formulations using fewer mesh points and thus experiencing smaller

round off errors.

6. CONCLUSIONS

Two families of two—time level finite difference schemes, based on
Pade approximants to the matrix exponential function, have been developed
in this paper for the numerical solution of first order hyperbolic partial

differential equations with initial and boundary conditions specified.

First of all, the space derivative was replaced by the usual first
order backward difference approximant at each mesh point at a given time
level and the resulting system of first order ordinary differential
equations was solved using the (1,1),(2,0),(2,1),(2,2) Padé pproximants.
Next, the space derivative at the mesh point adjacent to the boundary,
at a given time level, was replaced by the same low order approximant,

and by the usual second order backward difference approximant at all other
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mesh points. The resulting system of ordinary differential equations

was solved using the same four Pade approximants.

All four numerical methods of each family were implicit in nature;
those based on the (1,1) and (2,2) Pade approximants were seen to be
Ap-stable and those based on the (2,0) and (2,1) Padé approximants were
seen to be Lo-stable. The form of the given boundary conditions, however,
meant that the methods were all used explicitly, obviating the need to
solve a linear algebraic system. The CPU times for all eight methods

were found to be fast.

The methods were tested on five problems from the literature; the
results obtained were better than other results in the literature, even
though the orders of the methods in the present paper are, in many cases,
lower. It was found that the lower order (1,1) and (2,0) Padé approx-
imants gave good results when the low order replacement of the space
derivative was used at each mesh point at a given time level, and that
the higher order (2,1) and (2,2) Padé approximants gave their best results
when the higher order replacement of the space derivative was used at
interior mesh points. This implies that low order replacements in both
space and time, or higher order replacements in both space and time, are
most effective; this observation was also made by Abarbanel et al.[1,p.351].

For problems with decaying solutions, the two formulations based on the
(1,1) Pade approximant give very good results due to the smaller number

of mesh points used, thus reducing round-off errors.



24

Table I: Error constants and the extrapolated forms of the five

methods based on the (m,k) Pade approximants m = 1,2, k = 0(1)m.

Method Error constant Extrapolated Error constant
(Padé) Cq From Eq
(1,0) Co=-12 2U(l)_ U(z) Es-43
(L) C3-.12 (4U(1)_U(2) )3 Es— 110
(2,0 C3=1/6 (4U(1)_U(2) V3 Es-iin
2,1 Cq=172 8 U(l) _ U(z) )7 Es— go4s
(2,2) C5=1/720 (16 U(l)_ U(z) )15 E7—_1/1800

Table II: Numerical results for Problem 1 at time t = 0,5,1.0,2.0,4.0

Method H v H 2 H . CPU(sec) H v H . H 2 CPU(sec)
~ 2 ~ 12 ~ lleo ~ 2 ~ 12 ~ lloo
t=0.5 t=1.0
Cl1 6.75(-1) 3.55(-2) 6.08(-2) 0.062 6.65(-1) 5.00(-2) 1.07(-1) 0.115
€20 6.70(-1) 5.76(-2) 1.01(-2) 0.070 6.58(-1) 8.55(-2) 1.56(-1) 0.123
C21 6.74(-1) 1.79(-1) 6.01(-2) 0.074 6.64(-1) 2.07(-1) 1.07(-1) 0.137
C22 6.75(-1) 1.71(-1) 5.98(-2) 0.078 6.64(-1) 1.97(-1) 1.04(-1) 0.145
D11 7.07(-1) 7.03(-3) 1.21(-2) 0.084 7.06(-1) 1.00(-2) 2.40(-2) 0.158
D20 7.03(-1) 4.67(-2) 9.11(-2) 0.088 7.00(-1) 7.20(-2) 1.17(-1) 0.169
D21 7.06(-1) 1.31(-2) 2.66(-3) 0.095 7.05(-1) 1.89(-2) 2.70(-2) 0.179
D22 7.06(-1) 1.23(-3) 2.42(-:3) 0.119 7.06(-1) 1.75(-2) 2.71(-3) 0.227
t=2.0 t=4.0
Cl1 6.65(-1) 5.00(-2) 1.07(-1) 0.218 6.65(-1) 5.00(-2) 1.07(-1) 0.425
€20 6.59(-1) 8.61(-2) 1.56(-1) 0.249 6.59(-1) 8.61(-2) 1.56(-1) 0.487
C21 6.64(-1) 2.07(-1) 1.07(-1) 0.264 6.64(-1) 2.07(-1) 1.07(-1) 0.517
C22 6.64(-1) 1.97(-1) 1.04(-1) 0.279 6.64(-1) 1.97(-1) 1.04(-1) 0.547
D11 7.06(-1) 1.00(-2) 2.92(-2) 0.305 7.06(-1) 1.00(-2) 2.43(-1) 0.600
D20 7.00(-1) 7.30(-2) 1.27(-1) 0.312 7.00(-1) 7.30(-2) 1.27(-1) 0.689
D21 7.05(-1) 1.90(-2) 2.76(-2) 0.347 7.05(-1) 1.90(-2) 2.76(-2) 0.791
D22 7.05(-1) 1.75(-3) 2.71(-3) 0.445 7.06(-1) 1.75(-3) 2.71(-3) 0.877
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Table III: Numerical results for Problem 2 at time t = 10.
Method H v H . H . CPU(sec)
~ 2 ~ 2 ~ Ml
cil 5.61(-1) 1.86(-1) 4.00(-1) 1.049
€20 5.29(-1) 2.87(-1) 5.73(-1) 1121
c21 5.54(-1) 3.82(-1) 3.85(-1) 1278
22 5.59(-1) 3.72(-1) 3.75(-1) 1372
DIl 7.04(-1) 8.05(-2) 1.94(-1) 1.483
D20 6.58(-1) 2.46(-1) 4.81(-1) 1.590
D21 6.96(-1) 4.17(-1) 6.47(-2) 1.697
D22 7.07(-1) 8.28(-3) 4.48(-2) 2.178
Table IV: Numerical results for Problem 3 at time t = 1.0
Method H v H , H . CPU(sec)
~ 12 ~ 2 ~ lloo
il 1.78 2.01(-2) 9.64(-2) 0.007
€20 1.83 5.76(-2) 1.22(-1) 0.007
c21 1.80 1.59(-1) 1.01(-1) 0.008
22 1.78 1.67(-1) 9.55(-2) 0.008
DIl 176 1.75(-2) 4.00(-2) 0.008
D20 1.82 4.82(:2) 7.78(-2) 0.008
D21 1.79 1.62(-2) 3.72(-2) 0.009
D22 1.78 451(-:3) 2.78(-3) 0.010
Table V: Numerical results for Problem 4 at time t = 1.0
Method H v . . CPU(sec)
~ 2 ~ 2 ~lloo
i1 5.97(-1) 1.40(-1) 5.76(-1) 0.009
€20 5.98(-1) 2.51(-1) 5.79(-1) 0.010
c21 5.99(-1) 2.38(-1) 5.50(-1) 0.011
22 5.97(-1) 2.34(-1) 5.62(-1) 0.012
D11 5.83(-1) 9.04(-2) 5.40(-1) 0.012
D20 5.90(-1) 9.78(-2) 5.48(-1) 0.012
D21 5.82(-1) 8.53(-2) 5.34(-1) 0.013
D22 5.79(-1) 8.60(-2) 5.18(-1) 0.016
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Table VI: Numerical results for Problem 5 at time t = 10.0

Method

2

o0

Cl1

C20

C21

C22

DI1

D20

D21

D22

1.73(-7)
6.61(-6)
1.41(-3)
7.46(-4)
4.26(-6)
6.37(-6)
2.36(-6)

2.74(-6)

4.01(-7)
8.94(-6)
2.86(-6)
1.20(-6)
8.94(-6)
9.65(-6)
8.60(-6)

7.96(-6)
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