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Résumé :  
 

 Nous considérons la propagation d'ondes dans un fluide contenant des cylindres poreux 

parallèles aléatoirement répartis dans l'espace. Le nombre d'onde effectif de l'onde cohérente dans le 

milieu est dérivé à la limite de Rayleigh pour les formules explicites ISA (Independent Scattering 

Approximation), Waterman et Truell (WT) et Linton et Martin (LM) aussi bien que pour les formules 

implicites, i.e. CPA (Coherent Potential Approximation) et GSCM (General Self Consistent Method) 

appliquée à WT et à LM. Lorsque la porosité des cylindres tend vers zéro, on retrouve des situations 

connues correspondant à des distributions aléatoires de cylindres élastiques immergés. 

 

Abstract :  
 

 We consider wave propagation in a fluid containing parallel porous cylinders randomly 

distributed in space. The effective wavenumber of the coherent wave in the medium is derived at the 

Rayleigh limit for explicit formulas ISA (Independent Scattering Approximation), Waterman and 

Truell (WT) and Linton and Martin (LM) as well as for implicit formulas, i.e. CPA (Coherent 

Potential Approximation) and GSCM (General Self Consistent Method) applied to WT and to LM. 

When the porosity of the cylinders tends to zero the well known cases of an assortment of random 

elastic cylinders in fluid  is found. 

 

 

Mots clefs : random medium, effective wavenumber, self consistent 

schemes, Rayleigh limit. 

 

1 Introduction  
 

 The problem of sound propagation through fluid domains containing randomly distributed 

scatterers has been investigated in recent years. The scatterers can be as well bubbles, hard grains, 

elastic rods or contrast agents. The main interest is on the propagation of the coherent wave which 
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represents  a statistical average over all possible configurations of the scatterers. The wavenumber effk  

of the coherent wave which is also called the effective wavenumber is complex-valued.  

 Several explicit formulas have been proposed for the calculation of effk  in the case of 

cylindrical scatterers, which include the Independant Scattering Approximation (ISA) [1] 

    2 2 2

0 04 0eff ISAk k k in f   ,       (1) 

the Waterman and Truell [2] formula,  
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 and the Linton and Martin [3] formula  
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In the foregoing,  f   is the far-field scattered amplitude of each cylinder in the direction  , 0n  the 

number of scatterers per unit area and 0k  the wavenumber in the fluid host. The accuracy of the three 

formulas depends on the value of the concentration 
2

0c n a  where a  is the radius of circular 

cylinders, i.e. on the ratio 
2

0 0n k . The ISA is  2

0 0O n k  whereas both WT and LM are  2 4

0 0O n k . 

 Implicit methods have been also derived which include the Coherent Potential Approximation 

(CPA) [4] and the General Self Consistent Method (GSCM) [5] which originates from a self consistent 

scheme applied to the Waterman and Truell's formula. In these methods, the wavenumber effk  is 

obtained by solving an equation containing the far-field scattered amplitude. In this paper, by 

considering fluid saturated porous cylinders, the Rayleigh limit for various effective wavenumbers are 

calculated and compared : those from explicit wavenumbers ISAk , WTk , LMk  and those from self-

consistent schemes CPAk , G WTk   and G LMk  . 

 

2 Wavenumbers from explicit theories 
 

 Let us consider circular porous cylinders of radius a  immersed in a fluid of density 0  and of 

sound velocity 0c . The wavenumber in the fluid is denoted by 0 0k c  with   the angular 

frequency. In the saturated porous medium, according to Biot's theory three waves can propagate with 

respective wavenumbers 1 1c  (fast longitudinal wave), 2 2c  (slow longitudinal wave) and 

t tc  (shear or transverse wave). The magnitudes of 0k  and 
j  ( 1, 2,j t ) being of the same 

order, the low frequency assumption is to consider normalized wavenumbers such that 0 1k a   and 

1ja  . With cylinders of radius 0.3 cma  , the assumption 0 1k a   is equivalent to 

considering that the frequency 78.4 kHzf  . In comparison, some authors [6] considered 

considered steel rods with diameter 0.8 mm .  

 The far-field scattering amplitude in the direction   for an individual cylinder can be written 

as 
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  ,         (4) 

where nT  is the scattering coefficient for the mode n  that depends on 0k a  and the 
ja  ( 1, 2,j t ). 

It is calculated by using boundary conditions indicated in Ref. 9.  For cylindrical scatterers, n nT T  . 

Since the coefficients nT  become small for 0n k a , as it happens also for elastic cylinders [7], the 

infinite sum in Eq. (4) can be truncated to retain only those of the terms with 1n  . Thus, for forward 

scattering the far-field scattering amplitude reduces to   0 120f T T   . For backward 

scattering it reduces to   0 12f T T   . By considering Bessel and Hankel functions for 0 1k a   

and 1ja   [8], the following low frequency expansions are obtained  
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In the foregoing, the js , j s , fj s  are quantities related to the porous medium and are detailed in 

[9]. When the porosity of the medium 0  , the porous medium becomes an elastic one (that of the 

solid grains) of density s , with longitudinal wave velocity Lc  and transverse wave velocity Tc . It 

follows that 
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and Eqs. (5)-(6) then agree with Eqs. (10-11) of Ref. [10]. The scattering coefficients 0T  and 1T  for a 

fluid cylinder of density f  in which sound propagates with the velocity fc , follow from Eqs. (9) and 

Eqs. (5-6) by setting s f  , 0Tc   and L fc c  (see Eqs. (73 a-b) of Ref. [11]). 

 

2.1 Waterman and Truell's formula 
 

 WT's formula for the effective wavenumber WTk  is a second order correction to 

Foldy's formula [12] in terms of 0n  the number of scatterers per unit area. It provides a satisfactory 

estimate for effective wavenumbers if the separation distance between nearest scatterers is sufficiently 

large. Such an assumption means that the porous fraction   in a representative surface is small (  is 

defined as the ratio of the surface occupied by the porous scatterers to the total surface of a 

representative surface of the medium that contains the scatterers). By retaining only the two first 
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scattering coefficients in  0f  and  f   and by using next Eqs. (5)-(6) without the   4

0O k a  

terms, one finds that  
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.    (10) 

When the porosity 0  , the substitution of  Eqs. (8-9) in Eq. (14) yields  
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For fluid cylinders, it may be verified by setting s f  , 0Tc   and L fc c  that Eq. (11) tends 

to Eq. (75) of Ref. [11]. 

 

2.2 Linton and Martin's formula 
 

Norris and Conoir [11] showed that LM formula of the effective wavenumber for cylindrical 

scatterers Eq. (3) can be obtained alternatively (under the assumption 
2

0 0 1n k  , up to the second 

order in 
2

0n  and by considering the restricted case of symmetric scattering far-field amplitudes 
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By retaining only the two first scattering coefficients of  0f  and by substituting Eqs. (5-6) in Eqs. 

(13) it follows that 

 
           0 0 0 0 02 2 2

0 0 1 1 0 11 2 1 2 1LMk k c B B c B B B       
 

.    (14) 

The case 0   follows by substituting Eq. (9) in Eq. (14) : 
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            (15) 

When s f  , 0Tc   and L fc c  one finds the LM wavenumber for fluid cylinders given by 

Eq. (75) of [11]. 

 

2.3 Independent Scattering Approximation (ISA) 
 

 ISA's wavenumber is deduced from Eqs. (2) or (12) by neglecting 
2

0n  terms. It follows at once 

that  
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a result readily obtainable from Eqs. (10) or (14) by neglecting 
2c  terms. From the foregoing, WT's 

and LM's formulas can be written in term of ISAk  as  

 
    0 02 2 2 2

0 0 12 1WT ISAk k k c B B   ,       (17) 

 
      0 0 02 2 2 2

0 1 0 12 1LM ISAk k k c B B B    .      (18) 

 

3 Wavenumbers from implicit methods 
 

 The Generalized Self Consistent Method (GSCM) applied by to WT's formula [5] and to LM's 

formula [11] follows the work of Ref. [13]. The far-field scattered amplitude   , in

eff n

n

f k e 




  T  

where nT  are the scattering coefficients corresponds to that of a three phase cylinder, i.e., a porous 

cylinder of radius a  coated by a fluid shell of outer radius ca a  immersed in an infinite outer 

medium of effective properties eff  (density) and effk  (wavenumber). The fluid shell has a density 

0  and wavenumber 0 0k c  (with 0c  the sound velocity). The concentration c  of cylinders is 

defined as  2 2 2 2

0 0 c cc n a n a a a    and   01eff c c      with   01 s       ( s  

density of solid of the porous frame and   porosity of the porous medium). Three approaches are 

considered below, based upon self consistent schemes. The self consistent scheme applied to the ISA 

leads to the Coherent Potential Approximation (CPA). When applied to WT's or LM's formula, it 

generalizes the CPA. 

 The low frequency approximations of the first two scattering coefficients 0T  and 1T  can be 

written as  
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In Eqs. (21)-(22), 
 0

m  and 
 0

n  do not depend on the concentration c  since 
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 0

1 2 2 1f fn      .  (23) 

Eqs. (4-5) (Eqs. (6-7), resp.) derive from Eqs. (21-22) if, at first, we set 0eff   in order to identify 

the outer effective fluid with the fluid itself, and then cancel the fluid shell by putting 1c  .  

 It may be noted that if 0  , Eqs. (21-22) become 
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with   01eff sc c     . Furthermore, if 0c   then 
 0

0 1B   and 
 0

1 0B   implying 

0 1 0 T T , a result coherent with the absence of scattering. Returning to the general formulas, Eqs. 

(21-22), we see at first that Eq. (21) can be easily expanded in powers of c  as 
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Next, by assuming small enough c , the Taylor expansion of Eq. (22) up to the second order in c  

yields  
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By evaluating these quantities when 0  , it is found that 
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so that Eq. (27) becomes 
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Eq. (31) agrees with the asymptotic expansion for the function  effF  , given by [11]. These 

expansions will be used at subsequent points in order to compare effective wavenumbers obtained by 

an explicit approach with those from a self-consistent scheme (GSCM). The latter are calculated in the 

next sections.  

 

3.1 Coherent Potential approximation (CPA) 
 

 The application of the GSCM to the ISA represented by Eq. (2) yields CPA's equation 

 ,0 0efff k  . By considering only the first two scattering coefficients 0T  and 1T , one obtains  

 0 12 0 T T ,          (32) 

which, on account of Eqs. (19-20), leads to 
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with 
 0

0B  and 
 0

1B  given by Eqs. (24-25). Using next Eqs. (26-27), the Taylor expansion of  eff CPA
k  

up to the second order of concentration can be expressed as 
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. (34) 

If 0  , we find 
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,    (35) 

and 
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            (36) 

which, after substitution in Eq. (34) gives an explicit effective wavenumber for elastic cylindrical 

cores up to the second order in concentration. 

 

3.2 GSCM applied to Waterman and Truell's formula 
 

 The GSCM applied to WT's formula, Eq. (2), leads after some calculations to the identity  

 0
0 1 0 12

8
2

eff

in

k
 T T T T ,         (37) 

from which WT's wavenumber is derived (note that 
2

0 1cn a   has been accounted for) 

       0 02 2

0 0 11 2eff WT
k k B B  . 

Using next Eqs. (26-27), one gets 
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.  (38) 

It is only from the second order in c  that WT's wavenumber diverges from CPA. When 0  , we 

have the following limit for the factor of 
2c  in Eq. (38) 
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.(39) 

 

3.3 GSCM applied to Linton and Martin's formula 
 

 If applied to Eq. (12), the GSCM leads to 

  0
0 1 0 1 12

8
2 0

eff

in

k
   T T T T T .       (40) 

which, after the substitution of Eqs. (19-20) and using 
2

0 1cn a   yields LM's formula 
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Expansion in powers of c  of this latter equation leads to 
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 (42) 

 

4 Conclusion 
 Asymptotic forms of the effective wavenumbers in a fluid medium containing a 

random distribution of porous scatterers have been obtained both for explicit and implicit 

methods. At the first order in concentration, explicit WT and LM give the same wavenumber. 

The same conclusion holds for CPA, implicit WT and LM. All these formulas diverge from 

each other at the second order in concentration. As the porosity of the cylinders tends to zero the 

well known cases of random elastic cylinders in fluid is found. 
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