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Abstract 
  
 In this paper, an interpolatory subdivision algorithm for surfaces over arbi- 
trary triangulations is introduced and its properties over uniform triangulations 
studied. The Butterfly Scheme, which is introduced by Dyn, Gregory and Levin    
is a special case of this algorithm. In our analysis, the matrix approach is em-
ployed and the idea of "Cross Difference of Directional Divided Difference" 
analysis is presented. This method is a generalization of the technique used            
by Dyn, Gregory and Levin etc. to analyse univariate subdivision algorithms.           
It is proved that the algorithm produces smooth surfaces provided the shape 
parameters are kept within an appropriate range. 

 

§1. Introduction 
  

 Recursive Subdivision Algorithms consist of a class of numerically stable, highly ef-    
ficient, easily manipulated and implemented algorithms for the generation of parametric     
curves and surfaces. These algorithms use the idea that the desired curves and surfaces             
are to be generated from some finite points, the so called control points, by some iterative   
methods consisting predominantly of simple local weighting processes. One of the ad-    
vantages of using these algorithms is that they are eminently suited for the generation of 
smooth curves and surfaces in interactive computer systems. Interpolatory Subdivision 
algorithms play a very important role in these applications. 

 Although subdivision algorithms have been being studied intensively for about fifty       
years, they have been used for scientists and technicians since long ago. For example,               
the so called Carpenter's Technique is a very simple algorithm of this type. While the                
de Rahm's "Trisection Algorithm" (1947), the de Casteljau's Algorithm (1959) for the     
Bernstein-Bézier curves and the Chaikin's Algorithm (1974) for curves are subdivision 
algorithms which contribute much to the rapid development and investigation of this type          
of algorithms. Recently, a lot of work has been done in this area to study subdivision    
algorithms systematically. This includes the works by Dyn, Gregory, Levin, Dahmen,
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Micchelli, Cavaretta, Daubechies and Largarias ... etc. Our work in this area is to          
investigate explicit conditions under which a subdivision algorithm could produce smooth 
surfaces with certain prescribed properties such as interpolatory and monotonicity. That            
is, we try to generalize the Dyn-Gregory-Levin's uniform analysis (cf. [11]) for univariate 
subdivision algorithms to the surface case. 
 In this paper, we report briefly some of our work on this subject. We firstly introduce          
a general interpolatory subdivision algorithm for surfaces over arbitrary triangulations             
and then present an analysis of a 10-point Interpolatory Scheme for surfaces over uniform 
triangulations. The Butterfly Scheme, which is a 8-point interpolatory scheme and was 
introduced by Dyn, Gregory and Levin (cf. [12,14]), is a special case of the algorithm.               
In the analysis, we use the matrix approach and hence the idea of "Cross Difference of 
Directional Divided Difference" analysis is introduced. This method is a generalization of        
the "Diadic Parametrization" technique used by Dyn, Gregory and Levin (cf. [11,13,14]).    
which was firstly used to analyse uniform subdivision algorithms for curves. It is proved         
that the algorithm produces smooth surfaces provided the shape parameters are kept            
within an appropriate range and an explicit condition for this is also provided. More             
details about the analysis can be found in [18]. Other analyses of uniform subdivision   
algorithms can also be found in [2,5,6,16,17,etc.]. 
 This algorithm has wide practical applications. For example, it can be used to solve 
interpolatory-type surface fitting problem, or reversely, it can be employed to simplify   
problems like data reduction. It is also hoped that subdivision algorithms could be              
applied successfully in some optimization problems such as optimized data-transmission         
and wavelets processing etc. 

 
§2. Mathematical Description of the Scheme and its Properties 

  
 The construction of the scheme is, originally, motivated by the ideas described in       
papers by Dubec (cf. [10]), Dyn, Gregory and Levin (cf. [11,12]). The scheme is formu-        
lated in order to solve such problems as high accuracy surface fitting and fast surface 
representation. Thus, the aim is to generalize the "4-point interpolatory subdivision            
scheme" escribed in [10,11] for surfaces. The scheme is so constructed that it preserves            
the advantages of the "4-point scheme". The main property of the scheme, in addition                
to the properties of general uniform subdivision schemes, is its generation of smooth 
interpolatory surfaces and the reproductivity of cubic parametric polynomial surfaces        
provided that the shape parameters are chosen within an appropriate range. 
 A mathematical description of a uniform subdivision scheme over uniform triangula-
tions, which is also called Binary Subdivision Algorithm, is as follows. Suppose that the       
initial "control points" of a uniform triangular net work are denoted by , then,               
the refined control points  are obtained from  recursively 
by the following formula ("Mask"): 

20
α α, ZP ∈

0,,α, 21
α ≥∈+ kk ZP 2

α α, ZP ∈k
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An equivalent form of this expression is 
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where, γ =: ( γ1, γ2) and γi = 0 or l , i = 1,2. Thus, the scheme is interpolatory if and  
only if 
  (2.3) .a ,,a

2
0 Z∈∀= αδα

 
Equation (2.2) shows clearly that the scheme is a 4-step subdivision scheme which can  
be described by the following 
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The 10-point scheme is given by the following choice of the coefficients in (2.4): 
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where,  are three (tension) parameters. This special choice of the coefficients 
comes from the 3-D symmetric structure of the scheme. In fact, there is a simpler way to   
describe the scheme which uses only a single formula (only one 'Mask') to characterize            
the scheme. The formula is given below (cf. Figure 1). This is due to the 3-direction-      
symmetry property of the scheme. Since the scheme is interpolatory, only the inserted          
values are to be evaluated. The formula for an inserted point, P

1,2,3,=i,w i

0, is given by   
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where, o is the midpoint of the edge joining the vertices e and f, see Figure 1. From this 
onstruction, it is obvious that the scheme can be used (possibly, with some modification             
at those so called Extraordinary Points) to produce surfaces over arbitrary triangulations          
(cf. [18]). 
 In the uniform subdivision process, formula (2.6) is used to evaluate all "midpoint"     
values to produce a refined uniform triangular control net in which the triangulation                   
of the refined control nets is formed by the "standard 3-D meshing rule" which will be   
explained later in our convergence analysis. Repeated applications of this process will    
therefore result in finer and finer control nets. Moreover, further studies show that if                 
the shape parameters { }iω  are chosen appropriately, the scheme will produce smooth 
interpolatory surfaces. This will be discussed in the next section. 
 It can be shown that the scheme has the following properties. 
1. The scheme is interpolatory. 
2. The parameters { }iω  work as tension controls along the three mesh directions respec- 
 tively. 
3. The scheme reproduces linear surfaces for all { }iω . 
4. The scheme reproduces bivariate cubic parametric surfaces if { }iω  satisfy 
 

tw,wtw,tw −=−=−−=−=
2
12

16
182

16
9

3121
 (2.7) 

 where, t is any real number. 

5. The scheme reduces to the Butterfly Scheme [cf. 11] if the parameters satisfy 
 

. (2.8)  w,ww,w:w 02 321 =−==
 

6. The scheme has certain data-dependent shape preserving properties. 
7. The scheme produces smooth surfaces if the shape control parameters are chosen 
    properly. This will be discussed later. 
 

 §3. C0 Covergence Analysis of the Scheme 
 
 To study the convergence property of the subdivision algorithm and the property               
of the surfaces produced by it, a definition of convergence of subdivision algorithms                
and a parametrization of the surfaces as well should be be introduced. By contrast to                 
the univariate case, uniform convergence and the "diadic parametrization" are natural        
choices. The "diadic parametrization" means that the control points , 
are parametrized at the "diadic points": in the parameter plane, e.g., the                        
u-v plane. So, if we define                                               

k,,k 02 ≥∈ZP αα
22 Z∈− αα ,k

 

     ( ) ,2: 2z∈∀= − αα ,v,u kkk     (3.1) 
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then, the control net, which is defined by  can be regarded as the             
unique piecewise linear interpolant 

,,Z,P 02 ≥∈ kk αα

( )v,ukP  from the uniform 3-D meshed u-v plane,          
which is produced by mesh directions (0,1), (1,0) and (1,1), to R  satisfying 3

 
 ( ) .,v,u kkkk 2ZPP ∈= αα  (3.2) 
Hence, the convergence of the scheme can be defined as the convergence of the continuous 
surface sequence {Pk(u,v)}. So we say the scheme is convergent if for any initial dada,           
there is a continuous surface P(u,v) such that 
 
 ( ) ( ) .vuvuvuk

k R,,,P,P ∈∀=∞→
lim  (3.3) 

 
 To facilitate our analysis, we assume here that the initial data are just real numbers         
and that they are function values on the uniform integer grid ( ) Z∈j,i,j,i  in the u-v            
plane. Then at lever k, the control point values  will be the function values                
at a refined grid  since the diadic parametrization is assumed. By         
meshing the control nets  in the same way as the uniform grid  in the u-v           
plane, the 10-point scheme can then be written in the following compact form: 
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with  being duals of the second equation. Now the forward dif-                         
ference operators = 1,2,3, along the mesh directions can be defined: 
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From the above discussions, the following  convergence result can be obtained:        
Theorem 1.   The scheme produces  surfaces if the parameters 

0C
0C { }iw  satisfy 
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A simple symmetric solution to (3.6) is given by 
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Proof: The proof comes from a direct estimate of the differences of two control nets at     
adjacent levels. It can be shown that 
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where kE  is defined by 
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A study of the sequence { }kE  gives 
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Hence, the control net sequence { }),( vuPk  forms a Cauchy sequence and therefore         
converges to a continuous surface if (3.6) holds. This completes the proof.   ■ 
    
Remark 1.  For the cubic precision scheme, (3.6) becomes 
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Remark 2.  Other conditions for convergence can also be obtained (cf. [18]). oC

 
§4. C 1 Covergence Analysis of the Scheme 

 
In order to prove that the scheme produces surfaces, the Cross Differences of           

the Directional Divided Differences, CDD, of the control nets are introduced and stud-            
ied. This process is similar to the Divided Difference Analysis of univariate subdivision    
schemes described in [2,3,10,11 ,etc.] .  

1C

 
The CDD at lever k along mesh direction m and n, m,n =1,2,3, m≠n, is defined               

as follows: 
 

.j,iPC k
,j,inm

kk
n,m,j,i Z: ∈∀∆∆= 2    (4.1) 

 
Since the scheme is symmetric, we only need to study one type of CDD. Hence, without         
loss of generality, we assume that in (4.1), m = l, n = 2 and the subscripts m and n will               
be omitted in our future discussion. 
 

From the subdivision process (3.4) and definition (4.1), one can show that if 
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then all these CDD terms will satisfy the following refinement equations: 
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 By applying this recursive relation repeatedly, we obtain the following result: 

Theorem 2.  There exists a constant , which is a piecewise quadratic function  )w,w(B 31

of such that 31 wandw
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Proof: The details of the proof can be found in [18]. ■ 
 
Remark 3.  Condition (4.6) means that the parameters { }iw  should lie in a polygonal        
region Ω  in the plane .ww: 12 2−=Π  The region Ω  is depicted in Figure 2. 
To prove that the limit surfaces are smooth, the following lemmas are required. A                 
proof of them can be found in [18]. 
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Lemma 3. If the directional divided difference function sequence { })v,u(D k

α  converges 
uniformly to a continuous function )v,u(Dα , then, the control net sequence { })v,u(Pk   
converges uniformly to a function P(u,v). Furthermore, we have 1C
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                     where, ,,,i,orand),( i 0γ2110γγγγ 21 ≠===: indicates the direction of  the                       
difference. ■ 
 
Remark 4. The the directional divided difference function is defined as the     
piecewise linear interpolant to the triangulated directional divided difference data. For    
example, for γ = (0,1), we have 

)v,u(D k
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Lemma 4. If the directional divided difference function sequence { })v,u(D k

γ  has the        
property 
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From Theorem 2, Lemma 3   and Lemma 4, we now can conclude 

Theorem 5. The 10-point scheme produces surfaces if the shape parameters satisfy          
(4.6). ■ 

1C

 
Corollary 6. The cubic precision scheme produces smooth surfaces if the tension pa-        
rameter t satisfy 
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Remark 5. Condition (4.6) is a simple one. Other convergence conditions may also              
be obtained (cf. [18]). 

1C

§5. Graphic Examples 
 

Two graphic examples are given here to show the smoothing process of the scheme. 
Figure 3 shows the initial data and the surface produced by the butterfly scheme from the 
cardinal data after the third subdivision. Figure 4 shows the surface produced             
by the cubic precision scheme from a uniform control net which is also shown. Since                 
the software generates surfaces on rectangular grids, the triangulation along the (1,1)        
direction is unfortunately not displayed. 

o,P αα δ=0
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Figure 1. Geometric construction of the scheme 
 
 

 
 
 

 
 

Figure 2. The C  convergence region 1 Ω  of the scheme 
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Figure 3. The cardinal function, .w,ww,w,k 02
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Figure 4. The cubic precision scheme, k = 3,t = 0.52, 
e.g., = -0.0425,  = -  = - 0.02. 1w 2w 312 w,w


