Analyse du comportement dynamique de mousses de polyuréthanepar des tests vibratoires.

O. DUBOEUF^{ab}, R. DUPUIS^a, E. AUBRY^a, M. LAUTH^b

a.Laboratoire MIPS, Université de Haute-Alsace,
12 rue des frères Lumière, 68093 Mulhouse. *olivier.duboeuf@uha.fr*b. Laboratoire R&D Chimie du polyuréthane, Faurecia Automotive Seating,
17 rue de la Forge, 70202 Lure. *marc.lauth@faurecia.com*

Résumé :

L'objectif de cet article est de décrire les techniques expérimentales et l'identification des propriétés dynamiques de mousses de polyuréthane. En effet, le niveau de confort d'un siège automobile est établien considérant les propriétés quasi-statiques – densité, portance et résilience – et dynamiques – transmissibilité – de la mousse flexible de polyuréthane. Notre dispositif d'essai est un système à un degré de liberté, composé d'un dispositif expérimental reposant sur le vérin d'une machine d'essai dynamique. Ce dispositif expérimental est composé d'un plateau supérieur avec une masse libre et d'un plateau inférieur solidaire de la machine d'essai, entre lesquels est placé un échantillon de mousse de dimensions100x100x50 mm³. Les vibrations transmises à travers la mousse sont mesurées pour déterminerles caractéristiques dynamiques de l'échantillon et permettent de réaliser le diagramme de Bodede la transmissibilité de l'échantillon. Cinq types de mousses de polyuréthane utilisées dans l'automobile seront comparés dans cet article.

Abstract :

The purpose of this article is to describe the experimental techniques and identification of polyurethane foam dynamic properties. Indeed, the level of comfort of a car seat is established by considering the quasi-static properties - density, compression stress and resilience - and dynamic - transmissibility - of the flexible polyurethane foam. Our test device is a one-degree of freedom system, consisting of an experimental device based on the cylinder of a dynamic testing machine. This experimental device consists of an upper plate with a free mass and a lower plate integrated with the dynamic testing machine, between which is placed a foam sample size with dimension of 100x100x50 mm³. Vibration through the foam is measured to determine the dynamic characteristics of the sample and allow to determine the Bode diagram of the sample transmissibility. Five types of polyurethane foams used in automotive application will be compared in this article.

Mots clefs : Mousses de polyuréthane, comportement dynamique, vibration harmonique, transmissibilité.

1 Introduction

Le confort dans les applications automobiles n'est pas seulement optimisé pour le plaisir de conduite, il joue également un grand rôledans la sécurité et la santé des occupants du véhicule. Ainsi, un siège inconfortable transmet les vibrations de la route, du moteur et du châssis à l'occupant et peut conduireà des douleurs dorsales et cervicales dues à une mauvaise filtration. L'effet de ces vibrations sur la santé est un phénomène connu et étudié [1]. Mais le point clé est « comment pouvons-nous rendre le siège plus confortable ? »

En simplifiant, un siège complet se compose d'une structure métallique, d'un coussin et d'un dossier en mousse surmonté d'une coiffe textile et d'un appui-tête. La mousse de polyuréthane souple (mousse PU) est très souvent utilisée dans le siège automobile à la demande des constructeurs pour assurer le confort. En effet, celle-ci est caractérisée par un large spectre de propriétés mécaniques [2] telles que: une faible densité, une capacité à absorber l'énergie de déformation et une faible raideur. De plus, en modifiant la formulation chimique de la mousse, il est également possible d'influer sur les propriétés mécaniques statiques et dynamiques, et par conséquent sur le confort des usagers.

Le comportement de la mousse peut être abordé de quatre manières différentes: le comportement statique [2-4], le comportement quasi-statique [5-8], le comportement dynamique [8-12] et le comportement en vieillissement [13-14]. Toutes ces étudespermettent la compréhension du comportement mécanique des sièges d'automobile et peuvent être combinées à d'autres essais tels que l'analyse du confort d'approche, du confort de roulement et de la durabilité globale de siège. Pour contrôler les vibrations transmises au siège et ainsi augmenter le confort, nous avons besoin de modéliser le comportement mécanique complexe de mousses de polyuréthane et donc d'identifier ses propriétés dynamiques et quasi-statiques. Dans cette étude, nous allons utiliser une méthode de test de vibration harmonique etcinq types de mousses ayant des formulations différentes seronttestés. Ce document explique la méthode et l'exploitation des résultats des tests que nous avons obtenus.

2 Matériel et Méthodes

2.1 Matériaux testés

Dans cet article, cinq mousses flexibles de polyuréthane, désignées par Mousse A, B, C, D et E sont étudiées. Les caractéristiques chimiques, morphologiques et mécaniques de celles-ci, largement utilisées pour des applications de sièges automobiles, sont décrites dans le tableau 1. Comme on peut le constater, ces caractéristiques sont similaires du point de vue chimique ; seule la quantité de polyol copolymère (CPP) pour les mousses A, B et C d'une part, et la quantité d'eau pour les mousses D et Ed'autre part sont différentes. Le polyol copolymère joue un rôle important dans la formulation chimique de la mousse de polyuréthane. Il s'agit d'un polyol dit « greffé », utilisé pour ajuster la dureté, la résistance, le processus de fabrication de la mousse et l'ouverture cellulaire. Il augmente également le degré de réticulation dans la mousse [15]. L'eau est pour sa part un adjuvant indispensable à la réaction de polymérisation permettant ainsi la formation de gaz carbonique et une expansion du système purement liquide en un système alvéolaire.

Les densité, portance et résilience sont déterminéesselon les méthodes recommandées dans la norme ASTM D3574 [16]. La taille cellulaire moyenne est déterminée avec le dispositif Microvision-Ellix et en utilisant une adaptation de la méthode « Visiocell » détaillée dans les travaux de Ju [17].

Désignation	Mousse A	Mousse B	Mousse C	Mousse D	Mousse E
Type de mousse	Flexible	Flexible	Flexible	Flexible	Flexible
Isocyanate	TDI-LVOC	TDI-LVOC	TDI-LVOC	TDI-LVOC	TDI-LVOC
Polyol Taux CPP	Polyol PA 15 parts	Polyol PA 30 parts	Polyol PA 55 parts	Polyol PA 30 parts	Polyol PA 30 parts
Taux d'eau	3.5 parts	3.5 parts	3.5 parts	2.5 parts	3.0 parts
Procédé de fabrication	Moulée	Moulée	Moulée	Moulée	Moulée
Type de cellules	Ouverte	Ouverte	Ouverte	Ouverte	Ouverte
Dimensions (L ₀ xl ₀ xh ₀) m ³	0.1x0.1x0.05	0.1x0.1x0.05	0.1x0.1x0.05	0.1x0.1x0.05	0.1x0.1x0.05
Densité (kg.m ⁻³)	45	46	46	63	58
Portance (kPa)	5.8	8,1	10,4	8,8	9,1
Résilience (%)	80,2	77,6	74,3	83,1	80,9
Taillecellulaire moyenne (µm)	426	432	436	389	413

Tableau 1. Caractéristiques chimiques, morphologiques et mécaniques des mousses étudiées.

2.2 Dispositif d'essai

Tous les tests présentés dans cet article ont été menés à l'aide d'un dispositif de test vibratoire, présenté sur la figure 1. Il est composé d'un échantillon de mousse de section carrée, placé entre deux plateaux ayant un mouvement de translation l'un par rapport à l'autre. Deux colonnes montées dans des paliers à air - permettant d'obtenir un coefficient de frottement pratiquement nul – imposent le mouvement unidirectionnel. La base du montage est installée sur le vérin d'une machine d'essais dynamiques Instron 8800 afin de réaliser une excitation dont on contrôle la fréquence et l'amplitude de déplacement.

Figure 1. Montage d'essai dynamique.

Durant l'essai, le déplacement du plateau inférieur x_{bottom} (t) et du plateau supérieur x_{top} (t)sont mesurés à l'aide d'un capteur LVDT. Une cellule de force, placée entre le nez du vérin et le montage d'essai, permet d'avoir accès à la force d'excitation F(t).

Comme le niveau de compression initiale de la mousse d'une assise de siège n'est pas constant en fonction de l'occupant, mais varie en fonction du poids de ce dernier, nous avons décidé de travailler à précharge constante plutôt qu'à taux de compression constant pour chacune des mousses testées. Ainsi, une précharge M a été utilisée pour les 5 mousses testées. Cette précharge induit alors un taux de compression initiale différent pour les différentes mousses. Ils sont résumés dans le tableau 2.

Désignation	Mousse A	Mousse B	MousseC	Mousse D	Mousse E	
Taux de compression initiale pour précharge M (%)	4,25	3,00	2,25	3,00	4,00	
Tableau 2 Taux de compression initialepour les différentes mousses						

ableau 2. Taux de compression initialepour les différentes mousses.

L'essai consiste à exciter la base du dispositif avec un signal sinusoïdal. La fréquence d'excitation f_e varie de f_{min} = valeur initiale de 1 Hz à f_{max} de valeur finale = 20 Hz par incrément de 0,5 Hz. La mousse est excitéependant cent cycles à chaque fréquence afin d'atteindre un état d'équilibre. Ensuite, le déplacement du plateau supérieur, le déplacement de la base et la force d'excitation sont enregistrés au cours des cent cycles suivants. La transformée de Fourier de chaque signal enregistré est finalement réalisée.

Figure 2. Schématisation du dispositif d'essai vibratoire.

Pour s'assurer de la répétabilité de nos essais, chaque type de mousse est testé au moins trois fois, avec un nouvel échantillon de mousse issude la même population.

Dans ces travaux, tous les échantillons utilisés lors des tests vibratoires harmoniques ont le même historique mécanique et environnemental : ils sont vierges, extrait au cœur d'un bloc de mousse moulée (0.4m x 0.4m x 0.07m) produit en laboratoire, coupé suivant les dimensions 0.1m x 0.1m x 0.05m et conditionné au minimum vingt-quatre heures dans une pièce climatisée (température à $23(\pm 2)^{\circ}$ C et humidité relative à $50(\pm 5)\%$).

3 Résultats et discussions

Analyse dans le domaine temporel

Si on observe le déplacement de la base $x_{bottom}(t)$ et celui de la masse libre $x_{top}(t)$ on constate queles deux signaux ont la même fréquence en régime établi mais le second signal, $x_{top}(t)$, présente un décalage permanent et constant par rapport à la position initiale. Sa valeur dépend de la fréquence et montre la non-linéarité du comportement dynamique de la mousse de polyuréthane.

Figure 3. Différenceentrex_{top}(t) etx_{bottom}(t) à 14 Hz.

L'évaluation des deux signaux temporels enregistrés peut également se faire entre la force d'excitation en dessous de la mousse F(t) et le déplacement transmis jusqu'à la masse libre $x_{top}(t)$.De la même façon, il existe un déphasage variant entre 0 et $\pi/2$ en fonction de la fréquence d'excitation, et dû au comportement viscoélastique de la mousse de polyuréthane.

Figure 4. Différence $entrex_{bottom}(t)$ et F(t) à 14 Hz.

Analyse dans le domaine fréquentiel

Il existe plusieurs méthodes pour évaluer le confort d'un siège automobile. Par exemple, les constructeurs et équipementiers calculent le ratio entre le niveau de vibration au-dessus du siège (au niveau du passager) et l'excitation à la base du siège (dû au moteur, à la structure et aux vibrations routières) [18]. Ce facteur est appelé « SEAT factor » (Seat Effective Amplitude Transmissibility). Les informations relatives à l'utilisation de cette méthode d'évaluation du confort sont détaillées dans la norme ISO 2631-1 [19].

En nous inspirant de cette méthode, nous avons mis en place un ratio pour déterminer la capacité d'une mousse à transmettre les vibrations. Ce ratio est appelé « FEAT factor » pour « Foam Effective Amplitude Transmissibility » et est calculé à partir d'une excitation sinusoïdale à amplitude constante pour chaque fréquence et pour chaque taux de compression initiale [9]. Le ratio FEAT est défini comme :

FEAT
$$(A_{bottom}, f_e) = \frac{RMS_{top}}{RMS_{bottom}} = \sqrt{2} \frac{RMS_{top}}{A_{bottom}}$$
 (1)

où: - *RMS_{top}* est la valeur RMS du déplacement de la masse libre au dessus de la mousse .

- *A*_{bottom} est l'amplitude du signal d'excitation.

Figure 5. Exempled'un FEAT pour une mousse.

Comme le montre la figure 5, on peut représenter le FEAT en fonction de la fréquence d'excitation. On distingue alors trois régions. Dans la première, le FEAT est sensiblement égal à 1. La mousse a alors un comportement rigide. Les vibrations sont transmises à travers elle sans amplification ni atténuation. Ensuite, le FEAT devient supérieur à 1. Les vibrationstransmises à travers la mousse sont alors amplifiées. Cette région peut être divisée en deux sous-régions : d'abord dans la région « résonnante » le ratio FEAT augmente depuis la valeur 1 jusqu'à une valeur maximale atteinte à la fréquence de résonnance f_r ; puis dans la région « pré-filtrante » le ratio FEAT diminue jusqu'à revenir à la valeur 1 à la fréquence de coupure f_c . Entre 1 Hz et le fréquence de coupure f_c , la mousse transmet ou amplifie le signal d'excitation. Il s'agit de la plus mauvaise région pour l'utilisateur d'un siège. Enfin, il existe une troisième région - la plus importante dans notre cas – qui est la région de filtration. Le FEAT est en dessous de 1, ce qui signifie que le niveau de vibration transmis à travers la mousse est alors filtrante.

Résultats expérimentaux

On observe tout d'abord les courbes du FEAT en fonction de la fréquence d'excitation (figure 6) pour les mousses A, B et C dont le taux d'eau est fixe et le taux de polyol copolymère est respectivement de 15, 30 et 55 parts. On constate dans ce cas, et pour une masse de précharge constante, que plus le taux de polyol greffé est important, plus les caractéristiques dynamiques des mousses ont des valeurs croissantes. La valeur de la fréquence de résonance augmente et le FEAT est plus grand. De plus, la valeur de la fréquence de coupure augmente, ce qui signifie que la mousse transmet ou amplifie le signal sur une plus large bande fréquentielle : elle est donc moins filtrante.

Figure 6. FEAT pour les mousses A, B et C avec taux d'eau constant.

On s'intéresse ensuite aux mousses D et E dont le taux de polyol copolymère est fixe et le taux d'eau est respectivement de 2,5 et 3,0 parts. On notera que dans ce cas, avec des taux d'eau inférieurs ou égaux à 3,0 parts, la mousse est qualifiée de haute densité. La figure 7 représente le FEAT de ces mousses. On constate dans ce cas, et pour une masse de précharge constante, que plus le taux d'eau est élevé et plus les caractéristiques dynamiques de ces mousses ont des valeurs croissantes. De la même manière que précédemment, cela signifie que nos mousses sont moins filtrantes avec un taux d'eau fort. Cependant, on remarque également que lorsque le taux d'eau augmente, le FEAT diminue.

Figure 7. FEAT pour les mousses D et E avec taux de polyol copolymère constant.

Le tableau 3 ci-dessous résume les différentes valeurs des paramètres dynamiques des mousses étudiées dans le cas des essais vibratoires.

Résultats dynamiques	Mousse A	Mousse B	Mousse C	Mousse D	Mousse E
Fréquence propre (Hz)	7,9	10,1	12,77	9,9	11,6
FEAT maximum	2,6	3,1	3,52	3,55	3,31
Fréquence de coupure (Hz)	9,5	10,9	16,2	11,1	14,2
Facteur de qualité	10,9	22,9	28,3	16,0	37,8

Tableau 3. Caractéristiques dynamiques des mousses à taux d'eau constant.

En reprenant les caractéristiques chimiques, le taux de compression initiale, ainsi que les caractéristiques dynamiques, on peut réaliser desrelations entre les paramètres ; aussi bien entre la chimie et les données quasi-statiques mais également entre ces mêmes données et les caractéristiques dynamiques.

Tout d'abord, on note que la densité est quasi-constante pour les mousses A, B et C à environ 46 kg/m³ mais diffère largement pour les mousses D et E respectivement à 58 et 63 kg/m³. Ceci est dû à la modification du taux d'eau pour les deux dernières. En effet, plus le taux d'eau est faible et moins la réaction de polymérisation (isocyanate + eau) va créer du gaz carbonique. Ainsi le volume alvéolaire de la structure crée sera plus faible, donc on obtiendra une mousse plus dense. Ceci se confirme par la taille cellulaire moyenne plus faible pour les mousses D et E par rapport aux mousses A, B et C. Ensuite, on s'intéresse au taux de polyol copolymère, dans le cas des mousses A, B et C. On remarque que plus ce taux est élevée et plus la portance est grande, et par conséquent, moins le taux de compression initiale après l'ajout de la masse M en statique est grand.

Pour ce qui est des données dynamiques, il est plus difficile de voir les influences respectives du taux de polyol copolymère et du taux d'eau. On constate tout d'abord que si l'on augmente l'un ou l'autre, les fréquences propres f_r et de coupure f_c sont augmentées. Pour ce qui est du critère FEAT à la résonnance, on remarque que plus le taux d'eau est grand et plus le FEAT est faible. Prenons l'exemple des mousses D, E et B respectivement à 2,5 – 3 et 3,5 parts d'eau pour un taux de polyol copolymère constant à 30 parts. On remarque alors que le FEAT diminue avec l'augmentation du taux d'eau. Ainsi, la mousse de polyuréthane avec un taux d'eau plus fort admet une bande fréquentielle où elle transmet et amplifie les vibrations plus grandes mais la valeur de cette amplification est plus faible à la résonnance.

Ainsi, avec l'aide de l'équipement de test vibratoire, il nous est permis de faire des relations entre les éléments constituants la formulation chimique de la mousse de polyuréthane, le comportement statique de celle-ci et ses caractéristiques dynamiques.

4 Conclusion.

À travers cet article, nous avons mis en avant l'étude expérimentale du comportement dynamique de matériaux alvéolaires souples tels que la mousse de polyuréthane.

Tout d'abord, nous avons présenté notre matériel d'essai innovant, permettant de tester des échantillons sans en modifierles propriétés intrinsèques. Pour cela, on utilise des paliers à air limitant les frottements entre les tiges et la structure qui assurent le mouvement unidirectionnel.

Ensuite, l'étude expérimentale des mousses de polyuréthane choisies a permis de montrer d'une part le comportement dynamique complexe de celles-ci, et d'autre part la forte influence des paramètres de la formulation chimique de base tels que le taux de polyol copolymère et le taux d'eau.

Références

[1] Rakheja S, Dong R.G, Patra S, Boileau P.E, Marcotte P, Warren C. Biodynamics of the human body underwhole-body vibration: Synthesis of the reported data. International Journal of IndustrialErgonomics 2010; 40(6): 710-732.

[2] Gibson, L.J. and Ashby M.F. Cellular Solids: Structure and Properties, 2ndedition, Cambridge UniversityPress, Cambridge (1997).

[3] Goangseup Z, Byeong MK, Yoon KH, Young HL. An experimental study on staticbehaviour of a GFRP bridge deckfilled with a polyure than efoam. Composite Structures 2008; 82(2): 257-268.

[4] Tu Z.H, Shim V.P.W, Lim C.T. Plastic deformation modes in rigidpolyurethanefoamunderstaticloading. International Journal of Solids and Structures 2001; 38(50-51): 9267-9279.

[5] Dupuis R, Aubry E. Development and comparison of foamcomprehensivelaw in greatdeformation. In SEM XI Internatioanl Congres Orlando, Florida, USA; 2008.

[6] Ouellet S, Cronin D, Worswick M. Compressive response of polymericfoamsunder quasi-static, medium and highstrain rate conditions. PolymerTesting 2006; 25(6): 731-743.

[7] Deng R, Davies P, Bajaj AK. A nonlinearfractional derivative model for large uni-axial deformation behaviour of polyure than efoam. Signal Processing 2006; 86(10): 2728-2743.

[8] Jmal H. Identification du comportement quasi-statique et dynamique de la mousse de polyurethane au travers de modèles à mémoire. Univesité de Haute-Alsace, Mulhouse, France: PhDthesis; 2012.

[9] Deng R. Modeling and Characterization of flexible polyurethanefoam. School of Mechanical Engineering, PurdueUniversity, West Lafayette, USA: PhDthesis, IN 46907; 2004.

[10] Singh R, Davies P, Bajaj AK. Initial condition response of a viscoelastic dynamical system in the presence of dry friction and identification of system parameters. Journal of Sound and Vibration 2001; 239(5): 1086-1095.

[11] Singh R, Davies P, Bajaj AK. Estimation of dynamical properties of polyure than efoamthrough use of Prony series. Journal of Sound and Vibration 2003; 264(5): 1005-1043.

[12] White SW. Dynamicmodelling and measurement of occupied car seats and seatingfoam. School of Mechanical Engineering, PurdueUniversity, West Lafayette, USA: Master'sthesis, IN 47907; 1998.

[13] Bezazi A, Scarpa F. Tensile fatigue of conventional and negativePoisson's ratio open cell PU foams. International Journal of Fatigue 2009; 31(3): 488-494.

[14] Rizov V, Mladensky A. Model fatigue fracture behavior of Divinucell H-30 structural foam – A non-linearapproach. ComputationalMaterials Science 2009; 46(1): 255-260.

[15] Kaushiva B.D, Dounis D.V, and Wilkes G.L. Influences of copolymer polyol on structural and viscoelasticproperties in molded flexible polyurethanefoams. Journal of AppliedPolymer Sciences 2000; 78: 766-786.

[16] ASTM D 3574-86, Test B1, Standard Methods of Testing Flexible Cellular Materials — Slab, Bonded, and MoldedUrethaneFoams.

[17] Ju M. Contribution à la modélisation du comportement visco-hyper-élastique de mousses de polyurethane – Validation expérimentale en quasi-statique. Université de Haute-Alsace, Mulhouse, France: PhDthesis; 2014.

[18] Gunaselvam J, Van Niekerk JL. Seat selection guidelines to reducewhole-body vibrationexposurelevels in the SA miningindustry. Journal of the South African Institute of Mining and Metallurgy 2005; 105(10): 675-686.

[19] ISO 2631-1:1997, Mechanical vibration and shock – Evaluation of humanexposure to wholebody vibration — Part 1: General requirements.