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Abstract:  
 

The purpose of this work is to evaluate the anisotropic mechanical behavior of an AA2024-T351 thick 

plate using three multi-scales approaches: a Macroscopic Unified formalism (HILL 48), a Multi-

Mechanisms Model and a Polycrystalline plasticity model. The experimental results obtained from 

uniaxial tensile tests are first described. Thereafter, the theoretical formulations and numerical 

identification of studied elastoplastic approaches are presented. Finally, finite element simulations of 

tensile tests and analysis of the thick sheet stretching forming process are performed. 

 

Keywords: Thick sheet anisotropy, Multi-scale modelling, Numerical 

simulation, Aluminium alloy, Stretching forming. 

 

1 Introduction  
 

In the aeronautical manufacturing industry, due to the important need for low-weight, aircraft elements 

made in aluminium alloy characterized by good mechanical resistance and formability are used. 

Generally this material is obtained in a sheet or plate form by hot and cold rolling forming processes 

which creates plastic anisotropy. This phenomenon is the result of the distortion of the plastic yield 

surface shape due to the material microstructural state change [1]. It is important to understand the 

anisotropic mechanical behavior characterizing a thin [2] or a thick sheet and ensure the reliability of 

the numerical models prediction in order to be integrated in general engineering optimal design 

analysis or to be strongly used for improvements of sheet forming processes. This work presents an 

introduction of the three-dimensional anisotropy study of an aluminium alloy and starts with two 

specific cases of a 3D plastic anisotropy: normal and planar. In normal anisotropy (used for studying 

thin and thick sheets), the properties differ principally in the thickness direction. Whereas, in planar 

anisotropy (used classically for studying thin sheets), the properties vary with the orientation in the 

plane of the sheet. Three different elasto-plastic numerical approaches are in the focus of this proposed 

study: a unified formalism, a multi-mechanism model and a polycrystalline one [3-7]. To demonstrate 

their feasibility and to select the most accurate model describing the plastic anisotropy, comparisons 

are realized with the experimental data obtained from tensile tests performed for specimens with a 

thickness of 3 mm along different directions to the rolling direction. Finite Element analyses based on 
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the three numerical models are used for the simulation of uni-axial tensile tests and of a stretching 

forming process in order to evaluate their robustness on analysis of severe material forming 

conditions. 

 

2 Experimental study 
 

2.1 The sample material and operating conditions 
 

Uni-axial tensile tests were carried out on flat pieces of smooth sections obtained by machining from a 

rolled AA2024-T351 thick plate. The loading axis of specimens with a thickness of 3 mm coincides 

with different cutting directions with respect to the rolling direction. Figure 1 shows the used 

specimen’s geometrical dimensions. 

 

 

 
 

Figure 1: Plane specimen dimensions (in mm) 

The experimental tensile tests were conducted in the directions 0°, 30°, 45°, 60°, 75° and 90° with 

respect to the rolling direction using an INSTRON machine of INSA Rennes having a maximum 

loading capacity of 50 kN (figure 2), recording both the loads and the displacements controlling a 

constant crosshead speed of 5 mm/min corresponding to an initial strain rate of 
1-3- s10x2=ε .  

         

 

 

 

 

 

 

 

 
 

Figure 2: INSTRON universal testing machine and the tasks points (A, B, C, D) positioned on the 

tensile specimen surface: (a) before and (b) after the test. 

 

2.2 Experimental results and classical analysis 

Axial load and displacements in longitudinal and transverse directions was recorded during the 

experiment using a speed camera measuring respectively two point’s displacements throughout the 

material traction (figure 2). Then the camera follows two points A and B along the y axis of loading 

(having an initial distance l0 between them) and two points C and D along the x axis (spaced by an 

initial distance b0). 

  (a) 

l0 

b0 

l 

b 

(b) 
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Thanks to the digital images of the specimen, the evolution of each local distance can be recorded 

and then to estimate the corresponding total strains
t

yyε , 
t

xxε  using the following formula: 
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l, b are the measured displacements.  

 

The tensile load F was continuously measured in order to evaluate the true stress:  

( )t

yy

0

yy εexp
S

F
σ =            (2) 

S0 is the cross section area of the specimen.  

 

The corresponding plastic strain is obtained from the partition of the total strain by an elastic part and 

a plastic one:  

pet εεε  += or pet εdεdεd +=          (3) 

According to the three orthotropic axes (x,y,z) the plastic strains can then be calculated as follows:  

E
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Using the volume conservation principle ( ( ) 0ε~tr p = ), the plastic strain along the specimen thickness 

p

zzε  can be estimated by: 
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Starting from the classical plastic anisotropy theory of a thin sheet, the Lankford coefficient, denoted 

r-value, was estimated from different tensile directions with respect to the rolling one (0°, 45° and 

90˚), using the ratio between the plastic width strain 
p

xx  and the thickness strain 
p

zz  [8]:  
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It is shown that the r-value is equal to one for isotropic materials and any other value indicates that 

plastic anisotropy occurs during the material deformation. The normal anisotropy r and the planar 

anisotropy r  are also used to investigate the formability and the earring pattern in circular cup 

drawing. Higher value of r  means a less thinning and a better formability. On the other hand, higher 

planar anisotropy r means more anisotropic properties. The two parameters can be computed as:  

4

rr2r
r 90450 
  and 

2

rr2r
r 90450 
         (7) 

Here the 90450 r,r,r  are the Lankford coefficients estimated by equation (6). For the 0°, 45° and 90° 

tensile tests, the obtained experimental true stress-true strain curves before the onset of the specimen 

necking are shown in the figure 3 (a). As it can be seen, a close material behavior is obtained between 

the tensile directions 45° (DD) and 90° (TD). The plastic behavior of the specimen loaded at 0° (RD) 

is slightly different in intensity with a dozen of MPa. Some differences can be observed in the figure 3 

(b) comparing to a thin AA2024 sheet [2]. Because the planar anisotropy rΔ  has smaller values (i.e. 
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rΔ = -0.07 for 10% plastic deformation), it is possible to consider that the considered AA2024 thick 

plate has rather a normal anisotropy, which is a particular case of a 3D anisotropy. Moreover an 

average Lankford coefficient lowers than 1 ( r =0.64 for 10% plastic deformation) reflects a less good 

formability of this material. 

 

 

 

 

 

 

 

Figure 3: Experimental true stress–true strain curves along the tensile directions 0°, 45° and 90° of 

AA2024-T351: (a) thick plate (present work) and (b) thin sheet [2] 

If a Hill’s 1948 quadratic plastic anisotropic behaviour law is taking into account, the variations of the 

corresponding coefficients with the plastic strain (F’, G’, H’, L’, M’, N’ or dimensionless F, G, H, L, 

M, N ones) seems to be in accordance with the classical analysis of the plane anisotropy (equation (9)) 

and normal anisotropy (equation (10)). These coefficients can be expressed in function of Lankford 

parameters using the following expressions: 
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where 0σ  is the equivalent stress corresponding to the tensile behavior along the rolling direction DL. 

The evolution of these coefficients with the cumulated plastic strain is plotted in figures 4. In a first 

approximation, estimating all the r coefficients for 0.2% of plastic deformation, the dimensionless Hill 

coefficients F, G, H and N have constant values. 

 

 

 

 

 

 

Figure 4: Variations of the computed Hill coefficients as a function of the plastic strain for a plane 

anisotropy 

(a) (b) 
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The variations of the Hill coefficients (F', G', H', N’) exhibit a sharp fall before a plastic strain of 5%. 

Beyond this level, these coefficients decrease slowly. Commonly, constant values of the Hill 

coefficients computed for a 0.2% plastic strain are generally used in the phenomenological anisotropic 

models. Nonetheless this assumption, to gives a more accurate Hill’s 1948 criterion describing the 

plastic anisotropy of aluminum alloys, the anisotropy coefficients must be estimated for each plastic 

deformation degree and consequently variations of these coefficients with the plastic strain will be 

analyzed starting from obtained experimental data. The evolution of the three Lankford coefficients 

( 450 r,r  and 90r ) corresponding to the plane anisotropy and of the average Lankford coefficient 

r corresponding to the normal anisotropy are plotted respectively in figure 5 and figure 6 together 

with a polynomial interpolation equation characterizing quantitatively their variations.  

 

 

 

 

 

 

 

 

 

Figure 5: Four degree polynomial interpolation of 450 r,r  and 90r  Lankford coefficients 

according to their variation with the plastic strain 

 

 

 

 

 

 

 

Figure 6: Four degree polynomial interpolation of normal anisotropy coefficient r according to its 

variation with the plastic strain 

The corresponding curves representing the variation of the Hill coefficients computed from equations 

(9) and (10) are plotted in figure 7 for the normal anisotropy and in figure 8 for the plane anisotropy. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Variations of the computed Hill coefficients as a function of the plastic strain for a normal 

anisotropy 
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Figure 8: Variations of the computed Hill coefficients as a function of the plastic strain for a plane 

anisotropy 

 

It can be observed that during the material plastic deformation the Hill coefficients have significance 

variations with respect to the plastic strain. Then, as compared to the estimated values for 0.2% or 2% 

of plastic deformation, the coefficients have different values for 5%, 7% or 10% of plastic strain. 

Consequently this observed variation must be taking into account by more realistic numerical 

simulations of forming processes as the stretching, deep drawing and stamping.  

 

3 The constitutive equations 
 
Dealing with the elasto-plastic behavior of aluminum alloys dedicated to metal forming it is 

convenient to use a finite strain formulation by the mean of an updated Lagrangian formalism already 

implemented in the FE software ZeBuLoN [9]. The material behavior description is based on 

constitutive equations using tensorial internal variables and on the Green–Naghdi transformation of 

the stress–strain problem into an “equivalent material referential”. This standard computation allows 

the decomposition of the incremental total strain into elastic and inelastic parts i.e. pet εdεdεd += . 

The numerical strategy generally used to take into account a 3D plastic anisotropy in a classical 

Macroscopic Unified model (Table 1) is to involve a tensor of fourth order into the criterion 

expression. [3, 4, 7].  

 

Table 1: Constitutive Equations of the Unified Model 
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 B : Fourth order tensor 

 X : Back stress variable  

 α : Hardening variable 

 R :Size of elastic domain 

 R0 :  Initial size of R 

 Q, b, C, D: Material parameters 

 λ  : Plastic multiplier  

 λ  : Represents equivalent plastic strain. 

 (F, G, H, L, M, N): Hill coefficients 

To take into account physical plastic phenomena at a mesoscopic scale, a multi-mechanisms model 

has been developed. In this case the inelastic strain rate 
pε  is split into two components: 

p 1 2ε =ε +ε where 
1ε and 

2ε are the local inelastic strain rate of the mechanism 1 and 2 respectively. 

Table 2 summarizes the constitutive equations of the named 2M1C model (2 mechanisms, 1 criterion). 
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Table 2: Multi-Mechanisms models (2M1C)  

For a multi-scale approach taking into account the plasticity as a microstructural scale, the 

polycrystalline plasticity model seems to be the most appropriate. In this case the plastic deformation 

is the result of the dislocations glides along the active directions of crystallographic systems defining 

the metallic crystal structure (FCC for AA2024).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Diagram of the Polycrystalline model using REV method 

 

Table 3: Equations of the Polycrystalline model 
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pE : Macro plastic strain rate 
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 C and D: Material parameters 
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 sγ : Shear rate  

 k  and n : Material coefficients 
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sr : Variable of isotropic hardening   
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 r0 : Initial critical shear stress 
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 c and d : Material parameters 
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 f : Yield criterion function 

 
pε : Tensor of  plastic strain rate 

 
Iε : Tensor of  local inelastic strains rate 

of the mechanism I  

 
IX : Back stress tensor of each 

mechanism I 

 L
~~

: Fourth order tensor  

 C11,C12, C22, D1, D2: Kinematic hardening 

moduli 

 
In  : Normal to the yield surface for each 

mechanism 

 
Iα : Kinematic internal variables 
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In a numerical point of view the polycrystalline model uses the concept of a representative 

elementary volume (REV) which can be coupled to a finite element method. Figure 9 shows a 

simplified diagram of the Polycrystalline model approach detailled in Ref. [5] and adopted in 

this work (Table 3).  

All the three above material constitutive models: the macroscopic unified, the multi-

mechanisms (MM – 2M1C) and the polycrystalline plasticity one are implemented into the 

material library ZMaT and the subroutine ZSeT of the finite element code ZeBuLoN [9] using 

a θ-method solver via an implicit Newton scheme applied for the local integration.  

 

4 Finite element modeling and parameter identification 
 

Finite element simulations of each presented models requires a well known of constitutive parameters 

values. These ones can be carried in two stages. Firstly an initial estimation of the parameters values 

are obtained via an interactive-graphic method based on manual comparisons between the 

experimental results and those obtained from numerical simulations. Final identified values are 

obtained using the optimization module of ZeBuLoN to improve the solution by an automatic non-

linear regression. Figure 10 shows the principle of the numerical optimization technique used to 

identify the parameters of a defined behavior law or constitutive model.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Optimization principle in the subroutine ZSeT 

 

A similar tensile specimen as the experimental one is used for the numerical simulation and its finite 

element mesh is presented in figure 11. 

 

 

 

 

 

 

 

 

Figure 11: Finite Element meshes for the tensile specimen 

Constant displacement applied in 

the end node on y-direction  Fixing in the node  

Fine mesh 
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Figure 12 shows a numerical simulation of a tensile test along the rolling direction using a Voce law 

describing an isotropic hardening (without kinematic hardening) identified from the experimental 

tensile test at 0° and defined by: )]-18λ(exp-1[250+301=R .  

 

 

 

 

 

Figure 12: Numerical simulation of the tensile test 

It can be observed that a homogeneous state of strains occurs in the active area of the tensile 

specimens which confirms the hypothesis of the homogeneity used by the classical computation’s 

methods to estimate all variables describing the uni-axial test, the mechanical behavior and especially 

the anisotropy. 

Macroscopic Unified Model 

In the case of the macroscopic unified model, the identification results of all the parameters are 

presented in table 4, using a lot of FE simulations. Even if variations of Hill coefficients are not taken 

into account it is obtained a good agreement between the experiment and simulation of a simple 

tensile test (Figure 13). 

 

 

 

 

 

 

 

Figure 13: Comparisons between experimental and simulated tensile tests for the macroscopic unified 

model without kinematic hardening 

Table 4: Identified parameters of the anisotropic unified model without kinematic hardening (MPa) 

Elasticity Isotropic hardening Kinematic hardening 

E  υ  R0 Q  b  C  D  

80000 0.33 301 250 18 0 0 

Hill’s 48 parameters 

Plane anisotropy 

F G H L M N 

0.5 0.63 0.37 0.97 0.97 0.97 

Normal anisotropy 

F G H L M N 

0.63 0.63 0.36 1.35 1.35 1.35 
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Multi-Mechanisms Model (2M1C)  
 

For the multi-mechanisms model (2M1C) the identified anisotropic material parameters are shown in 

table 5 (the isotropic parameters Le and Lf are not identified here). The numerical simulation are in 

very good agreement with the experiments and more accurate than the results given by the previous 

unified model. The comparisons between the stress-strain curves simulation and experimental data 

were illustrated by figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Comparisons between experimental and simulated tensile tests for the Multi-Mechanisms 

(2M1C) model 

Table 5: Identified parameters of the anisotropic 2M1C model 

E υ 
0R  Q C11 C22 C12 

80000 0.33 360 260 1200 2500 900 

b D1 D2 La Lb Lc Ld 

7 5 5 1 1 0.2 0.5 
 

Polycrystalline Model 

For the polycrystalline model of an aluminum alloy, the crystallographic texture reported in this study 

is taken from the literature and has been also used to characterize the AA2024 material. An initial 

{111} pole figure approximated by a set of 212 orientations corresponding to an initial material state 

and constructed using a numerical stereographic projection code (Projstern) is shown in figure 15 (a). 

The identified parameters values obtained from the best fit between the experimental data and those 

obtained from FE simulations (figure 15 (b)) are given in Table 6. 

 

 

 

 

 

 

 

 

Figure 15: (a) {111} Pole figure and (b) comparisons between experimental and simulated tensile 

curves for the polycrystalline model. 

(b) 
(a) 
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Table 6: Identified parameters of the polycrystalline model (MPa). 

Elasticity Isotropic hardening Norton parameters Kinematic hardening 

E υ  0r  Q b k n C D c d 

75000 0.33 145 47 5 31 11 35000 120 4300 45 

5 Application to a thick sheet stretching forming process 

In the present investigation, and due to the friction between the blank holder/blank which adds an 

additional parameter during the numerical simulations of the deep drawing of a thick sheet, the study 

is limited to a stretch forming process. The stretching forming is a metal forming process in which a 

piece of sheet metal is stretched over a die in order to form large contoured parts and to reach the 

plastic area so that the elongation keeps permanent. Figure 16 shows the principle of the deep drawing 

process and of the corresponding device. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 16: (a) 3D illustration of the deep drawing process and (b) The geometry of the deep drawing 

device. 

Concerning the stretching forming this process is performed on a stretch press, in which a piece of 

sheet metal is securely gripped along its edges by gripping jaws. The table 7 gives the characteristic 

dimensions of the stretching forming device. The main advantage of the stretch forming process is the 

production of large parts, usually made in aluminum, with lower tooling costs as compared to the deep 

drawing. Generally a single pass on a single tool is required to form the sheet and mostly this process 

reduces the spring-back phenomenon. 

The axisymmetric 2D simulation of the stretching forming operation is performed using the finite 

element code ZeBuLoN. The geometry of the tools and the blank is defined in figure 17. The blank, 

with a thickness of 3 mm, was modeled with 4-node linear axisymmetrical elements. The simulations 

are performed without a blank holder, considering that the sheet is placed on the die and clamped on 

Punch 

Blank  

Die 

Blank-  

Holder 

dd rd 

(a) (b) 
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its edge. The stretching forming simulation was conducted under displacement control to a relative 

punch-displacement initially of 8 mm. The clearance between the punch and the die is 3 mm and the 

friction of contact between punch/blank and blank/die were defined with a coulomb model via a 

friction coefficient equal to 0.1. 

 

 

 

 

 

 

Table 7: Characteristic dimensions of the 

Stretching forming device (mm) 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 17: The geometry and the mesh used in a finite element stretch forming process simulation (all 

dimensions in mm) 

Figure 18 shows the evolution of the numerical punch loads according to its movement during the 

cupping for the three presented models using numerical simulations made with ZeBuLoN code. 

 

 

 

 

 

 

 

 

 

 

Figure 18: Numerical load-displacement curves obtained for RD, TD and DD stretching forming tests 

and the three models (ZeBuLoN): Macroscopic Unified, MM (2M1C) and Polycrystalline  

Nearly similar shape and maximum loads are obtained for unified and 2M1C models as compared to 

the polycrystalline one which seems to overestimate the drawing forces.  
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Numerical simulations for the macroscopic unified model were performed via both Abaqus and 

ZeBuLoN code (Figure 19) using an isotropic hardening Voce law [10] defined by: 

)]-18λ(exp-1[250+301=R .  

 

 
Figure 19: Numerical load-displacement curves obtained for RD, TD and DD drawing tests using the 

Macroscopic Unified model (Abaqus and ZeBuLoN). 

 

The contour plots of the equivalent stress after 8 mm of punch displacement is shown in figure 20.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 20: Contour plot of the equivalent stress at 8 mm depth: (a) Macroscopic Unified model, (b) 

MM (2M1C) model and (c) Polycrystalline model. 

 

It can be observed that the macroscopic unified formalism and the 2M1C model lead to similar 

distribution of the equivalent stress. On the other side, the polycrystalline model gives different results 

principally due to the important influence of the material texture evolution. It can be concluded that 

for more pronounced plastic deformations the local anisotropy becomes more important that the global 

anisotropy taken into account by the first two models. 

 

(c) 45° (DD) 

(b) 90° (TD) 

0° (RD) 90° (TD) 

(a) 90° (TD) 0° (RD) 45° (DD) 

0° (RD) 45° (DD) 
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Conclusion  
 

In this paper experimental analysis and three multi-scales approaches have been used to describe the 

plastic anisotropy for an AA2024-T351 thick sheet. Starting form the classical analysis of the plastic 

anisotropy has been proposed an analytical estimation of the variations of Lankford and Hill 

coefficients with the plastic strain. According to the three proposed constitutive models and starting 

from simulations of a simple tensile test, a good agreement is obtained between the numerical results 

and the experimental data in terms of stress-strain behavior. However it can be seen that the Multi-

Mechanisms (MM) and Polycrystalline models are more accurate to simulate the anisotropy of the 

studied material compared to the macroscopic unified model. Finally the numerical simulations of the 

AA2024 thick sheet stretch forming process in different directions of the anisotropy are presented and 

compared for the three approaches. The load-displacement curves and the distribution of the 

equivalent stress of this type of sheet forming process (stretching forming) show the feasibility of all 

proposed models, highlighting however the main advantage of the Multi-Mechanisms and of the 

Polycrystalline models as compared to the classical unified Hill formalism using constant values of 

Hill parameters. In a future will be make more comparisons with experimental results using channel 

die compression, biaxial tensile and simple shear tests in order to obtain a complete description of 

tridimensional plastic anisotropy corresponding to large deformations. Moreover a lot of experimental 

and numerical analysis of a deep drawing process applied to a thick sheet will be considered. 
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