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0.    ABSTRACT 
 
In this paper we describe a unified scheme for implementing an interior point algorithm 
(IPM) over a range of computer architectures. In the inner iteration of the IPM a search 
direction is computed using Newton's method. Computationally this involves solving a 
sparse symmetric positive definite (SSPD) system of equations. The choice of direct and 
indirect methods for the solution of this system, and the design of data structures to take 
advantage of serial, coarse grain parallel and massively parallel computer architectures, are 
considered in detail. We put forward arguments as to why integration of the system 
within a sparse simplex solver is important and outline how the system is designed to 
achieve this integration. 

 
1.     INTRODUCTION AND BACKGROUND 
 
Over the last thirty years computational algorithms for the solution of linear programs (LP) 
using the sparse simplex (SSX) method have made remarkable and sustained progress 
[GILMSW84, GOLTOD88, MURTAG81, ORCHAY68, TAMIZ86] and these advances are 
certainly set to continue. In an equally remarkable development the innovative projection 
algorithm put forward by Karmarkar in 1984 [KARMAR84] has deeply influenced                  
theoretical and applied research into LP solution techniques. Taking into account the 
geometric properties of the starting point and the sequence of search directions, this genre 
of algorithms [GOLTOD88] have been labelled interior point algorithms (IPM). Most IPMs 
not only possess the theoretical property of low order (worst case) polynomial complexity, 
they also perform extremely well in medium to large problems [MARSHN89]. This two 
fold impact (resulting from the contribution of Karmarkar and the subsequent IPM theory 
and applications) has considerably stimulated further research into linear and convex 
programming. 
 
Research and developments in the solution techniques for large sparse unsymmetric and               
symmetric systems of linear equations, have also influenced directly and indirectly the SSX             
and IPM computational schemes. Computationally the most demanding steps in the SSX                
algorithms are concerned with basis inversion, update, and deriving solution values                   
[MITAMZ90, GILMSW84]. Well established sparse unsymmetric (SU) equation solving 
techniques are used in these steps. Computationally the most burdensome step in the IPM                
requires the solution of a sparse symmetric positive definite (SSPD) system of equations                  
(see next section). Efficient methods of solving SU and SSPD linear equations have been                   
widely studied and reported for established as well as for newly emerging computer                 
architectures [GEOLIU81, DUFERD86, SPCONF89]. We believe exploitation of these                     
research results in the context of SSX and IPM methods are going to provide major                
computational developments in the forthcoming years. 
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The main focus of the work reported in this paper is the efficient adaptation of the IPM  
in relation to different computer architectures. A secondary but nontheless important                   
objective is to embed the IPM within a sparse simplex (SSX) based LP system. Our main                      
motivation is to take advantage of a suboptimal solution derived at an intermediate stage of                  
the IPM algorithm and use it for a "warm start" of the SSX algorithm [MITAMY88,                   
GLMSTW86, MARBAL88]. The SSX method also has other attractions such as its use in                 
post-optimal analysis as a descriptive algorithm and its well established use in mixed                       
integer programming as the reoptimisation algorithm for the sub-problems of the search                   
tree. Recently the challenge of the IPM has also spurred a new wave of developments by                       
the practitioners of the SSX method. Thus new strategies for PRICE and BASIS INVERSE 
representation have been introduced [BIXBY89, FORTOM89, ATSUHL88] leading to                    
competitive solution times for large industrial test problems [CHKENW89] on serial and                        
vector computers. These features provide us with compelling reasons to construct                  
computing kernels with exchangable data structures and integrate the IPM and SSX                        
algorithms. 
 
It is well known to researchers in computational linear programming and developers of LP                  
software systems that the solution methods for large scale LP have progressed in three                   
major directions covering algorithmic developments, introduction of novel software                         
techniques and developments in hardware. Our research interests embrace all three aspects                     
and in particular focus on how the recent development in IPMs can be exploited in                      
conjunction with software techniques for newly emerging computer architectures. The use 
of these hardware platforms for computationally intensive technical and scientific application 
areas is now well accepted [BERTSK88, PERROT89]. We have classified the present 
range of computer architectures which are used in scientific computing in a tree structure 
which is illustrated in diagram 1. 
 

COMPUTER HARDWARE CLASSES 
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In diagram 1 the traditional computers are labelled as single instruction single data (SISD) 
machines. These are also known as serial computers with the original von-Neumann 
architecture. All other types of computers are grouped as vector and parallel computers.  
The single instruction multiple data (SIMD) and multiple instruction multiple data (MIMD)  
are the other two of the three main classes of operational machines described by Flynn 
[FLYNN72] who provided the earliest taxonomy of serial and parallel computers. Within 
SIMD class, vector computers use a vector of registers, which are processed by the same 
instruction in a pipeline. The distributed array processor (DAP) is an example of the 
other SIMD machine type with an array of processors arranged in a plane, and which can 
process data held in corresponding arrays of elements [HUNT89] (also see section 4). In 
contrast with SIMD machines the main feature of the MIMD machines is that each  
processor may be executing different instructions at any one time on the different items of  
data. If all the processors can access the same memory location then it is a shared  
memory machine. Alternatively, data may be distributed (communicated) to the private  
memory of local processors which may operate on these data items concurrently. These 
are called distributed memory machines. Our classification is in no way exhaustive, but     
is fairly representative of the current status of the established architectures. A  
comprehensive discussion of the hardware classification, software techniques, principles of 
algorithm design, for these new machines, can be found in [HOCJES88, PERROT89,  
BERTSK88]. We have only considered three of these machines namely SISD, SIMD 
(DAP) and MIMD (shared memory) machines. These machines are, however, sufficiently 
varied to support the algorithm and software design principles discussed in this paper. 
 
The contents of the rest of this paper are organised in the following way. In section 2                      
we briefly review the range of IPMs taking into account complexity and computational                 
issues. We then outline the primal-dual barrier function approach and justify our choice                       
of this algorithm. The computational implication of the inner iteration which involves                    
solution of an SSPD system for different computer architectures are considered. In section 
3 we introduce two parallel computational models for MIMD machines. We review a 
number of well established algorithms and then describe and justify the adoption of a novel 
algorithm which is an extension of Toczylowski's method. In section 4 we describe the 
computational model of the SIMD (DAP) machine. We also discuss the issues of sparsity, 
choice of data structures and the choice of iterative solution algorithms. We present the 
strategy and the algorithmic techniques for basis recovery and integration of the IPM 
computing kernels within a SSX system in section 5 and our conclusions in section 6. 
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2.   CHOICE OF THE INTERIOR POINT ALGORITHM 
 
2.1   A Brief Review of the IPMs 
The interior point method can be broadly classified into three main groups, namely, the                  
projective algorithm of Karmarkar and its variations, the affine scaling algorithm and the                   
path following algorithm. 
 
- Projective Algorithms 
The original method due to Karmarkar [KARMAR84] has some restrictive assumptions; such                      
as that the constraints are cast in a system of homogeneous equations and a simplex.                      
Furthermore the optimum solution value must be estimated in advance. Anstreicher                
[ANSTRC86], De Ghellinck and Vial [GHVIAL86], Gonzaga [GONZAG87], Ye and Kojima 
[YEKOJM87] have also studied this class of algorithms. The outer iterations of these 
algorithms are shown to be of order O(nL) and the original algorithm of Karmarkar has                        
an overall complexity 0(n3.5L). The practical implementation of this class of algorithms 
for industry standard test problems is no longer considered worthwhile although they 
continue to provide considerable theoretical interest in terms of complexity issues and 
convergence properties. 
 
- Affine Scaling Algorithms 
In the affine scaling algorithms the projective transformation originally proposed by                  
Karmarkar is replaced by an affine transformation. It was later observed that Dikin had                    
proposed such an algorithm in 1967 [DIKIN67]. Algorithms of this class have also been                
studied by Meggido and Shub [MEGSHB86], Vanderbei, Meketon and Freedman                  
[VANMKF86] amongst others. In general there are no known polynomial complexity                  
bounds for these algorithms, except for the primal-dual affine algorithm for which Adler et                  
al [MONADR88] derived a polynomial bound. The dual affine algorithm was introduced                    
as a practical implementation of the interior point method by Adler, et al [ADKARV89],                     
and was also investigated by Marsten et al [MARSHN89]. The primal affine algorithm is                       
one of the alternative computational methods implemented within the AT&T's KORBX                       
system [CHKENW89]. 
 
- Path Following Algorithms 
 

Karmarkar [KARMAR84] in his original paper also discussed the concept of a central 

trajectory of the solution points. Mathematically the trajectory can be defined by suitable 

differential equations taking into account a nonlinear programming (NLP) log barrier 

function formulation of the LP problem. Gill et al [GLMSTW86] were the first to 

establish the equivalence of the projective method with Newton barrier method for LP. 

Renegar [RENEGR88], Kojima et al [KOJMY087], Roos and Vial [ROOVAL88] amongst 

many others, (see [ROOHRT89]) have  studied  the  path  following  approach. In general
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these algorithms take O(n0.5L) outer iterations. Monteiro and Adler [MNADLR87] have                    
derived the best known complexity bound 0(n3L) for the primal-dual algorithm. 
 
2.2     Primal-Dual Barrier Method 
There are two major attractions of the primal-dual barrier method as an algorithm for               
computational implementation. In this method the primal and dual solutions are feasible at 
each step. (The complementarity is achieved only at the final step). Thus intermediate               
solutions from this method can be easily introduced in other methods such as primal                 
simplex. The simple upper bound restrictions and free variables which are often found in                  
industrial test problems can be easily introduced and implicitly represented in this approach. 
 
Consider the primal problem Pr in the standard form in which the simple upper bounds                       
(0≤x u) have been turned into equality using the slack variables y. ≤
 

{
nmmxn

2nT

Ru,Rb,RA
u}IyIxb,Ax|y)(x,p

Rpy)(x,0y,xcMin:Pr

+

+

∈∈∈

−+==
∩∈+

            (2.1)  

Its associated dual Du is stated in the variables v,w,z 
 

2nmTT RDw)(z,,Rvw,uvbMax        :Du +∩∈∈−  
{ } c}IwIzvA|w)(z,D T =−+=            (2.2) 

 
The barrier function formulations of these two problems are stated as: 
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Forming the Lagrangian functions for these two problems and applying the first order                   
optimality conditions to any of these lead to the following set of equations [MCMNSH89, 
LUSMSH89] 
 

eYWe
eXZe

cIwIzA
uIyIx

bAx

T

µ
µ

v

=
=

=−+

=+
=

       (2.5) 
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If we apply Newton's method to solve this system of equations with two sets of nonlinear               
(bilinear) relations XZe =µ e and YWe = µ e, then the following equations for the Newton 
directions zwvyx ∆∆∆∆∆ ,,,,  can be derived. 
 

                  (2.6)
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The directions can now be computed in the following way: 
   

   (2.7) q,)(ADA∆v 1T −=
111 z)XW(YDwhere −−− +=  

 q= ADp(µ ) 

  Z)e(W)eXµ(Y)p( 11 −−−− −−µ

       (2.8) ))p(∆D(A∆x T µv −−

 z    (2.9) ∆∆xzeex∆z 11 −− −−− µ
The last equation (row) give us: 

    (2.10) YWeeWyyW −µ=∆+∆

Using 
   (2.11) :obtainfinallywe∆x,∆y −=

 z   (2.12) ∆∆xzeex∆z 11 −− −−= µ
 
These results are given in [MCMNSH89, LUSMSH89] and also derived in [ANDRSN90-1].  
 
2.3 Computational Implementation of the Algorithm 
In order to describe the framework of the algorithm we need to consider four major                     
aspects, namely, (a) Starting point, (b) Search direction, (c) Step size, (d) Termination                   
criterion. 
(a) Starting point 
In the simplex method there are two distinct phases. The Phase I objective is first 
investigated and after feasibility is attained the Phase II is investigated.   Here it is 
necessary to use composite Phase I, Phase II form, both for the primal and the dual. We 
also need to start from a feasible interior point for the primal as well as the dual. The 
modified primal and the dual incorporating the artificial primal and dual variables 
(xa,xb),(va,za,zb) are written as 
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The dual problem: 
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1)x,(x a

0 =  is taken as the primal starting solution ( )1,wz, a
ooo −=vv  as the dual                   

starting solution. As discussed by Lustig [LUSMSH89], the artificial row dD can be                
determined for improved computational efficiency of the Phase I Newton step. 
 

 
[ ]
[ ]⎩
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−−+
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d
000TD v
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where  is a scalar chosen to make z° feasible. β
 
Typically j

2
a cmax3nc =  

   j
2

a bmax 3nb =  
 
For a detailed discussion of these see [LUSMSH89.ANDRSN90-1] 
(b) Choice of barrier parameter µ  
When advancing through the interior domain, it is necessary to have a balance between              
progress in the value of the objective function and corrective move towards the central                       
path. This  is  determined  by the  choice  of µ  at  each step in relation to the step size                  
as computed by the Newton method and what fraction of it  is  used  in the actual step.                  
See [ADKAR89,MCNANSH89]. 
(c)  Step size 
Full step sizes are computed by the relations shown in the last section. In the                   
computational algorithms the step sizes are attenuated by the factors for the                 

primal and dual variables. 
dpαα
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dd αγα =  
where dp α,α  are deduced by minimum ratio test for preserving primal and dual                

feasibility of the new solution and  γ  = 0.995  [LUSMSH89]. 
(d)  Stopping Criterion 
The two alternative stopping criteria, namely. 
 

 ,
XIIc

WIuvbxIc
T

TTT

<∈
+−   where xcT >>0 

 
 and  810−∈=
 
 and ,εwuvbxc TTT <+−  
 
have been successfully used. Since we complete the solution with full basis recovery we                  
do not consider this any further. 
 
The primal-dual log barrier algorithm is set out below. 
 
begin 
A1. Initialise 
 begin 
 1.   Set up Phase I objective function 
 2.   11,x aa −== v

 3.   Initialise 00000 w,zv,y,x  
  4.   Initialise SSPD solver (see sections 3 and 4) 

                end 
 
A2.  Solve for Newton directions 
 begin 
 1.  Update ADAT matrix 
               2.  Solve ( ) qADAT =∆v  

               3.  ( )( )µv p∆AD∆x T −=  
              4. Compute ∆z,∆y,∆w by simple scaling operations  
             end 
 
A3.    Update primal and dual variables 
 begin 
 1.  determine step size factors  dp α,α
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end 
A4.   Monitor convergence 
A5.    If   and  close to 0 then switch to Phase II. ax av

A6.    If the primal solution is nonfeasible or unbounded or optimum 
 then Finalise (A7) 
 else repeat A2 to A6 
A7.    Finalise 
 begin 

1.  basis recovery procedure (see section 5) 
2.  output 
end 

end 
 
Alternative  approaches for the  solution of the  SSPD system  in  step  A2  are  discussed in           
section 3 and section 4. 
 
3. DIRECT SOLUTION OF INNER STEP SSPD EQUATIONS ON A SERIAL AND A 

SHARED MEMORY MULTIPROCESSOR COMPUTER 
 
3.1 MIMD Hardware and the Underlying Computational Model 
A shared memory multiprocessor computer has a number of processors which can access 
and share a common memory. Additionally each processor can have it's own private            
memory which cannot be accessed by the other processors. In general these processors are 
powerful and can perform all the normal computational tasks. In these machines waiting 
for memory access is a known problem as two or more processors attempt to access 
different parts of the memory at the same time using a common bus. The memory access   
is essentially a serial process often delayed by such bottlenecks. This problem can be 
partially alleviated by using a very fast bus, by separate memory segments controlled by 
complex switching systems and by using special hardware devices such as cache memory 
[HOCJES89]. 
 
Shared memory multiprocessor computers use the common memory as a communication 
pool whose main function is to transfer data and to synchronise the processors. Unlike 
other computer architectures where the method of connecting the processors mainly 
determines the computational model, a shared memory computer is flexible, and can be
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adopted to fit the algorithm. The basic entity of the parallel computation is a process.         
A process is allocated to a processor by the user, or automatically by the system software. 
The size of a process plays a crucial part in the overall performance of a parallel 
algorithm on the multiprocessor shared memory computer. Due to communication and 
synchronisation overheads, a task with less than a thousand execution instruction should not 
be divided into smaller processes [VMSRTL88]. On the other hand, dependency between 
processes and unpredictability of execution time prevents us from having too large 
processes. Ideally, the processes have several hundred to several thousand basic instructions 
and a process can be lightweight or heavyweight, and the former is defined as one with 
less than a thousand instructions. Two principal parallel computational models namely, 
MIMDS1, MIMDS2, are considered.  See diagram 2. 
 
 
 
 
 
 

 
 

 
 
 

Diagram 2 
 
 
 
 

Principal MIMD architecture using cache 

and high speed bus



11 
 

In MIMDS1 p processors are used and all the processors are considered equivalent. The                  
algorithm stream is sequential and the parallelism is exploited by separating a single task to 
small, lightweight processes. One of the processors is used to execute the main sequential 
algorithm. The parallel processes in a single task are executed by all processors. The 
processes and the processors are anonymous, the next available processor executes the next 
process in the processes queue. When the task is finished the control returns to the single 
processor. 
 
In MIMDS2 p processors are used and as before the memory is shared. Part of the            
memory, however, may be allocated as private to a processor if neccesary. In contrast to           
the first model a master processor allocates distinct tasks to the slave processors and to         
itself. This model exploits the parallelism in the algorithm itself and the streaming of the            
algorithm can be parallel. Task scheduling and synchronisation of control flow are                
required.  The processes are usually heavyweight processes. 
 
3.2 Discussion of Algorithms Suitable for (SISD) Serial Machines 
Most successful implementations of the IPM method have made use of proven techniques         
for solving the SSPD system ( ) q.∆vADAT =  It is well known that a few dense columns           

of A may produce an extremely dense ( )TADA  matrix. As a result a method of           
dealing with the dense windows by partitioning the A matrix and using the Schur 
complement has evolved. We have adopted this approach as well and followed the general 
strategy suggested by Marsten et a1 [MARSHN89]. 
 
ALGORITHM 1 
Step A1.4 expanded; initialise SSPD solver. 

begin 
1. Find the permutation matrix Q for A that corresponds to mimimum degree                  

ordering of  .AAT

2.  Ā = QA 
3.  Column partition the matrix to sparse and dense parts 

  Ā = [ ]ds AA  

4.   Initialise the data structure for T
sss ADA  

end 

Step A2.2 expanded; solve ( )∆vADA
T

 = q 
begin 
1. Compute ddDAv =  

2.  Factorise T
sss

T ADALFL =  
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3.   Set up: 
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4.   Solve for δ by dense Cholesky factorisation: 

( ) ( ) qLFLVδVLLVI 1TT1TFT −− −−⎥⎦
⎤

⎢⎣
⎡ +  

5.   Compute ( ) ( )VδqLFL∆υ 1T +=
−  

  end 
 
Step A2.2 is executed repeatedly each time a direction of search is computed. This 
comprises the inner iteration. 
 
3.3 Review of Alternative Methods for MIMD Machine 
There  are  three  different   approaches   towards  implementing  an  algorithm  to  run  on   a 
parallel machine. The first is to make use of the manufacturer supplied precompiler which 
automatically transforms an existing serial  code to a partially parallelised code for the   
target machine. Although this may lead to a good speed up in many cases  we  do  not  
consider this any further. The second approach is to analyse a well  established  algorithm  
and  to  discover  inherent  parallelism within it. Algorithms with proven properties of 
stability,  convergence, etc.,  are  attractive  candidates and  often  adopted  in this way. In  
this approach the main effort  goes  towards  designing new task scheduling schemes. The 
third approach is to design altogether new parallel algorithms which exploit a given parallel 
architecture. Algorithms which were introduced but never investigated in detail on serial 
machines  may  become  candidates  for consideration  again on parallel machines. For a 
system implementor this poses a minor disadvantage that the experience in the use of such 
algorithms may be limited. The Cholesky factorisation schemes which take into account 
sparsity through matrix reordering, are well established and good candidates for the second 
type of parallelisation. The algorithms  [GEOLIU81,  DUFERD86]  not  only  do  well on 
serial  machines  [MARSHN89]  they have also been adopted for different parallel 
architectures [LIU89, GHLIUN89]. Here we consider the algorithm proposed by Liu in a 
summary form. 
 
ALGORITHM 2 [LIU89] 
Reordering  a  matrix  towards minimum fill-in creates a sequence of eliminations. This 
sequence reveals that some columns are not dependent because  they  do  not  affect  each 
other in the elimination  process. These columns can be collected in independent  groups. 
When implementing a parallel algorithm, columns in the same independent group can 
eliminate in parallel. Liu [LIU88] represents the parallel structure of the elimination  
sequence by building an elimination tree through simple transformations of the  elimination 
tree,  the  largest  independent  groups  are  identified. 
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Let P be mxm symmetric positive definite non-reducible matrix; let G(P) be the                        
corresponding matrix graph. Let E = L+  be the Cholesky factorisation matrix and let                       
G(E) be the corresponding graph representation. Assume that the matrix P is already                       
ordered towards reducing fill-in and let  be the corresponding nodes sequence in                       
the graph the T(P).  The elimination tree is defined as follows: 

TL

n1 v,.....,v

 
The elimination tree T(P) has the same node set as the graph G(P). 
 
A node  if and only if ( jivofparent   theisv ji > )
 
 i = min { }01|r rj ≠  
 

rjl  is the j'th entry in the r'th row of the Cholesky factor L. 
 
In other words, a node is a leaf only if it represents a column that only eliminates with           
no operations done on it. A node  if it eliminates the latter directly.             
Liu shows that parts of the tree can be transformed, and while preserving the reduced fill             
in property of the sequence, a permuted tree with lower height can be found. It pays to     
"widen" the tree as this creates groups of tasks that can be done in parallel. Hence         
algorithm No 2 is essentially a scheduling algorithm. Another algorithm which attempts to 
schedule the Cholesky factorisation work has been suggested by Alvarado [ALVARD86].                       
This algorithm schedules the basic numeric elimination operations. 

ij vofson  a isv

 
Algorithms in the third group have been only recently investigated as new machine types          
have emerged. For Cholesky factorization for instance Zmijewski [ZMWSKI89] suggests a 
new algorithm which was designed specially for a message passing multiprocessor computer          
with a view to reducing the communication overheads which create bottlenecks in these          
types of computers. 
 
3.4 A New Approach for the Solution of SSPD on Parallel Computers 
Tockzylowski had proposed an innovative algorithm [TCWSKI83] for computing the inverse       
of basis matrices. The method involves representing the inverse in a hierarchical product         
form. We have extended this algorithm from the SU to the SSPD systems and in           
particular we exploit the inherent parallelism of this algorithm. 
 
ALGORITHM 3 
Let mxmRP∈  be an SSPD matrix and consider its 2 partitions (m = k+p), with 4               
submatrices. 

 pxppxkkxk
T

RB,RG,RS;
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=    (3.1) 
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 Then  P  can be written in a factored form as 
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0S

P

 

where   R  = are   kxk  and  pxp  unit  matrices.  The ,I,I,GRBQ,GS pk
T1 −=−

unique     can then be written in the multiplicative form as 1P−
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In  (3.3)     is  the  ubiquitous  Schur-Complement  [COTTLE74]  of   S  in  (3.1). 1Q−

1P−   in the explicit form may be written as 
 

      (3.4) 
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The partition and the factorisation may be applied recursively to l  

pa r t i t ions  o f  P  in  the  fo l lowing   way .  Le t  T   =   { }lt...t,t 21 ,  deno te  

a  se t  of  indices  such tha t  ( )l,...,1, −iti  denote   the   d imensions   of  

the  p r inc ipa l  submat r ices   o f  P  .  Thus  P  =  .  itS mxm
t RP,mt,S ∈=ll

The computation of the inverse of P is defined by the recurrent 

factorisation relations (as in (3.3)).   (See diagram 3) 
 

   (3.5) 
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The agenda of operations set out below define and specify the scheme for computing the 
corresponding submatrices 
 

 OP1   T
t

1
tt iii

QSR −=

OP2        
iiii tttt RQBQ −=

OP3       Compute    explicitly. 1
ti

Q−

OP4  Compute  T
t

1
ttt iiii

RQRW −=

OP5  Compute the off diagonal block of , namely 1
t 1i

S−
+

  -  T
t

1
t ii

RQ−

OP6   Update the inverse additively with  
itW
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The algorithm is naturally suited for parallel implementation within the first computational 
model. All  the operations OP1 to OP6 with the exception of OP3 require matrix 
operation. Parallel algorithms for these multiplicative operations are well known. An 
efficient implementation of this method on a shared memory MIMD machines depends on 
the chosen dimensions of the block diagonal kernel  (BDK) matrices.    The  BDKs are 

i1iiii ttp wheredimension in pxp −= + . The choice of the  for the BDKs are governed 
by two considerations.  should not be too small as it would fail to exploit                        
MIMD parallelism, neither should it be too large as this would impinge on the available             
storage. The use of BDKs explicitly also reduces the memory access bottlenecks. The                      
OP3 (  nverse computation) is carried out for a  x  matrix explicitly. The                    
inverses are all held in a dense data structure, whereas the other intermediate sub                        
matrices are held in a sparse data structure. This form is an extension of the block                        
bordered lower triangular (BBLT) form [TCWSKI83] and the diagonal elements instead of            
being l x l element are  x  symmetric BDKs. In the SU system the matrix is                        
reordered to obtain a fully reduced lower block triangular form. In our method we order                    
the matrix towards minimum band width using the reverse Cuthill-McKee heuristic         
[GEOLIU81]. The BDKs are then identified using a greedy heuristic, based on a simple                 
band density. Since P is positive definite all the BKDs must be non singular. In our          
implementation we have used the generalised envelope data structure whereby all the off                
BDK matrices are stored in sparse rectangular matrix structures [LEVANM89-2]. A bound  
on the number of operations and complexity of the algorithm is also derived in this   
report. 

ip

ip

iQt ip ip iQt

ip ip

4 PARTITION OF THE MATRIX  P =  4tS
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Finally, we present the algorithm based on the above considerations.  (ALGORITHM 3)                 
Step A1.4 expanded; initialise SSPD solver. 

begin 
 
1.   Find a permutation matrix Q for A that  corresponds  to  a  reduced  bandwidth 

                  ordering of  TAA
2.    Ā = QA 
3.    Column partition the matrix to sparse and dense parts 

    
                                       Ā = [Ās ׀ Ād] 
 

4.    Identify the block diagonal kernels 
5.   Analyse the size of the expected inverse 
6.   Initialise the data structure for ĀsDsĀT

end 
 

Step   A2.2 expanded; solve (ĀD ĀT)∆v = q 
 

begin 
 
1.   Compute V = ĀdDd
2.   Compute the inverse P-1  = (ĀsDsĀs

T)-1 using extended Tockzylowski method. 
3.   Set up: 
 

  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
o
q

δ
∆vx

IV
VP

T

 
3.  Solve for  δ   by dense Cholesky factorisation: 
 
       [I  +VTP-1 V] δ  =  -VTP-1q 
 
4.  Compute  ∆v  = P-1 (q+Vδ ) 
end 
 

4.   ITERATIVE SOLUTION OF INNER STEP SSPD EQUATIONS ON THE DAP 
      COMPUTER 
 
4.1  SIMD (DAP) Hardware and the Underlying Computational Model 

The SIMD machine we are using for this project is an example of a massively parallel                   
computer: the AMT DAP610. It has 4096 processing elements (PE's) organised in a 64 by                 
64 grid. Each PE is a fairly simple 1 bit processor. A floating point operation takes on                     
average 1000 clock cycles and a cycle takes 100 ns. The potential performance for this                 
computer is thus 40 MEGAFLOPS. The memory bandwidth for this system is very high                  
(5.1 Gbyte/s), hence the DAP can also be viewed as computer with a very wide 4096 bit                  
bus, this makes the sustained maximum performance realistic for dense matrix problems,                    
which fits onto the DAP 64x64 grid. 



17 
 

The memory is organised as planes of 64 by 64 items of variable word length. A matrix 
location in memory is equivalent to the third index of a FORTRAN array, this can be 
visualised as the downward direction shown in diagram 4. The first and second array 
indices are left vacant, except for explicit scalar or vector operations, which are less    
efficient. For instance, the parallel addition of two 64 by 64 matrices, indicated as    
plane-elements of 3-dimensional arrays, would be performed by the following piece of 
FORTRAN code: 

REAL A(,,100), B(„100), C(,,100) 
…….. 
C(„97) = A(„97) + B(„97)  

Inter-process communication is possible by shift operations in each direction of the grid.                  
The longest communication path in one direction is 32 nodes or cycles, this time is still                  
short compared with the time for a FLOP, hence the communication overhead is  
relatively modest. 

 

The SIMD machine does not have independent streams, all computations on the DAP are                       
performed in a lock-step fashion according to a single instruction which is decoded by the               
Master Control Unit (MCU). This simplification of the hardware allows for the "massive"            
propagation of PE's into a feasible system in terms of engineering constraints. A detailed             
description of the DAP system is given by [HUNT89]. 
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1.2 Choice of iterative solver for the SSPD 
The direct method for solving the SSPD problem involves invariably the Cholesky             
factorisation of the matrix, with a strategy for limiting the fill-in of non-zero elements,                       
and the computational work involved is highly list-orientated. It is therefore difficult to               
transfer these algorithms effectively to the DAP computer considered here. This and the                     
fine grained nature of this machine architecture led us to choose an iterative solver, in                        
which the computational steps can be reduced to basic linear algebra operations. 
 
-  Iterative solvers 
There are many well established iterative solvers, such as Jacobi, Gauss-Seidel, SOR,                        
SSOR, Conjugate Gradient and its many derivatives. Most of the applications are for               
problems relating to discretisation of PDE's, e.g. finite elements. These problems have                 
generally  a banded  structure, that  is  a  structured  sparsity  which is  exploited in 
parallel computations. 
 
An iterative solver which is well adapted for the SSPD system of equations is the                    
preconditioned Conjugate Gradient algorithm. We detail the basic steps of a solver with                       
an ℓ-step preconditioner, according to Golub and Van Loan [GOLOAN83]. This algorithm 
was also considered by Lai and Liddell [LAIDL88] for the solution of finite element                
equations on the DAP computer. 
 
Solve the system P∆v = q, P = ADAT  
Step A2.2 expanded 

begin {iterative solver} 
1.  ∆vo = 0   ,   ro - q   {ro = q - P∆v} 
2.  Solve  Mho = ro  {preconditioning} 
3.  πo = ho
4.  for k = 1  to m do 
 

begin 
 

1.  1k1k1k
T

1k Pππrh −−−−=α  
 

2.   1k1kk α∆∆ −− += πvv
3.   1k1kk αPπrr −− −=

 
              4.  if   then∈<||r|| k

     stop 
          else 
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begin 
 
1. solve Mhk = rk 
 
2. 1k

T
1kk

T
k rhrh −−=β  

 
3.  1kkk βh −+= ππ
 
end 
 

   end 
 

      end. 
 
The matrix M is the resulting preconditioner of an ℓ-step relaxation scheme. Following            
[LAILDL88] we start by considering a splitting P = G - H, resulting in the relaxation                    
sequence: 
 

h(ℓ)  = G-1 Hh(ℓ-1) +  1
rG −

 

After (ℓ) steps we will have solved the system Mh = r with 
 

     M = G  ( )
11

0i

i1HG
−−

=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
l

 
The simplest form of preconditioning is the Point Jacobi type corresponding to the                    
splitting: G = diag(P), but the convergence is only assured if  P  is diagonal dominant. 
 
The Gauss-Seidel preconditioning corresponds to the splitting: G = diag(P) + low(P), in                   
this case the relaxation is always stable for the SSPD, but the necessary back substitution                       
is slow on the DAP. [LAILDL88] found that the Point Jacobi preconditioner worked well               
when it was combined with a diagonal scaling of the original system in the form: 

 2
1

jjiijiji )P/(PPP =
)

 
On the DAP there is a very fast implementation of the square root, it takes less time                       
than the multiplication. 
 
Iterative methods have also been used for the SSPD for the Primal Newton barrier IPM 
[GLMSTW86]. The authors showed that the SSPD problem is equivalent to the least                     
squares problem (stated in their notation): 
 

 min :  Z
T ||q)AX(r|| −

 
X: is the diagonal matrix of the previous primal variables. 
r:  is the right hand side "error signal". 
q: is the direction vector of the dual variable. 
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They solve the least squares problem by using the LSQR algorithm by Page and Saunders 
1982 [PAGSAU82], which is similar to a Conjugate Gradient (CG) method as applied to 
the LS problem. A triangular matrix preconditioner was used which they derived from a 
partial Cholesky factorisation of the SSPD matrix : . The back substitution which 
follows from this preconditioning would not be very efficient for the parallel architecture 
under consideration. However, their work point toward the assumption that: 1) An 
interative solution to the SSPD is indeed feasible; 2) The least squares algorithm is more 
reliable for ill-conditioned problems. It is clear from the Newton step of the IPM that it    
is the directional information in the solution which matters most. 

T2AAX

 
The general Primal-Dual Newton barrier IPM with bounded variables does not readily lead  
to same least squares problem, but the CG iteration which avoids the forming of the 
normal equations of the SSPD is still possible, as shown for the algorithm CGLS in 
[PAGSAU82]. 
 
4.3   Design of Data structures for Sparse Matrix Operations 

 
While the DAP is well suited for the commonly used basic linear algebra kernels such a 
dense matrix-vector and matrix-matrix multiplication, the exploitation of sparsity is not a 
straightforward matter. Several schemes have been suggested for efficient matrix-vector 
multiplication. Efficient schemes for structured sparsity have been well exploited,                  
[BARESH84], but an efficient system for large scale LP problems should be able to handle 
unstructured sparsity. 
 
The handling of sparse matrices always call for considerable computational overhead,             
especially on a SIMD machine. This means that there often is a threshold density where it                    
is worthwhile to change over to a dense mode of operation. for most large scale LP                     
problems it is meaningless to use a dense mode. A natural idea would be to try to                        
isolate empty blocks in the problem matrix, however the remaining data structures would                     
still be sparse. 
 
These problems have been tackled by Parkinson [PARKIN81] and by Morjaria and                
Makinson [MORMAK84]. Parkinson's scheme "Long-Vector" uses low level permutation                   
software for GATHER/SCATTER type of operation. The other scheme "2D ARRAY" maps 
matrix  elements onto the same block if indexes are equal modulo 64 (DAP grid size), and 
if there is a free space. If the location is occupied, a new block is allocated by pointing 
to the next plane, as in a stack operation. The algorithm for the matrix-vector                          
multiplication scans all the planes in the stack and make the multiplications when the                 
appropriate indices matches. This matching operation is done by using logical masks, an             
operation which is ideally suited for the bit-sliced architecture of the DAP,                          
[ANDRSN90-2]. 
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Both these schemes have advantages and disadvantages. The "Long-Vector" scheme uses 
the memory more efficiently, but there are some communication cost due to the many 
shift operations involved. In the "2D ARRAY" scheme the elements are always placed 
under the correct PE hence no horizontal shift are neccessary, but the memory could be 
used inefficiently. If, for instance, one attempts to store a dense row, column or diagonal 
using the latter scheme, a totally unaceptable situation would arise, where a new plane 
(4096) words are allocated for each 64 elements. It is therefore a requirements that dense 
columms, rows and diagonals are taken out of the SSPD matrix and operated on 
separately. 
 
We have adopted the "2D ARRAY" scheme for unstructured matrix-vector multiply,                     
because of the scope for solving LP's of a very high order, n > 100000 with the advent                       
of the IPM. 
 
5. EMBEDDING INTERIOR SEARCH WITHIN SPARSE SIMPLEX LP SYSTEMS 
 
The system is designed to recover a basis if the IPM is terminated either at an                       
intermediate point or at the optimum solution. The variables which take positive values                 
(between upper and lower bounds) corresponding to a feasible primal solution may be                
classified in two sets. The first is a set of basic variables which have the corresponding                   
system of nonsingular basis matrix and the second set is made of remaining positive                       
variables called superbasic variables [MURSND78]. If there is one or more superbasic                    
variables in a feasible solution we have the interior of a face, etc., and not an extreme                       
point. FORTLP [MITAMZ88], MINOS [MUTRSU83] and XMP [MARSTN81] allow                
inclusion of superbasic variables and nonbasic but feasible solutions can be represented in                     
the system together with a reference basis set. 
 
-   Recovery of an optimum basis 
In order to recover a basis from the (near) optimum solution we construct a set of basis 
variables and the corresponding basis matrix. If  - ju rhs∈  > > jx rhs∈  and < jz tcosr∈  
then the variable xj is in the basis set. All the remaining variables are made non basic 
and for  the variables xrhsuxu kkk ∈−>> k are held at their upper bound (and also 

nonbasic). Inverting to the corresponding basis and recomputing  zj we obtain a 
corresponding SSX basis restart point. 
 
-  Recovery of a basis from an intermediate point 

Since we wish to mix and match computational kernels we have designed a basis recovery 
procedure which takes an intermediate (interior point) solution and constructs a superior 
extreme point solution. We take all the positive variables within bounds 



 
22 

 
i
jjrhsjrhsj xxwherexu =>∈>∈−  are the solution values of an intermediate (IPM)                    

solution. We flag  to non-basic variables at zero value and                        

as nonbasic variables in their upper bound. A basis is constructed out of the remaining                       

variables using a CRASH procedure. Finally, the superbasic variables are given their x

rhs
i
kx <∈ rhsk

i
k ux ∈−>

i
j                      

values. We now apply the purification procedure to compute a (basic solution) with a                      

superior objective function value. The purification steps are described in detail in                  

[MITAMY88]. 

 

Basis recovery is considered to be an important issue in the exploitation of LP solvers in                  

practice and is also discussed in [MARBAL89, GLMSTW86]. 

 

6. DISCUSSION AND CONCLUSIONS 
 

In this paper we have considered the issues of algorithm design and implementation of the               

IPM for a range of computer architectures. We have indicated how such an IPM solver is                

integrated within an established SSX LP system. Results of our experimental tests involving 

industry standard test problems [GAYM85, CHKENW89] will be supplied in a forthcoming        

report. 
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APPENDIX 1.  ACRONYMS USED 
 
BBLT:  Block bordered lower triangular (form) 
 
BDK:  Block diagonal kernels (of a matrix) 
 
DAP:  Distributed array processor (computer) 
 
IPM:  Interior point method 
 
MIMD:  Multiple instruction multiple data (machine) 
 
PE:  Processing elements (of the DAP computer) 
 
SISD:  Single instruction single data (machine) 
 
SIMD:  Single instruction multiple data (machine) 
 
SU:  Sparse unsymmetric (system of equations) 
 
SSPD:  Sparse symmetric positive definite (system of equations) 
 
SSX:  Sparse simplex (method) 
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