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1. Introduction 

 

Estimators are used when unknown states (or parameters) in a given mathematical 

model must be determined from available measurements. Usually, there are more 

measurements than are strictly needed to define the unknowns and the problem is 

called over-determined.  This type of problem is variously referred to as state 

estimation, parameter estimation, multivariate regression, and curve fitting.  All these 

terms essentially describe the same computational process. This paper illustrates and 

explains some robust state estimation methods and introduces original formulations 

that allow solutions to be obtained using general-purpose mathematical programming 

algorithms.  Small-scale examples are used to illustrate the properties of these 

methods.  All the examples are linear. 

 

If the measurements have normally-distributed errors, the method of Least Squares 

(LS), or more generally Weighted Least Squares (WLS), provides an optimal solution.  

However, if some of the measurements are statistical outliers (i.e. have unexpected 

very large errors) then the LS estimate becomes unreliable.  Various robust estimators 

have been proposed, which try to combat this problem by processing the 

measurements so that the outliers have little or no effect on the estimated states.  By 

looking at small-scale examples, it is possible to see how these methods work, and 

perhaps more importantly understand conditions where some algorithms may produce 

unexpected results. The detection of outliers and the elimination of their effects on the 

estimates can provide measurement fault detection and measurement fault tolerance.  

  

Specialised algorithms have generally been developed to solve robust estimation 

problems. However, it has been found that all the robust estimators considered here 

can be solved using standard mathematical programming algorithms.  Some of these 

formulations are original and can provide accurate solutions with good computational 

efficiency. 
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2. Least Squares Estimator 

 

Assume we a have a multivariate linear model: 

 

Ax = b          (1) 

 

where A is a known (m x n) matrix 

 x is an unknown state vector (n x 1), and 

 b is an (m x 1) vector of values which can be measured 

 

Normally we have more measurements than states, so m > n, and we expect that each 

measurement will include some unknown error: 

 

 Ax = b + e           (2) 

 

 where b is a vector of known measurements 

  e is a vector of unknown measurement errors 

 

The well known least squares estimate can be found by 

 

 Min e
T
e         (3) 

   x, e  

 

 Subject to equation (2) 

 

In other words, we choose values for the unknown elements of x and e that give a 

minimum sum of squared errors.   

 

Although there is an analytical solution to the LS problem, equations (2) and (3) can 

readily be solved as a linearly constrained quadratic program.  To illustrate LS 

solutions and to provide a benchmark for comparison with the robust methods, three 

simple two-dimensional linear regression problems (case 1, case 2 and case 3) have 

been solved and are shown in figures (1) to (3), with corresponding numerical results 

given in tables (1) to (3).  The solutions have been obtained using the general-purpose 

non-linear programming package MINOS by Murtagh and Saunders, available via the 

NEOS public-domain web-service [1].  The three problem cases are derived from an 

example presented by Ryan [2].  Case 1 is intended to be a straightforward problem, 

where all the measurements can be fitted reasonably well by a straight line.  In case 2, 

an additional measurement is introduced which is expected to be an ‘outlier’ having 

an unexpectedly high measured value.  This additional measurement is further altered 

in case 3, to have both a high measurement value and a high coefficient value in the 

matrix ‘A’.  The relationship between the simple two-dimensional linear regression 

problem and the more general multivariate case of equation (2) is explained in 

appendix 1. In tables 1(a), 2(a) and 3(a), each row represents a measurement, with hi 

being the horizontal axis co-ordinate value, bi being the vertical axis co-ordinate 

value, and ei (LS) being the residual error from the (least squares) regression line 

defined by the state estimates x1 (LS) and x2 (LS) given in tables 1(b), 2(b) and 3(b).  

The vertical axis intercept of the least squares regression line is x1 (LS) and the slope 

of the regression line is x2 (LS). 



hi bi ei (LS) ei (LAV) ei (LMS) 

2.5 5 -0.91046 -0.0285714 -3.83 

7.5 2.6 1.39866 1.94286 -0.56333 

14 2.6 1.28051 1.38571 0.56333 

15 3.9 -0.0376639 0.0 -0.56333 

16 5.1 -1.25584 -1.28571 -1.59 

23 5.1 -1.38307 -1.88571 -0.37667 

29 2.7 0.907867 0.0 3.06332 

 

Table 1(a): Measurements and Residuals using LS, LAV and LMS methods on Case 1 

 

 
 (LS) (LAV) (LMS) 

x1 4.13498 5.18571 0.736667 

x2 -0.0181763 -0.0857143 0.173333 

 

Table 1(b): State Estimates using LS, LAV and LMS methods on Case 1 

 

 

 

hi bi ei (LS) ei (LAV) ei (LMS) 

2.5 5 -1.19696 0.0 -17.4 

7.5 2.6 1.64229 1.96604 -8.5 

14 2.6 2.21332 1.40189 -0.05 

15 3.9 1.00117 0.0150943 -0.05 

16 5.1 -0.110981 -1.2717 0.05 

22 13 -7.48388 -9.69245 -0.05 

23 5.1 0.503969 -1.87925 9.15 

29 2.7 3.43107 0.0 19.35 

 

Table 2(a): Measurements and Residuals using LS, LAV and LMS methods on Case 2 

 

 
 (LS) (LAV) (LMS) 

x1 3.58342 5.21698 -15.65 

x2 0.08785 -0.0867925 1.3 

 

Table 2(b): State Estimates using LS, LAV and LMS methods on Case 2 

 

 

 

 

 

 

 

 

 

 

 



hi bi ei (LS) ei (LAV) ei (LMS) 

2.5 5 -3.03261 -3.26667 -4.32353 

7.5 2.6 0.286362 0.0 -0.45294 

14 2.6 1.48103 1.12667 1.45883 

15 3.9 0.364822 0.0 0.45294 

16 5.1 -0.651384 -1.02667 -0.45294 

45 13 -3.22134 -3.9 0.17649 

23 5.1 0.635178 0.186667 1.60589 

29 2.7 4.13795 3.62667 5.7706 

 

Table 3(a): Measurements and Residuals using LS, LAV and LMS methods on Case 3 

 

 
 (LS) (LAV) (LMS) 

x1 1.5079 1.3 -0.058824 

x2 0.183795 0.173333 0.294118 

 

Table 3(b): State Estimates using LS, LAV and LMS methods on Case 3 

 

 

The least squares fit for case 1, as expected, gives a good compromise among the 

available measurements.  The result for case 2 is still reasonable, but it is apparent 

that the outlier has distorted the fit slightly.  In case 3, the outlier has significantly 

distorted the fit.  In fact, this outlier has been deliberately chosen to be a ‘leverage 

point’.  These are measurements that can have an undue influence on estimators, due 

to their relatively greater distance from other measurements in the factor space [3].  

Leverage point outliers are particularly problematic as they are hard to detect. 

 

Further statistical processing of least squares estimates can be undertaken by 

examining the residuals e to test whether they follow expected error statistics.  For 

each measurement we can test the hypothesis that the residual error is consistent with 

its calculated variance or otherwise.  We will not pursue this approach further here, 

but will note in passing that in case 3 the outlier measurement does not have the 

largest residual. 

 

 

3. Least Absolute Values Estimator 

 

The existence of unexpectedly large residuals is associated with the presence of 

outliers in the measurement set.  The least squares principle could be said to give 

outliers excessive weight by squaring the value of the residual.  An alternative 

approach is to minimise the sum of absolute values of residuals.  By taking the 

absolute value (or modulus) of the residual, the effect of outliers on the estimate is 

reduced.  A property of Least Absolute Value (LAV) estimates is that at least  ‘n’ of 

the measurements will be fitted exactly (with zero residuals). 

 

 

 

 



An efficient algorithm for LAV estimation is via the solution of the following linear 

program: 

 

 

 Min Σ ( ei
 
+ fi )        (4) 

   x, e, f  

 

  Subject to:  Ax - e + f = b         (5) 

 

   e  >  0 ,  f  >  0       (6) 

 

 where e and f are non-negative vectors of unknown measurement errors 

 

The LAV regressions are shown together with the LS estimates in figures (1) to (3) 

and tables (1) to (3).  In case (1) the LAV regression fits the first and last 

measurements exactly but has less well-balanced residuals when compared with the 

LS regression. For case (2), LAV is not influenced by the ‘bad’ measurement and it 

could be argued provides a better regression that the LS estimate. However, in case 

(3) the leverage point does influence the LAV estimate, and in this case the LS and 

LAV regressions are quite similar. The linear programs were solved using MINOS. 

 

 

4. Least Median of Squares 

 

Rousseeuw [4] introduced a new robust estimation principle referred to as Least 

Median of Squares (LMS). This is a generalisation of the idea that the median of a set 

of real values is a more robust estimate than the mean.  For example, if we measure 

temperature using five different thermometers and obtain the readings 12.7, 12.5, 

19.8, 12.6, 12.8, the median (12.7) is a more robust estimate than the mean (14.08).  

This idea is generalised to the multivariate estimator problem by finding an estimate 

that minimises the median of the squared residuals.  Roughly speaking, the median is 

unaffected even if up to half of the residuals are very high.  (When larger problems 

with more than two state variables are considered, it is customary to minimise the 

(n+m+1)/2 ordered squared residual, since non-zero residuals only exist for m > n.)[5] 

A characterisation of an LMS estimate is that it seeks a regression that minimises the 

value of a tolerance ‘t’ whereby the majority of the measurements fall within 

tolerance.  This interpretation motivates an original implementation of an LMS 

estimator via a mixed integer program, formulated as follows: 

 

  

 Min t         (7) 

   x, k, t  

 

  Subject to:  b - t - M k  <  Ax  <  b + t + M k      (8) 

 

   k1 + k2 + . . . + km  <  K     (9) 

 

 

 



 where k is an unknown binary integer vector (each element is either 0 or 1)

  t is an unknown scalar tolerance 

  M is a specified arbitrary large positive scalar 

  K is specified as m/2   (if m is even) 

       (m-1)/2 (if m is odd) 

 

In the above mixed integer linear program, the binary integer variables k allow some 

of the measurements to be ‘switched off’ or ‘rejected’ (in other words to be outside 

the tolerance ‘t’).  The value of ‘M’ is chosen to be large enough so that when a 

measurement is switched off (by ki being 1) the expanded tolerance ‘t + M k’ is large 

enough to avoid that measurement having any effect on the estimate x.  The 

specification of K, together with constraint (9), is such that a majority of the 

measurements cannot be switched off. 

 

The three test case problems were solved using MINTO by Savelsbergh, Nemhauser 

and Linderoth [1].  Figures (1) to (3) and tables (1) to (3) show the results obtained. 

The regression obtained by LMS in case 1 is the result of ‘rejecting’ measurements 1, 

5 and 7; while achieving a close fit to the remaining measurements.  Case 2, based on 

an example from Ryan [2], includes 4 measurements that are approximately co-linear.  

The co-linearity here represents an ‘accidental’ pattern of errors, but has a dominating 

effect on the LMS estimate.  In case 3, LMS is rejecting too many measurements and 

consequently fits the outlier leverage point. 

 

Some of the problems associated with LMS are related to its property of rejecting up 

to half of the measurements.  Generally, these rejected measurements may include 

some outliers but will usually include many good measurements.  An obvious 

generalisation of LMS is to reduce the value of K in the formulation above.  This 

would force fewer measurements to be rejected.  This approach has been tried on the 

test cases and some good results are show for case 2 with K=3 (see table 5) and for 

case 3 with K=1 (table 6).  We refer to these results as GLMS-K (generalised LMS 

with up to K rejected measurements).  Table (6) shows that other choices of K do not 

have such a useful effect.  The main drawback of this generalisation is that it is not 

easy to specify in advance what an appropriate value for K should be. 

 

 

ei (LTS-3) ei (LMR) 

-3.5408 -1.5 

-0.29603 1.03207 

0.80216 1.20377 

-0.32888 -0.06981 

-1.35993 -1.2434 

-0.17726 -1.05849 

3.23646 1.5 

 

Table 4(a): Residuals using LTS-3 and LMR methods on Case 1 

 

 

 

 

 



 LTS-3 LMR 

x1 1.03682 3.43396 

x2 0.168953 0.0264151 

 

Table 4(b): State Estimates using LTS-3 and LMR methods on Case 1 

 

 

 

ei (GLMS-3) ei (LTS-1) ei (LTS-2) ei (LTS-3) ei (LTS-4) ei (LMR) 

0.91428 -0.91046 -0.23360 -3.39501 -17.4026 -1.5 

2.8857 1.39866 1.91797 -0.10016 -8.49285 0.93704 

2.3286 1.28051 1.59502 1.06314 -0.03024 0.98518 

0.94286 -0.03766 0.24534 -0.05789 -0.0283 -0.30741 

-0.34286 -1.25584 -1.00435 -1.07893 0.07364 -1.5 

-8.75714 -9.2649 -9.20246 -7.90511 -0.01472 -9.35556 

-0.94286 -1.38307 -1.35214 0.17386 9.18722 -1.44815 

0.94286 0.90787 0.74975 3.64767 19.3989 0.996295 

 

Table 5(a): Residuals using GLMS, LTS and LMR methods on Case 2 

 

 
 GLMS-3 LTS-1 LTS-2 LTS-3 LTS-4 LMR 

x1 6.12857 4.13498 4.89061 1.15757 -15.6574 3.48148 

x2 -0.085714 -0.018176 -0.049685 0.178969 1.30194 0.0074074 

 

Table 5(b): State Estimates using GLMS, LTS and LMR methods on Case 2 

 

 

 

ei  

(GLMS-1) 

ei  

(GLMS-2) 

ei  

(GLMS-3) 

ei  

(LTS-1) 

ei  

(LTS-2) 

ei  

(LTS-3) 

ei  

(LTS-4) 

ei  

(LMR) 

-1.23333 -4.62222 -4.688 -0.91046 -4.67767 -3.39501 -4.03319 -1.5 

1.2 -0.83333 -0.90133 1.39866 -0.83852 -0.10016 -0.22280 0.93704 

1.24333 0.97222 0.90133 1.28051 1.03237 1.06314 1.61071 0.98518 

-0.05 -0.05 -0.121338 -0.03766 0.020203 -0.05790 0.59279 -0.30741 

-1.24333 -0.97222 -1.044 -1.25584 -0.89197 -1.07893 -0.32514 -1.5 

-8.95 -0.81666 -0.90135 -9.68295 -0.44490 -3.78883 -0.04487 -9.18519 

-1.19667 0.97223 0.89733 -1.38307 1.12284 0.173857 1.64941 -1.44815 

1.24333 5.0389 4.96132 0.90787 5.24982 3.64767 5.74188 0.996295 

 

Table 6(a): Residuals using GLMS, LTS and LMR methods on Case 3 

 

 
 GLMS-1 GLMS-2 GLMS-3 LTS-1 LTS-2 LTS-3 LTS-4 (LMR) 

x1 3.75 -0.31666 -0.381333 4.13498 -0.39725 1.15757 0.261616 3.48148 

x2 0.006666 0.277778 0.277333 -0.018176 0.28783 0.178969 0.282078 0.0074074 

 

Table 6(b): State Estimates using GLMS, LTS and LMR methods on Case 3 

 



5. Least Trimmed Squares               

 

The principle of Least Trimmed Squares (LTS), also proposed by Rousseeuw [4], is 

to consider the sum of squared errors for the (m-K) smallest residuals only.  

Equivalently, the K largest residuals are rejected and the remaining residuals are 

considered in a least squares objective.  An original mathematical programming 

formulation for LTS is as follows: 

 

 

 Min  e
T
e                  (10) 

   x, e, k 

 

  Subject to:  b - M k  <  Ax - e  <  b + M k                (11) 

 

   k1 + k2 + . . . + km  <  K               (12) 

 

 

 where k is an unknown binary integer vector (each element is either 0 or 1) 

  M is a specified arbitrary large positive scalar 

  K is a specified number of measurements that may be rejected 

e is a vector of unknown measurement errors 

 

In this formulation, the binary vector k allows up to K of the measurements to be 

switched off. At the solution, any measurement that is switched off (ki being 1) will 

have its associated ei at zero (and not contributing to the objective function).  This 

formulation is a Mixed Integer Nonlinear Program, which can be efficiently solved 

via the NEOS server, using the MINLP algorithm of Fletcher and Leyffer [1]. 

 

Results for cases (1) to (3) are given in tables (4), (5) and (6).  As with the GLMS-K 

method, good results can sometimes be obtained, depending rather crucially on the 

choice of K.    

 

 

6. Least Measurements Rejected 
 

Whereas the LMS method pre-determines the number of measurements to reject and 

then seeks a regression that minimises the tolerance on the retained measurements, a 

new approach has been proposed by the present author, which follows the converse 

principle.  This has been implemented using a genetic algorithm in reference [6] and 

as a mathematical program in [7]. This approach requires the user to pre-specify a 

tolerance for each measurement and then seeks a regression that minimises the 

number of measurements unable to satisfy their tolerance.  The tolerance value of 

each measurement should be chosen according to the range of error within which the 

measurement can still be regarded as ‘good’.  For example, a temperature 

measurement of 12.5 
o
C might have a tolerance of + 1.0 

o
C.  This is compatible with 

the usual engineering approach for specifying transducer accuracy.  (If required, the 

tolerance can be asymmetrical, e.g. + 1.0 to –1.5.)  The new approach is referred to as 

Least Measurements Rejected (LMR). 

 

 



The mathematical programming formulation for LMR is as follows: 

 

 

 Min  Σ ki                  (13) 

   x, k 

 

Subject to:  b - M k  - t  <  Ax  <  b + M k + t              (14) 

  

 

 where k is an unknown binary integer vector (each element is either 0 or 1) 

  M is a specified arbitrary large positive scalar 

t is a specified vector of tolerances on measurement errors 

 

As before, the binary vector k allows some measurements to be ‘switched off’, but in 

this case the solution will be a regression which maximises the number of 

measurements that are within tolerance (i.e. minimises the number of measurements 

which need to be switched off with ki = 1).  This formulation is a Mixed Integer 

Linear Program, which can be efficiently solved via the NEOS server, using the 

MINTO algorithm. 

 

Results obtained using LMR for cases (1), (2) and (3) are shown in tables (4), (5) and 

(6) and figures (1), (2) and (3). A tolerance of + 1.5 was used throughout.  The LMR 

approach gives a consistent regression estimate for all three cases. 

 

In common with the LMS, GLMS and LTS formulations, LMR is formulated here as 

a mixed integer program, which has traditionally been regarded as computationally 

intensive.  However, it may be noted that mixed integer programs with thousands of 

variables can now be solved routinely in less than one minute [1]. Although the test 

cases considered here are too small to draw definitive conclusions about 

computational performance, it was noticed that (using MINTO) the LMR method only 

required the solution of 1 linear program (LP) sub-problem in each case, whereas 

LMS required the solution of 47, 73 and 96 LP sub-problems in cases (1), (2) and (3) 

respectively.  Complete enumeration of the branch-and-bound tree would require the 

solution of 128, 256 and 256 LP sub-problems respectively. 

 

 

7. Conclusions 

 

Some robust estimation methods have been discussed. Formulation of each method as 

the solution of a mathematical programming problem has provided a unifying 

framework and in some instances offers an original solution algorithm.  The small test 

cases considered indicate that some of the robust estimation methods can be disturbed 

by the presence of leverage point outliers, or spurious co-linearity of some 

measurements.  The generalised LMS approach and the LTS approach can provide 

good results but are critically dependent on the user-selected criteria of how many 

measurements to reject.  A new approach termed LMR, which in some ways is the 

converse of the LMS principle, automatically decides how many measurements to 

reject, but does require the user to specify a suitable tolerance for each measurement.  

By considering the characteristics of a measurement process, it is possible to selecting 

a robust estimation algorithm that is capable of reliably detecting measurement faults 



and providing valid estimates in their presence.  This can be vital where 

measurements are processed automatically within an on-line system.  
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Appendix 1 

 

For the case of linear regression in two-dimensions, we can write the equation of a 

straight line as: 

 

 x1 + x2 h =  b                  (A1) 

 

 where h is the horizontal axis co-ordinate  

b is the vertical axis co-ordinate 

  x1 is the intercept on the vertical axis 

  x2 is the slope  

 

If we have ‘m’ measurement points, each defined by horizontal and vertical 

components (hi, bi), then we can write a set of measurement equations: 

 

x1 + x2 hi = bi + ei   ( i = 1 , … , m )             (A2) 

 

which can be written in matrix form: 

 

 A x = b + e                  (A3) 

 

 Where x = [x1, x2] 

  b = [b1, … , bm ] 

  e = [e1, … , em ] 

  A =  | 1     h1  | 

   | :      :   | 

   | 1     hm | 
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Figure 1: Selected Regressions for Case 1 
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Figure 2: Selected Regressions for Case 2 
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Figure 3: Selected Regressions for Case 3 
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