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Abstract: 
 
This work deals with optimization of multiple characteristics in CNC turning of reinforced Poly Ether 
Ether Ketone (PEEK CF30) with TiN coated tools under dry condition. The considered criteria 
included specific cutting pressure, machining force and cutting power. Three controllable factors of 
the turning process consisting of cutting speed, depth of cut and feed rate were incorporated. Taguchi 
design of experiments method was used to arrange the experimentation task. The developed response 
surface models were then employed with particle swarm optimization (PSO) to optimize the cutting 
conditions. PSO program gives the minimum values of the considered criteria and the corresponding 
optimal cutting conditions. 

 
Mots clefs: PEEK CF30; Design of experiments (DOE), Response surface 
methodology (RSM), particle swarm optimization (PSO). 
 

1 Introduction 

Poly ether ether ketone (PEEK) material belongs to a group of high performance thermoplastic 
polymers, which has excellent mechanical and thermal properties [1]. The PEEK materials have been 
extensively used in automobiles, aeronautical, biomechanics, oil or gas industries, robots and 
machines because of light weight, high specific strength and stiffness, wear resistance, dimensional 
stability, good corrosive resistance, low weight, physical and mechanical directional properties [2-5]. 
Nowadays, aluminum has been replaced by PEEK material, particularly in aerospace industry due to 
superior performance at higher temperatures [6]. 
The addition of short fibers to PEEK material results in greater improvements in stiffness; strength and 
hardness over unreinforced thermoplastics and provides increased service temperature [2, 3]. The 
carbon and glass fibers are the common reinforcements in PEEK material because of low expansion 
rate and high flexural modulus and hence find several applications in resistant or structural 
components, mainly at temperatures above 150ºC. The reinforced poly ether ether ketone with 30% of 
carbon fiber (PEEK-CF30) constitutes cost-effective alternative to stainless steel and other metallic 
materials in strongly corrosive industrial applications [7]. The PEEK-CF30 is enormously abrasive 
when machined and brings out many undesirable results such as rough surface finish, rapid tool wear 
and defective subsurface layer. The cutting mechanism of this material is fairly different from that of 
metal [8, 9] and hence successful machining performance is significantly affected by work material 
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properties. As a result of improved properties and potential applications of PEEK-CF30 material, there 
is a need to understand the machining of this composite [10]. 
Hence, the objective of the present work is aimed at determining the effects as well as optimizing the 
cutting conditions (cutting speed and feed rate) on three different machining criteria, namely (specific 
cutting pressure, machining force and cutting) during turning of reinforced poly ether ether ketone 
with 30% of carbon fiber (PEEK-CF30) composites using TiN cutting tools. The response surface 
methodology (RSM) based mathematical models of proposed for the machining criteria have been 
developed to analyze the interaction effects of cutting speed, depth of cut and feed rate. The developed 
mathematical models were further utilized to determine the best combination of cutting conditions 
using particle swarm optimization (PSO). 
 

2 Experimental conditions of PEEK CF30 turning 

The work material used for the present investigation is reinforced PEEK CF30 manufactured by 
ERTA®. It consists of cylindrical work pieces with 50 mm diameter and a length of 100 mm.  The 
main mechanical and thermal properties of work material are summarized in table 1. 

Table 1: Mechanical and thermal properties of PEEK CF30 composite 
Mechanical and thermal properties PEEK CF30 Unit 

Tensile modulus 7700 MPa 
Rockwell hardness M102 - 

Charpy impact resistance 35 KJ/m2 
Tensile strength 130 MPa 

Melting temperature 340 °C 
Density 1.41 g/cm3 

 
Dry turning experiments were carried out on a GORATU G CRONO 4S CNC machine, enabling up to 
26.5 kW spindle power and maximum spindle speed 3350 RPM. TiN coated ISCAR WNMG 080408-
TF cutting tools were used. They were mounted on A SDJCL 2020 K11 tool holder. The three 
components of turning force (radial force – Fp, cutting force – Fc and feed force – Fa) were recorded 
with a KISTLER piezoelectric dynamometer model 9121 connected to a load amplifier and data 
acquisition board (Figure 1). 
 

 
Figure 1: Kistler piezoelectric dynamometer used to measure cutting forces 

 
The experiments were conducted according to a full factorial DOE table. The three cutting parameters 
selected for the present investigation are: cutting speed (v), feed rate (f) and depth of cut (d). Since the 
considered variables are multi-level variables and their outcome effects are not linearly related, it has 
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been decided to use three level tests for each factor. The machining parameters used and their levels 
are given in table 2. 

Table 2: Machining parameters, their levels and associated codes 
 
 

level Code 

Cutting speed (m/min) 
 

300 
200 
100 

1 
2 
3 

Depth of cut (mm) 
 

1.5 
0.75 
0.25 

1 
2 
3 

Feed rate (mm/rev) 
 

0.20 
0.15 
0.05 

1 
2 
3 

 

Machinability is evaluated in terms of cutting force (Fm), cutting power (Pc) and specific cutting 
pressure (Ks). These quantities are calculated from the following equations  

² ² ²Fm Fp Fa Fc= + +                                (1) 

.Pc Fc v=                                                       (2) 

.

Fc
Ks

f d
=

                                                  (3) 

where Fp is the radial cutting force, Fa the axial cutting or feed force and Fc the tangential  cutting 
force. The experimental layout plan, performed according to a full factorial DOE table and which 
included 27 combinations, is given in table 3. 
As there are three factors and three levels for each factor, twenty-seven experiments were performed 
according to the standard L27 Taguchi orthogonal array.  It should be mentioned that each run was 
repeated 4 times and the obtained results have indicated no significant variations of the responses, in 
terms of cutting power and surface roughness, from one run to the other. This allows us to believe that 
variations of the responses should only be attributed to those of the cutting parameters. No extra noise 
that could prejudice the results was detected. 
 

Table 3: Experimental layout showing machining criteria results  

Cutting speed 
v 

Depth of cut 
d 

Feed rate 
f 

Cutting force 
Fm (N) 

Cutting power 
Pc (W) 

Specific cutting pressure 
Ks (N/mm²) 

1 1 1 165.72 49714.92 552.39 
1 1 2 143.52 43057.42 637.89 
1 1 3 98.35 29504.73 1311.32 
1 2 1 111.81 33544.34 745.43 
1 2 2 118.97 35689.61 1057.47 
1 2 3 81.34 24402.53 2169.11 
1 3 1 81.47 24439.91 1629.33 
1 3 2 78.77 23631.43 2100.57 
1 3 3 54.92 16475.75 4393.53 
2 1 1 204.15 40829.95 680.50 
2 1 2 186.56 37311.21 829.14 
2 1 3 129.45 25890.87 1726.06 
2 2 1 151.47 30294.15 1009.80 
2 2 2 136.18 27236.58 1210.51 
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2 2 3 92.49 18498.29 2466.44 
2 3 1 96.17 19234.90 1923.49 
2 3 2 87.57 17514.22 2335.23 
2 3 3 62.62 12524.38 5009.75 
3 1 1 223.20 22319.54 743.98 
3 1 2 204.40 20440.13 908.45 
3 1 3 140.24 14023.68 1869.82 
3 2 1 130.78 13077.63 871.84 
3 2 2 135.51 13550.96 1204.53 
3 2 3 131.26 13126.19 3500.32 
3 3 1 102.73 10272.96 2054.59 
3 3 2 96.22 9622.20 2565.92 
3 3 3 72.98 7298.07 5838.46 

 

3 Modeling of machining criteria  
3.1 Response surface methodology (RSM) 

RSM is a tool which is designed to develop a direct mathematical relationship relating the controllable 
parameters to the experimental responses. This enables to estimate and explore more simply the effect 
that parameters would have on responses. In the present work, second order RSM based mathematical 
models of cutting force (Fm), cutting power (Pc) and specific cutting pressure (Ks) have been 
developed in terms of the three process parameters: cutting speed (v), depth of cut (d) and feed rate (f). 
Thus, the nonlinear response surface equations of Fm, Pc and Ks are interpolated according to the 
following equations 

0 1 2 3 4 5 6 7 8 9          ²  ²  ²Fm a a v a d a f a vd a vf a df a v a d a f= + + + + + + + + +       (4) 

0 1 2 3 4 5 6 7 8 9          ²  ²  ²Pc b b v b d b f b vd b vf b df b v b d b f= + + + + + + + + +          (5) 

0 1 2 3 4 5 6 7 8 9          ²  ²  ²Ks c c v c d c f c vd c vf c df c v c d c f= + + + + + + + + +           (6) 

where 0a , . . . . . 9c   are regression coefficients to be determined. 
Note that even if from equations (2) and (3) we get the following relationship between (Pc) and (Ks), 
in equations (5) and (6) the cutting power and specific cutting pressure are assumed to be independent 
in order to obtain second order RSM models by quadratic polynomial regression.  
The values of the regression coefficients appearing in equations (4) to (6), and which are associated to 
linear, quadratic and interaction terms of the mathematical models, can be determined in the least 
square sense by means of the following formula 

( )
1

   t tB X X X Y
−

=
                                         (7) 

where B  is the matrix of parameter estimates, X  the regression matrix that includes linear, quadratic 

and interaction terms, 
tX denotes the transpose of X  and Y  is  the matrix associated to given 

response. 

3.2 Particle Swarm Optimization 

Kennedy and Eberhart [11] developed the particle swarm optimization (PSO) algorithm through 
imitating the preying behavior of birds or fishes. In PSO, each possible solution in the searching space 
is seen as a ‘bird’, known as ‘particle’. All the particles have fitness values; assessed through a fitness 
function to be optimized, and have velocities, which direct the flying of particles. They fly through the 
problem space by following the current optimum particles. If search space is D-dimensional, then the 
ith particle of the population, called ‘swarm’, which can be specified by a D-dimensional vector s = 
(S1, S2, . . . . . SD). The velocity of this particle is represented by another D-dimensional vector V = 
(V1, V2, . . . .VD). The best previously visited position (pbest) of the ith particle is denoted as Pbest = 
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(P1, P2, . . . PD). Let g be the index of the best particle in the swarm (gbest) and let the superscripts 
denote the iteration number; then, the swarm is manipulated according to the following equations: 
 

( ) ( )1
1 1 2 2 W + k k k k k k k k k

i i i i g iV V C R P S C R P S+ = + − −
       (8) 

1 1 k k k
i i iS S V+ += +            (9) 

 
where, W is the inertia weight; C1 and C2 are positive constants, i.e., cognitive and social parameters 
respectively, also called as learning factors; R1 and R2 are random numbers uniformly distributed in 
the range [0-1]; i = 1, 2, . . . .N and N is the size of the swarm, and k = 1, 2, . . . . is the current 
iteration. 
The PSO algorithm is based on the sociometric idea called gbest, which connects all the members of 
swarm to one another. In such case, every particle is prejudiced by very best performance of any 
member of whole population. In PSO, the information exchange takes place only among the particle’s 
own experience and the experience of the best particle in the swarm, instead of being carried from 
fitness dependent selected parents to descendants as in genetic algorithms (GA). Besides, the 
directional position updating used in PSO is similar to mutation of GA, with a kind of memory built 
in. lastly, PSO belongs to the class of evolutionary algorithms that does not use the “survival of the 
fittest” thought. It does not utilize a direct selection function and therefore, particles with lower fitness 
can survive during the optimization and potentially visit any point of the search space. The PSO has 
encouraging benefits over other optimization techniques: 

- It is a derivative free algorithm unlike many conventional techniques. 
- It has the flexibility to be integrated with other optimization techniques to form a hybrid tool. 
- It has few parameters to adjust unlike many other evolutionary techniques. 
- It has the ability to escape local minima. 
- It is easy to implement and program with basic mathematical and logic operations. 
- It can handle objective functions with probabilistic nature. 
- It does not require a good initial solution to start this iteration process. 

4 Results and verification 
4.1 RSM models 

From the experimental data, quadratic polynomial regressions were derived for the three considered 
machining criteria. The obtained RSM expressions write 
 
Fm = 24.82 + 0.2 v + 88.60 d + 361.59 f - 0.14 vd + 0.15 vf + 254.17 df - 15.26 d² - 1218.29 f²                  (10) 
Pc = - 7975 + 137 v + 5017 d + 25552 f + 37 vd + 303 vf + 47212 df - 3430 d² - 258964 f²                         (11) 
Ks = 9803.6 - 7.8 v - 6804.7 d - 48332.9 f + 1.7 vd + 30.5 vf + 12035.9 df + 1830.8 d² + 75247.4 f²               (12) 
 
Fuzzy models were developed by using Fuzzy Inference Systems (FIS) toolbox under Matlab.   
For each machining criterion model, the relevant coefficient of determination R2 is given in table 5. 
From the analysis of table 5 it is evident that capabilities, R² factors,  of the multiple regression based 
models as well as fuzzy based models are all higher than 0.97. 
To test the adequacies of the regression based models, analysis of variance (ANOVA) was carried out 
and the obtained results are summarized in table 6. This table shows that P values are less than 0.05, 
hence the regression based models are significant to 95% level of confidence. 
 
Table 5: R² values for cutting force, cutting power and specific cutting pressure models 

 Fm Pc Ks 
Multiple regression coefficients R² using RSM 0.97 0.98 0.98 

Multiple regression coefficients R² using Fuzzy logic 0.98 0.98 0.99 
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Table 6: ANOVA of regression based models for predicting machining criteria 

SS DF MS 
 

Model Residual Model Residual Model Residual 
F P 

Fm 50572.42 1553.33 9 17 5619.157 91.37 61.497 0.00 
Pc 3.152077109 56440190 9 17 350230816 3320011 105.49 0.00 
Ks 47938101 778316.4 9 17 5326456 45783.32 116.34 0.00 

 

4.2 PSO optimization for machining criteria 

The RSM based mathematical models were used to find out the optimal cutting conditions, namely, 
cutting speed (v) and feed rate (f), which results in minimal surface roughness parameters. In the 
current study, the fitness function is designed using the normalized values of RSM predicted cutting 
force (Fm), cutting power (Pc) and specific cutting pressure (Ks); and is given by: 
The optimization problem of the present study is stated as minimizing the machining criteria, subject 
to machining constraints. Hence, the constrained optimization problem using PSO is given by: 

224 49715 5839

Fm Pc Ks
Fit = + +

          (13) 
- Determine the optimal values of v, d and f. 
- So as to minimize fit. 
- Subject to the constraints: 100 ≤ v ≤ 300 m/min; 0.25≤ d ≤ 1.5; 0.05≤ f ≤ 0.2 mm/rev The PSO 

of current study consists of following steps: 
Step 1: Randomly initialize m sets of particles, namely, cutting speed (v) and feed rate (f). The 
existing particles of each set are positioned to ‘pbest’ and the parameters corresponding to the best 
fitness among all the sets are selected as ‘gbest’. 
Step 2: Find out the predicted values of Fm, Pc and Ks using the RSM based models of Equations 
(10), (11) and (12) respectively. 
Step 3: Compute the fitness of every set of parameters using Eq. (13). 
Step 4: Compare the computed fitness with the fitness analogous to ‘pbest’, if the fitness is superior to 
‘pbest’, then ‘pbest’ should be updated. 
Step 5: Compare the maximum fitness value with the ‘gbest’ and if maximum fitness is better than 
‘gbest’, then ‘gbest’ should be updated. 
Step 6: Update the position and velocity of particles using Eqs. (8) and (9). 
Step 7: Judge whether the program will stop (total iteration is usually set as termination rule). If true, 
stop the iteration; otherwise go back to step 3. 
The PSO simulation was performed using MATLAB software with maximum number of 50 
generations (kmax). In the current study, the size of the swarm used is 40. The learning factors C1 and 
C2 were set to 2.0. The inertia weight (W) is used to control the impact of preceding velocities on 
present velocities, which influences the trade-off between global and local exploration abilities of 
particles. The inertia weight was initially set to a large value (Wmax) to allow a global search. To 
decrease this weight over the iterations allowing the algorithm to exploit some specific areas; the 
following equation is used: 
 

( )max min
max

max

k W W k
W W

K

 −
 = −
 
            (14) 

 

where, Wmax = 0.80 and Wmin = 0.01. The input process parameters levels were fed to PSO program 
and the values of cutting conditions were predicted for minimal surface roughness. The best fitness 
value observed is 1.0272. The corresponding optimal parameters are presented below: 
Optimal cutting conditions: v =100.2456 m/min; d=0.2641 mm; f = 0.1998 mm/rev; 
Optimal solution are given: Fm = 103.5252 N; Pc=11151 w and Ks = 1990.2 N/mm2. 
Although the above results indicate the best cutting conditions, sometimes it may not be possible to 
adopt this in a computer aided process planning (CAPP), computer aided manufacturing (CAM) stages 
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with tight tolerances and also in adaptive control machine tools. In order to overcome this situation, 
PSO simulations can be repeated with different range of values defined for the cutting speed, depth of 
cut and feed rate. Hence, the  results can be employed in CAPP to set the cutting speed, depth of cut 
and feed rate based on their set range in order to achieve the desired goal. 
 

Conclusion: 
The investigative study on cutting force parameters during turning of PEEK- CF30 composite material 
using TiN cutting tool is presented in this paper. In order to analyze the effects of process parameters 
(cutting speed, depth of cut and feed rate) on proposed machining criteria (Fm, Pc, and Ks), the 
experiments were planned as per full factorial design (FFD). The second order mathematical models 
of machining criteria were developed using response surface methodology (RSM) and the developed 
models were then validated through analysis of variance (ANOVA). Based on the parametric analysis 
and subsequent PSO optimization, the following conclusions are drawn within the ranges of the 
process parameters selected: 

- There exist non-linear relationships between the criteria machining and the cutting conditions 
and hence justifying the use of RSM based second order mathematical model with reduced 
number of experiments. 

- The results from the current investigation are useful for the manufacturing engineers to select 
significant cutting conditions in turning of PEEK-CF30 work material; especially to analyze the 
application of TiN cutting tools to machine this reinforced composite material. The cost of TiN 
cutting tool is minor when compared to the cost of PCD and K10 and for certain fields of 
application the obtained surface roughness can be sufficient with minor cost. 
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