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Abstract 
 

STIMA (space-time integrated moving average) model is a special form 
of  Vector IMA model that combines the interdependence of time and location 
that is known by space-time model.  STIMA model requires the same parameter 
values for all locations, so Generalized-STIMA (GSTIMA) model is developed 
to overcome this problem. This paper compares the implementation of two 
models in forecasting the price of sugar in capital provinces in Sumatra Island, 
Indonesia.  The first step is model building for each model. This step is similar to 
Box-Jenkins’s procedure. It is begun with the determination of temporal order by 
using AICC, while spatial  order  is restricted  on  order  1, the parameter  
estimation uses  nonlinear least square method that are minimized by a Gauss-
Newton algorithm, and then diagnostic checking  of white  noise  errors.  The 
normalization  of  cross-correlation between  the locations at the appropriate time 
lag is used as space weight. The last, the implementation of forecast is evaluated 
by using the Root Mean Square Error (RMSE) where the error is defined as the 
differences between the actual value and the forecast value. The implementation 
of STIMA model is better compared with GSTIMA model in forecasting the 
price of sugar, although STIMA model produces the same parameters for each 
location.  
Key words: Space-time, STIMA, GSTIMA, Modeling, Forecasting. 
 

 
INTRODUCTION 
 

The data of multivariate time series can be modeled with VARMA model (Vector 
Autoregressive Moving Average) which is an extension of the ARMA model. A special form of 
VARMA model is STARMA (Space-Time Autoregressive Moving Average) model which 
combines the interdependence of time and location.  This model was first introduced by Pfeifer 
and Deutsch (1980).  However, STARMA model is sometimes considered unrealistic because 
the parameters are assumed equal for all locations. This assumption is considered not to have a 
strong theoretical basis and less able to accommodate heterogeneity locations.  Borovkova et al. 
(2002) proposed that GSTARMA (Generalized Space-Time Autoregressive Moving Average) 
model also can combine the interdependence of time and location. This model is considered 
more realistic because it produces different parameters for each location.  The STARMA model 
and GSTARMA model with zero order for MA and with applying first difference can be called 
STIMA model and GSTIMA model. 

The phenomenon of sugar price is one of the phenomena that can be modeled by using 
STIMA and GSTIMA.  The effect of spatial interaction which relates to the phenomenon of 
sugar price inter-provincial can be seen from the proximity of one province with other provinces 
as sugar-producing provinces. The farther one province from sugar-producing probably will be 
able to increase sugar price in the province because it relates to transportation and production 
costs.  Based on the data from BPS (2009) in 2007 and 2008 between eight provinces in 
Sumatra Island, Lampung, South Sumatra and North Sumatra sequentially give contribution 
26.80%, 1.9% and 2.39% of the national sugar production. While the others, they are Aceh, 
West Sumatra, Jambi, Riau and Bengkulu are not sugar-producing provinces. Sugar is one of 
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the strategic commodities in Indonesian economy. The forecast of sugar price will be very 
useful for designing the system that will be built both by the government or the food and 
beverage industry. 

This research will make the models for the phenomenon of sugar price in eight capital 
provinces in Sumatra Island by using GSTIMA and STIMA model.  GSTIMA model is 
considered more theoretical and complex rather than STIMA model.  However, it still becomes 
a separated question, whether the GSTIMA model is better than STIMA model to forecast the 
sugar price in the capital provinces in Sumatra. This study will examine the comparison of the 
models and the implementation of forecasting models in modeling and forecasting sugar price 
by using the normalized cross-correlation as space weight.  

 
RESEARCH METHOD 
Method and Material 

This research is a comparative study of STIMA and GSTIMA model in forecasting 
sugar price in eight capital provinces in Sumatra island, namely, Banda Aceh, Medan, Padang, 
Pekanbaru, Bengkulu, Jambi, Palembang and Bandar Lampung. Sumatra island was chosen as 
the subject of the research because Sumatra island is included the second largest island in 
producing sugar after Java island, and also has larger area than Java island. Sugar-producing 
provinces in Sumatra island are Lampung, South Sumatra and North Sumatra. And the other 
provinces are not sugar-producing provinces. The effect of spatial interaction which relates to 
the phenomenon of inter-provincial sugar price can be seen from the influence of sugar 
distribution, transportation and production costs. Besides, sugar is included as food products 
which is controlled and regulated by the government because it has the effects toward the 
national economy and becomes one of the indicators in inflation measurement. 

The data used in this research was secondary data. It was the time series data of sugar 
price in eight capital provinces in Sumatera Island.  The time series data was weekly price (288 
series) which was obtained from the average daily per week in the beginning of January 2008 
until December 2013.  The procedure obtained that STIMA and GSTIMA model were done 
with the help of MINITAB and SAS program through the steps of identification of time and 
spatial order, the formation of normalization cross-correlation weight matrix, parameter 
estimation, diagnostic checking, until the forecast. After getting the forecasts of two models, it 
was followed by doing the comparison of  implementation forecasting between two models by 
comparing RSME value. The smaller RSME value, the better implementation of model in 
forecasting.  
 
Methodology 
Vector ARIMA Model 

For example,		풁풕 = [풁ퟏ,풕,풁ퟐ,풕, … ,풁풎,풕]′, 푡 = 0, 1, 2, …푇, with m-dimensional, where 풁풕 
is a series of sugar price that is not stationary, then the model VARIMA order p, d, q is defined, 
as follows (Wei 1990): 

횽풑(퐵)퐃(퐵)풁풕 = 	횯풒(푩)풆풕																																																										(1)             
where 																																																	횽풑(퐵) = 횽ퟎ −횽ퟏ퐵 −횽ퟐ퐵 −⋯−횽풑퐵  

													횯풒(퐵) = 횯ퟎ −횯ퟏ퐵 −횯ퟐ퐵 −⋯−횯풑퐵  
횽풑 and 횯풒	are nonsingular matrix sized 푚 × 푚, with assume 횽ퟎ = 횯ퟎ 	= 푰 

and                      												(퐵) =

⎣
⎢
⎢
⎡(1− 퐵) 0 ⋯ 0

0 (1− 퐵) ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 (1− 퐵) ⎦

⎥
⎥
⎤
 

The shift backward of operator B and its use as follows 퐵풁풕 = 풁풕 ퟏ, and (1 −퐵) 풁풕 = 풁풕, so 
that when q = 0 then becomes a model VARI (p) can be written in the form 

풁풕 = 횽ퟏ풁풕 ퟏ + 횽ퟐ풁풕 ퟐ + ⋯+횽풑풁풕 풑 + 풆풕 																																							(2)	 
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And when p = 0 then becomes a model VIMA (q) can be written in the form 
풁풕 = 풆풕 − 횯ퟏ풆풕 ퟏ −횯ퟐ풆풕 ퟐ +⋯−횯풒풆풕 풑																																									(3) 

 
Space-Time  IMA Model 

STIMA model is an extension of VIMA model which has been modified with the main 
differences in adding the weight of matrix location.  STARIMA Model is defined as follows: 

풁풕 	= − θ 푾( ) 풆풕 풌+풆풕,																																													(4) 

with 퐸[풆풕] = ퟎ and  퐸 풆풕,풆′풕 풔 = 휎 푰풎	, 푓표푟	푠 = 0
ퟎ		, 표푡ℎ푒푟푤푖푠푒	

 

where 푣  shows the kth spatial order of the moving average, θ  is the parameter of moving 
average on the kth time lag and the lth spatial lag, and 푾( ) is an m × m matrix of spatial weight 
for the spatial order l which has a zero diagonal. 
 
Generalized Space-Time  IMA Model 

Generalized Space-Time Model was proposed by Borovkova et al. (2002), GSTIMA is 
a development of the STIMA model. In STIMA model parameters are assumed equal for each 
location. This assumption makes STIMA model simpler because it has fewer parameters. 
However, this assumption makes STIMA is considered inflexible and unrealistic in describing 
the characteristics of the location which is probably not homogeneous. The fundamental 
differences of two models is on the parameters, which in the model STIMA θ  are constant, 
while in GSTIMA model the form are matrix of 횯 .  It causes GSTIMA more difficult in the 
calculation parameters.  GSTIMA model is defined as follows: 

풁풕 	= − 횯 푾( ) 풆풕 풌+풆풕,																																					(5) 

where,    

	횯 = 푑푖푎푔(θ ( ), … , θ ( ) = 	
θ ( ), 0 0

0 ⋱ 0
0 0 θ ( )

 

 
Model Identification 

As in time series modeling, the first step is identifying a tentative model which is 
characterized by spatial and time order.  Spatial order is restricted on order 1, because the higher 
order is difficult to be interpreted (Wutsqa et al., 2010).  Approving the method in VARMA 
model, the time order is determining by using the Akaike Information Corrected Criterion 
(AICC). The identification of time order is done by doing AICC value.  

퐴퐼퐶퐶 = log
~

+
2푟

(푇 − 푟)/푘
																																										(6) 

Where ∑ =~ 푇 ∑ 푢 	푢′   is matrix of the maximum estimator for the covariance of residual 
of the model, k is the number of variables, r is the number of estimated parameters and T is the 
number of observations. 
 
Determination of Space Weight 

The determination of space weight by using the normalization result of cross-correlation 
between locations at the appropriate time lag was firstly proposed by Suhartono and Atok 
(2006) in Suhartono and Subanar (2006).  In general, the cross-correlation between the location 
of the ith and jth on the all time lag k, 푐표푟푟[푍 	(푡), 푍 	(푡 − 푘)]	 is defined as 

휌 (푘) = 훾 (푘)/	휎 휎 ,															푘 = 0, 1, 2, … 																																(7) 
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where 훾 (푘) is the cross covariance between the observations in the location of the ith and jth 
location in the kth time lag, 휎  and 	휎  are the standard deviation of the observations in the 
location of the ith and jth location. The estimation of the cross-correlation in the data sample as 
follows: 

푟 (푘) =
∑ [푍 	(푡) − 푍 ][푍 	(푡 − 푘) − 푍 ]

[(∑ [푍 	(푡) − 푍 ] ) (∑ [푍 	(푡) − 푍 ] )] / 			.																											(8) 

Furthermore, the determination of the weight matrix can be solved by normalizing the cross-
correlation between the locations at the appropriate lag. This process generally produces weight 
location as follows 

푤 =
| ( )|

∑ ( ) 	, where 푖 ≠ 푗,푘 = 0, 1, 2	… ,푝																													(9) 

and satisfies ∑ 푤 = 1.	  
 
Parameter estimation 

Parameter estimation for models of STIMA and GSTIMA can be done by minimizing 
the squared residual 

푺 = 풆(풕)′풆(풕)																																																																		(10) 
where 풆(풕) for GSTIMA model with ,			푡 = 0,1, . . ,푇 

					풆풕 = 풁풕 + 횯 푾( ) 풆풕 풌.																																					(11)	 

the same way is also used for STIMA model. However, the presence of the moving average 
component equation, then S becomes nonlinear so that S can be minimized by using the Gauss-
Newton algorithm (Zhou & Buongiorno, 2006).   
 
Diagnostic Checking 

To determine the constructed models has a decent former for forecasting. It is necessary 
to check whether the residuals of the model are approximately white noise, which means that 
the effective information of sugar prices has been exploited effectively by the model.  If the 
autocorrelation decline zero in almost all lags , it means that the residuals are uncorrelated and 
the residuals close to white noise and STIMA and GSTIMA model construction are available 
(Min et al., 2010).   

 
RESULT AND DISCUSSION 
Preliminary Model Building 

This modeling requires stationary process in data, so that in the first step is checked the 
stationary of data.  The plot of sugar price time series data for each capital city can be seen in 
Figure 1(a).  It shows that the data does not stationary in mean.  Therefore, to achieve the 
stationary data, the first difference transformation must be applied.  푍 (푡) represents the sugar 
price for capital city i, i=1,2,..,8 at time t, t=1,…,288.  The first difference transformation of 
푍 (푡) denoted by 푍 (푡) is 

푍 (푡) = 푍 (푡) − 푍 (푡 − 1)																																																						(12) 
Figure 1(b) shows the data has applied the first difference.  The result of the application of this 
technique shows that the data meets the assumptions of stationary.  The results show that each 
time series data at each location has been stationary. 
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(a)                      (b) 

Figure 1 (a) The data of the original sugar prices in 8 capitals in Sumatera island and (b) 
 The  data of the original sugar prices after applied the first difference. 

 
After the data meets the assumptions of stationary.  For the purpose of forecasting, the data is 
grouped into the training data set and test data set.   The training data are 268 data observations 
that will be used for model and the test data are the last 20 data that will be used in comparison 
of the implementation forecasting.  
 
STIMA and GSTIMA Model Building for the Sugar Price Data 
 
Determination of Space Weight 

The weight normalized cross correlation does not require specific rules, such as 
depending on the distance between locations. In this research, the cross-correlation sugar price 
among locations can be weight with the principle of the greater cross-correlation, the greater 
weight given. The results of normalization cross-correlation between the locations at the 
appropriate lag for this case can be seen in Figure 2 and Figure 3. 

 

 
Figure 2 The cross-correlation matrix between the location at the lag temporal 1 

 

 
Figure 3 The cross-correlation matrix between the location at the lag temporal 2 

 
Model Identification 

After transforming the data and constructing spatial weight matrix, the next step is the 
identification of the model order.  As in modeling time series, this step is identifying a tentative 
model which is characterized by spatial and time order.  Spatial order is restricted on order 1 
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because the higher order is difficult to be interpreted (Wutsqa et al., 2010).  Table 1 shows that 
the smallest value of AICC is MA model order 2.  Thus, the models that will be built are 
STARIMA and GSTARIMA models with the order of temporal AR (0), MA (2) and spatial 
order 1 with first difference.  This model is called as STIMA and GSTIMA model.  

 
Table 1 Minimum Information of Criterion Based on AICC 

Lag MA 0 MA 1 MA 2 MA 3 MA 4 MA 5 

AR 0 88.370943 88.195071 88.047394 88.312579 88.577849 88.76531 

AR 1 88.197916 88.321777 88.19572 88.486506 88.7942 89.092439 

AR 2 88.085791 88.260814 88.444165 88.750117 89.201891 89.471196 

AR 3 88.349011 88.545572 88.741617 89.152278 89.529882 89.76491 
 
Parameter Estimation 
  The results of parameter estimation for STIMA and GSTIMA model with the temporal 
order MA (2), spatial order 1 can be seen in Table 2 and Table 3. GSTIMA model produces 
more parameters than STIMA model, so that GSTIMA model is more complex than STIMA 
model. 

 
Table 2 The estimation of nonlinear OLS for STIMA parameter 

Parameter Estimate t-value Approx Pr > |t| 

θ  -0.210 -9.34 <.0001* 

θ  0.501 15.27 <.0001* 

θ  -0.244 -10.68 <.0001* 

θ  0.233 6.88 <.0001* 
    *significant at alpha 5% 

 
Table 3 The estimation of nonlinear OLS for GSTIMA parameter 

Capital 
city Site i 휃  휃  휃  휃  

Banda 
Aceh 1 -0.132 0.334 -0.276 0.256 

Medan 2 -0.162 0.347 -0.375 0.436 
Padang 3 -0.307 0.508 -0.222 0.365 
Pekanbaru 4 -0.205 0.971 -0.309 -0.141* 
Bengkulu 5 -0.160 0.477 -0.236 0.287 
Jambi 6 0.112 0.196 -0.262 0.309 
Palembang 7 -0.304 0.452 -0.098* 0.348 
Lampung 8 -0.288 0.646 -0.317 0.456 

*insignificant at alpha 5% 
 
The results of parameter estimation in STIMA and GSTIMA model by using the normalization 
of cross-correlation as weight matrix show almost significant for all parameters.  Based on 
Table 2, STIMA model for location i, i= 1,2, …, 8 as follows 
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풁 (푡) = −	θ 풆풊(푡 − 1) − θ 푤 풆풋(푡 − 1) − θ 	풆풊(푡 − 2) − θ 푤 풆풋(푡 − 2)

+ 풆풊(푡)									(13) 
and based on Table 3, GSTIMA model for location i, i= 1,2, …, 8 as follows 

풁 (푡) = −	θ( )풆풊(푡 − 1) − θ( ) 푤 풆풋(푡 − 1) − θ( )풆풊(푡 − 2) − θ( ) 푤 풆풋(푡 − 2)

+ 풆풊(푡)									(14) 
 
Diagnostic Checking 

To determine the constructed models has a decent former for forecasting. It is necessary 
to check whether the residuals of the model are approximately white noise, which means that 
the effective information of sugar prices has been exploited effectively by the models.  The 
result of diagnostic checking for each capital city is good because autocorrelation decline almost 
zero in the all lags. Therefore,  the residuals close to white noise and the models we just build 
are available.  For example, Figure 3 and Figure 4 are two autocorrelation function (ACF) graph 
for STIMA and GSTIMA models in Aceh capital city.  In the figures, it is evident that the 
residuals of STIMA and GSTIMA models are close to the white noises. The mean of the 
residuals is nearly zero and the ACF graph shows that ACF decline rapidly after order 0 and 
insignificant at almost all lags, which indicates that the residuals are uncorrelated and the 
residuals close to white noise and STIMA and GSTIMA model construction are available. 
 
 

 
 

 
 
 

Figure 3 Diagnostic checking for residuals of STIMA model  
 

  
 
 
 
 
 

Figure 4 Diagnostic checking for residuals of GSTIMA model  
 
Comparative Study 

For the purpose of  forecast, the estimated parameters in Table 2 for STIMA model and 
space weight from Figure 2 and Figure 3 can be used to forecast the h-step-ahead prediction 
value, as follows: 

푍 (푡 + ℎ)

= −	θ 푒풊(푡 − 1 + ℎ) − θ 푤 푒풋(푡 − 1 + ℎ)

− θ 푒풊(푡 − 2 + ℎ)−θ 푤 푒풋(푡 − 2 + ℎ)	+	풆풊(푡

+ ℎ)																													(15) 
where  푍 (푡 + ℎ) = 푍 (푡 + ℎ) − 푍 (푡 + ℎ − 1), so the 1-step-ahead prediction value, as follows: 
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푍 (푡 + 1) = −	휃 푒풊(푡) − 휃 푤 푒풋(푡) − 휃 푒풊(푡 − 1)

− 휃 푤 푒풋(푡 − 1)	+	풆풊(푡 + 1) + 푍 (푡).		 

푍 (푡 + 1) = −	휃 푒풊(푡) − 휃 푤 푒풋(푡) − 휃 푒풊(푡 − 1) − 휃 푤 푒풋(푡 − 1)

+ 푍 (푡).			 
 
The value of 	풆풊(푡 + ℎ) will not be known because the expected value for random error in the 
future must be set equal to zero. However, from the fitted models we can replace the value 
풆풊(푡),풆풊(푡 − 1), … ,풆풊(푡 − 푞) with their value that is defined empirically, i.e. as obtained after 
the last iteration Gauss-Newton algorithm. 
 
The 2-step-ahead prediction value, as follows: 

푍 (푡 + 2) = −	휃 푒풊(푡 + 1) − 휃 푤 푒풋(푡 + 1) − 휃 푒풊(푡)

− 휃 푤 푒풋(푡)	+	풆풊(푡 + 2) + 푍 (푡 + 1).			 

푍 (푡 + 2) = −휃 푒풊(푡) − 휃 푤 푒풋(푡) + 푍 (푡 + 1). 

The 3-step-ahead prediction value, as follows: 

푍 (푡 + 3) = −	휃 푒풊(푡 + 2) − 휃 푤 푒풋(푡 + 2) − 휃 푒풊(푡 + 1)

− 휃 푤 푒풋(푡 + 1)	+	풆풊(푡 + 3) + 푍 (푡 + 2).		 

푍 (푡 + 3) = 푍 (푡 + 2).		 
 
 The 4-step-ahead prediction value, as follows: 

푍 (푡 + 4) = −	휃 푒풊(푡 + 3) − 휃 푤 푒풋(푡 + 3) − 휃 푒풊(푡 + 2)

− 휃 푤 푒풋(푡 + 2)	+	풆풊(푡 + 4) + 푍 (푡 + 3).		 

푍 (푡 + 4) = 푍 (푡 + 3).		 
 
Therefore, starting from 2-step-ahead prediction value until 20-step-ahead prediction value, the 
value of prediction is constant. 

The estimated parameters in Table 3 for GSTIMA model and space weight from Figure 2 
and Figure 3 also can be used to predict the h-step-ahead prediction value by using the same 
method as STIMA model above. The difference is only on the different parameters for each 
location, as follows:  

푍 (푡 + ℎ) = −θ
( )
	풆풊(푡 − 1 + ℎ)− θ

( )
푤 풆풋(푡 − 1 + ℎ)− θ

( )
풆풊(푡 − 2 + ℎ) 								

− θ
( )

푤 풆풋(푡 − 2 + ℎ) + 풆풊(푡 + ℎ)

+ 푍 (푡 + ℎ − 1)																													(16) 
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After getting the value of sugar price prediction of STIMA and GSTIMA model for eight 
capitals in Sumatra island. Furthermore, the step is to compare two models of the 
implementation forecasting by using the Root Mean Square Error (RMSE) which is also called 
the Root Mean Square Deviation (RMSD).  The RMSE is a measure that is frequently used of 
the difference between the values that is predicted by a model and the values that is observed 
from the environment that is being modelled.  These individual differences are also called 
residuals, and the RMSE serves to combine them into a single measure of predictive power.  

푅푀푆퐸 = 푚 푅푀푆퐸 																																																									(17) 

where m many locations 

푅푀푆퐸 = 푑 [풁 (푇 + 푗) − 풁 (푇 + 푗)]

/

,																														(18) 

To d is the size of the data used for testing the model with j=1,2, … ,20, and T is the size of 
modeled data that is 268 observations.  
 

Table 4 The value of RMSE for each capital 
Site i STIMA GSTIMA 

1 654.11 592.89* 
2 395.41* 401.93 
3 313.79 227.73* 
4 883.20* 1164.92 
5 315.91* 316.01 
6 185.66* 188.75 
7 197.30* 314.99 
8 98.92* 184.29 

   * The best implementation of forecasting 
 
Table 4 shows the smallest RMSE value is more owned by STIMA model for each location, 
while by using the formula [17] obtained the results of RSME for STIMA and GSTIMA 
respectively about 380.54 and 423.94. The value of the average of RMSE from STIMA model is 
smaller than GSTIMA model.  It can be concluded that the implementation of STIMA model 
forecasting  is better than GSTIMA model for the forecasting of sugar price in eight capitals in 
Sumatra island.  
 
CONCLUSION AND SUGGESTION 
 

The sugar price in the capital provinces of Sumatra island is constructed from the structure 
of MA data, and considers the influence between locations. Therefore, the price of sugar is 
modeled with STIMA and GSTIMA model. GSTIMA model is more complex than STIMA 
model. GSTIMA model is regarded able to accommodate the influence of heterogeneity 
locations that is indicated with different parameters for each location, while STIMA model is 
more produce fewer parameters because it assumes the influence of homogeneous locations. 
However, the more complex model does not guarantee it will get better in forecasting.  The 
implementation of STIMA model forecasting is better rather than GSTIMA model in 
forecasting the price of sugar in eight capitals in Sumatra island.  
 



Dania Siregar,, et al/ Price Of Sugar Modeling.....                                              ISBN. 978-979-96880-8-8 

      

 

 
M-174 

REFERENCES 
Borovkova, S.A.,  Lopuhaa, H.P.,  & Nurani, B. (2002). Generalized  STAR  model  with  

experimental  weights. in: M Stasinopoulos & G Touloumi. Editor.  Proceedings of the 
17th  International Workshop on Statistical Modeling. 139-147. 

Min, X., Hu, J., & Zhang, Z. (2010). Urban Traffic Network Modeling and Short-term Traffic 
Flow Forecasting Based on GSTARIMA Model.  13th International IEEE, Annual 
Conference on Intelligent Transportation Systems; 2010 September 19-22; Madeira 
Island, Portugal,  

Pfeifer, P.E., & Deutsch, SJ. (1980), A three stage iterative procedure for space-time modeling, 
Technometrics 22, 35-47. 

Suhartono & Subanar. (2006). The Optimal Determination of Space Weight in GSTAR Model 
by using Cross-correlation Inference. Journal of  Quantitative Methods: Journal 
Devoted to The Mathematical and Statistical Application in Various Fields, Vol. 2, No. 
2, pp. 45-53. 

Wei, W.(1990). Time series analysis: univariate and multivariate methods.  New york: 
Addison-Wesley Publishing Co. 

Wutsqa, D.U., Suhartono, & Sutijo, B. (2010).  Generalized Space-Time Autoregressive 
Modeling. Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and 
its Applications (ICMSA2010); Kuala Lumpur, Malaysia. 

Zhou, M., & Buongiorno, J. (2006). Space-Time Modeling of Timber Prices. Journal of 
Agricultural and Resource Economics 3 1(1):40-56. 


