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Résumé :

Ce travail s’inscrit dans le cadre d’une modélisation rapide des enroulements visant à améliorer la

connaissance de l’évolution des contraintes résiduelles dans les tôles d’acier et donc de leur planéité au

cours du procédé de bobinage. Une solution analytique exacte du problème d’une tôle élasto-plastique à

écrouissage isotrope en grandes transformations soumise à une transformation de courbure est dévelop-

pée. Les problématiques liées à la direction d’écoulement pour un critère de plasticité non-différentiable

(Tresca) ont été abordées et une solution unique est obtenue. L’équivalence pour cette transformation

entre le critère de von Mises et de Tresca est démontrée. Cette solution contribue à l’établissement d’un

modèle efficace en termes de temps de calcul pour simuler le bobinage en prenant en compte les défor-

mations inélastiques des tôles et permettant des études paramétriques systématiques pour améliorer le

procédé.

Abstract :

This work is part of the framework of a fast modeling of winding aiming at improving knowledge of

residual stress evolution in steel strips and therefore their flatness during the coiling process. An exact

analytical solution of an elasto-plastic strip with isotropic hardening at finite strains under an imposed

transformation of curvature is developed. Issues related to flow rules for non-differentiable yield func-

tions (Tresca) have been broached and a unique solution is obtained. The equivalence for this trans-

formation, between von Mises and Tresca yield functions is demonstrated. This solution contributes to

an efficient model by terms of computation times that aims at simulating coiling by taking into account

inelastic deformations and enabling parametric studies in order to improve the process.

Mots clefs : Coiling, Finite strains, Plasticity, Yield Functions, Tresca, von
Mises

1 Motivations

The coiling process is very common in the steel making industry. It consists in winding under tension a

steel strip (coming from rolling and run out table processes) on a cylindrical mandrel (see figure 1). The
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strip has a residual stress profile, due to heterogeneous plastic deformations during the rolling process

and phase changes during cooling on the run out table, that can be sufficiently compressive and lead to

out of plane deformations by buckling once the strip is uncoiled and cut. This residual stress profile is

therefore called a flatness defect. Many numerical simulations have been developed in order to predict

the residual stress state in the strip as a function of rolling process parameters [1, 2] (see [3] for a

bibliographical review). Inverse methods dedicated to experimental validation of these models have

been proposed (see [4, 5, 6] for the mechanical problem and [7, 8, 9] for the thermal problem) as well

as a recent inverse method dedicated to residual stress evaluation using a hollow cylinder [10].

In contrast, few models enable to simulate the effect of coiling on these flatness defects [11, 12, 13], and

therefore the final quality. A model sufficiently fast to enable parametric studies in order to develop a

winding strategy under tension is desirable. Recently, a non-linear elastic model has been published [14].

The latter enables to simulate the winding of a strip on itself at finite strains with very short computation

times. The strip section is not necessarily rectangular but a geometrical profile can be considered and

therefore one can easily model the well-known effects of industrialists of contact length reduction of

the strip on itself during winding (the coil has a barrel shape). The main weakness of this model is

to rely on a purely elastic behavior, that does not enable to estimate precisely the irreversible plastic

deformations causing the evolution of residual stresses during the coiling process. This paper is part of

this framework and aims at contributing to the development of the same model relying not on a purely

elastic behavior anymore but on an elasto-plastic behavior with isotropic hardening in order to evaluate

residual deformations.

The model is based on the idea that for each time-step an infinitesimal strip portion is wound on the rest

of the coil by following two distinct steps.

— The first step consists in imposing a simple curvature to the strip (whose mid-plane is initially

plane). The trial radius of curvature is denoted byR in the following. The strip mid-plane is trans-

formed into a cylindrical cylinder. Since the transformation is imposed the local equilibrium is

not satisfied and body forces are unduly introduced (and can be calculated thanks to the diver-

gence of Cauchy stresses). However a global equilibrium (alike shell theory) through the strip

thickness is ensured because the resultant force of body forces compensates the resultant force

of surface traction (also unduly introduced).

— The second step consists in making contact between the curved (step 1) infinitesimal strip portion

and the rest of the coil underneath. The contact pressure depends on the radius of curvature

imposed during step 1 because positions of surfaces that should be put in contact are determined

by this parameter and control the contact pressure. It should be mentioned that contact pressures

depend on the axial direction (strip width) because of the geometrical profile of the strip section.

Finally, stresses due to both successive steps are computed as a function of the radius of curvature (in-

troduced in step 1), thus the resultant force of tensions along the circumferential direction is calculated.

The radius of curvature is then optimized so that the latter resultant force matches the force imposed by

the user (actually a torque is applied and characterizes the applied force). Although this optimization is

performed numerically, computation times are extremely short because each step is solved analytically.

The aim of this paper is to propose an analytical solution of step 1 consisting in imposing a transfor-

mation of simple curvature (of radius R) with an elasto-plastic behavior with isotropic hardening. An

analytical solution of curvature considering an elasto-plastic behavior without hardening under infini-

tesimal strains assumption and without residual stresses has been proposed within the framework of

coiling process [15]. This work details a more general approach that takes into account large rotations
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(for small radii of curvature), isotropic hardening, finite strains and residual stresses. Two yield surfaces

are studied : von Mises and Tresca. It is significant to consider the latter yield surface because it is rea-

sonable to think that the contact problem of step 2 (which is not broached in this contribution) will be

solved analytically more easily with Tresca than with von Mises. However, it is demonstrated that for

this specific imposed transformation both yield surfaces are equivalent.

Figure 1 – Coiling process

2 Imposed transformation

Let consider a pre-stressed strip in the reference configuration with Cartesian coordinates (X,Y, Z)

where X corresponds to the coiling direction, Y the thickness direction and Z the width direction. Let

(eX , eY , eZ) denote the basis associated to (X,Y, Z). The component eX ⊗eX of residual stresses is

prevailing and the other components are therefore neglected. The residual stress tensor is denoted by :

Π
(0) = Π

(0)
XXeX ⊗ eX (1)

Following developments are done at finite strains, thus it is convenient to introduce a released confi-

guration without residual stress (which does not correspond to the pre-stressed initial state). An elastic

tensor is necessarily responsible for the residual stresses in the reference configuration. This latter ten-

sor is denoted by E
(0) with J0 = det

(
E

(0)
)

. The isotropic behavior gives a relationship between this

elastic tensor and the residual stress tensor Π(0) :

Π
(0) =

µ0

J
5

3

0

E
(0).tE(0) +


k0 (J0 − 1)− µ0

J
5

3

0

tr
(
E

(0).tE(0)
)

3


1 (2)

This behavior formulation is obtained by considering the free energy of a compressible isotropic neo-

Hookean material and an energy balance. Details are given in [16].

Thus, it easily obtained that the elastic part of the transformation gradient is of the form :

E
(0) = E0eX ⊗ eX + Ẽ0 (eY ⊗ eY + eZ ⊗ eZ) (3)

And then E0 is the only real root of the following polynomial of degree 3 :

Q0(U) = U3 − U
Π

(0)
XX

µ0
J

5

3

0 − J0 (4)
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where :

det
(
E

(0)
)
= J0 = 1 +

Π
(0)
XX

3k0
(5)

and :

Ẽ0 =

√
J0
E0

(6)

A simple transformation is imposed as shown in figure 2. Thus, the basis associated to polar coordinates

in the actual configuration is defined by :





er = − sin(θ)eX + cos(θ)eY

eθ = − cos(θ)eX − sin(θ)eY

ez = eZ

(7)

This corresponds to the following imposed transformation :

Figure 2 – Simple curvature transformation

Φ(X,Y, Z) = (R+ Y )er + ZeZ (8)

The transformation gradient is calculated :

F (X,Y, Z) = ∇Φ(X,Y, Z) = −R+ Y

R
eθ ⊗ eX + er ⊗ eY + eZ ⊗ eZ (9)

The model is elasto-plastic at finite strains and the following multiplicative decomposition is used (see

figure 3) :

F
tot = F .E(0) = E.P (10)

where E is the elastic part and P the plastic part of the transformation gradient. Thus :

F
tot = −JE0eθ ⊗ eX + Ẽ0er ⊗ eY + Ẽ0eZ ⊗ eZ (11)

Let introduce :

det(F tot) = JJ0 (12)

Let consider a simple form for the plastic part of the transformation gradient (which is sufficient for this

problem) :

P = −P1eθ ⊗ eX + P2er ⊗ eY + P3eZ ⊗ eZ (13)
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Figure 3 – Multiplicative decomposition

The plastic transformation is isochoric, therefore :

det (P ) = 1 ⇒ P1P2P3 = 1 (14)

The inverse of the plastic part of the transformation gradient is easily obtained :

P
−1 = − 1

P1
eX ⊗ eθ +

1

P2
eY ⊗ er +

1

P3
eZ ⊗ eZ (15)

Therefore, the elastic part of the transformation gradient is determined :

E = F
tot.P−1 =

JE0

P1
eθ ⊗ eθ +

Ẽ0

P2
er ⊗ er +

Ẽ0

P3
eZ ⊗ eZ (16)

The isotropic behavior is written as follows (see [16]) :

σ =
µ0

(JJ0)
5

3

E.tE +

(
k0(JJ0 − 1)− µ0

(JJ0)
5

3

tr
(
E.tE

)

3

)
1 (17)

And :

E.tE =
J0

E0P 2
2

er ⊗ er +
J2E2

0

P 2
1

eθ ⊗ eθ +
J0

E0P 2
3

eZ ⊗ eZ (18)

Thus, the Cauchy stress tensor is given component wisely :





σrr(X,Y, Z) =
µ0(JJ0)

− 5

3

3

(
2

J0
E0P 2

2

− J2E2
0

P 2
1

− J0
E0P 2

3

)
+ k0(JJ0 − 1)

σθθ(X,Y, Z) =
µ0(JJ0)

− 5

3

3

(
− J0
E0P 2

2

+ 2
J2E2

0

P 2
1

− J0
E0P 2

3

)
+ k0(JJ0 − 1)

σzz(X,Y, Z) =
µ0(JJ0)

− 5

3

3

(
− J0
E0P 2

2

− J2E2
0

P 2
1

+ 2
J0

E0P 2
3

)
+ k0(JJ0 − 1)

(19)

The only unknowns are the fields P1, P2 and P3. In order to determine these unknowns, von Mises or

Tresca yield functions are considered.
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3 von Mises yield surface

Let start with the von Mises yield function which is differentiable everywhere and avoids consequently

the discussion about flow directions due to vertex plasticity for the Tresca yield surface. It is demonstrated

afterward that both solutions obtained with von Mises and Tresca yield surfaces are identical.

Let introduce the plastic stress tensor in the released configuration (bis) defined in figure 3 which is

obtained by locally releasing the elastic tensor E :

Ψrel = JJ0E
−1 : σ : E = JJ0σ (20)

In general, this stress tensor is not necessarily symmetric, but it is in the present setting. Let note Ψ its

deviatoric and symmetric part. That is to say if Ψs
rel = (1/2)

(
Ψrel +

t
Ψrel

)
:

Ψ = Ψ
s
rel −

Tr (Ψs
rel)

3
1 (21)

Thus, the plastic stress tensor in the released configuration (bis) is written component wisely :





Ψrr(X,Y, Z) =
µ0(JJ0)

− 2

3

3

(
2

J0
E0P 2

2

− J2E2
0

P 2
1

− J0
E0P 2

3

)

Ψθθ(X,Y, Z) =
µ0(JJ0)

− 2

3

3

(
− J0
E0P 2

2

+ 2
J2E2

0

P 2
1

− J0
E0P 2

3

)

Ψzz(X,Y, Z) =
µ0(JJ0)

− 2

3

3

(
− J0
E0P 2

2

− J2E2
0

P 2
1

+ 2
J0

E0P 2
3

)
(22)

The von Mises yield surface is defined by :

√
3

2
Ψ : Ψ ≤ k(pcum) (23)

Where pcum is the cumulative plastic strain and k(pcum) is the yield stress assumed to be of the form :

k(pcum) = σ0 (1 + γ(exp(pcum)− 1)) (24)

Where σ0 is the yield stress before hardening and γ a hardening parameter. In the elastic zone : P1 =

P2 = P3 = 1. Besides that, at the elastic/plastic boundary the yield criterion is verified with an equality

instead of an inequality. An equation that determines univocally the plastic zones is obtained :





µ0(JJ0)
− 2

3

(
J0
E0

− J2E2
0

)
= k(pcum(t = 0)) = σ0 if

J0
E0

≥ J2E2
0

µ0(JJ0)
− 2

3

(
J2E2

0 −
J0
E0

)
= k(pcum(t = 0)) = σ0 if

J0
E0

≤ J2E2
0

(25)

It should be noted that for a classic boundary value problem where the transformation is not imposed,

plastic zones are unknown and should be determined incrementally. In contrast, if the transformation is

imposed plastic zones are determined with the yield function only.

The plastic strain rate is given by :

d
p =

1

2

(
Ṗ .P−1 +t

P
−1.tṖ

)
(26)
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Hence :

d
p =

Ṗ2

P2
er ⊗ er +

Ṗ1

P1
eθ ⊗ eθ +

Ṗ3

P3
eZ ⊗ eZ (27)

The cumulative plastic strain rate is given by :

ṗcum =

√
2

3
d
p : dp =

√√√√√2

3



(
Ṗ1

P1

)2

+

(
Ṗ2

P2

)2

+

(
Ṗ3

P3

)2

 (28)

The flow rule is associated that is to say that the direction of the plastic strain rate is normal to the yield

surface. Figures 4 and 5 enable to determine the normal vector to the von Mises yield surface (denoted

by nC) :
nC

‖nC‖ =

√
2

3
eθθ − 1√

6
(err + ezz) (29)

Where vectors err, eθθ and ezz represent respectively directions of the stress components σrr, σθθ and

σzz in figure 4 and e = err + eθθ + ezz . Thus :

Figure 4 – von Mises and Tresca yield surfaces

Figure 5 – Normal vector to the yield surface

Ṗ2

P2
=

Ṗ3

P3
= −1

2

Ṗ1

P1
(30)

Hence after integration :

P 2
2 = P 2

3 =
1

P1
(31)
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Therefore :

ṗcum =

∣∣∣∣∣
Ṗ1

P1

∣∣∣∣∣ (32)

The sign of Ṗ1/P1 is determined in order to ensure continuity of the radial stress at the elastic/plastic

interface :




Ṗ1

P1
≤ 0 if

J0
E0

≥ J2E2
0

Ṗ1

P1
≥ 0 if

J0
E0

≤ J2E2
0

(33)

Hence :





pcum = ln

(
1

P1

)
if

J0
E0

≥ J2E2
0

pcum = ln (P1) if
J0
E0

≤ J2E2
0

(34)

Therefore :





k(pcum) = σ0

(
1 + γ

(
1

P1
− 1

))
if

J0
E0

≥ J2E2
0

k(pcum) = σ0 (1 + γ (P1 − 1)) if
J0
E0

≤ J2E2
0

(35)

Besides that, the following quantity is introduced :





ε = −1 if
J0
E0

≥ J2E2
0

ε = 1 if
J0
E0

≤ J2E2
0

(36)

Finally, the equality in (23) that holds in plastic zones can be written as follows :

εk(pcum) = µ0(JJ0)
− 2

3

(
−J0P1

E0
+

J2E2
0

P 2
1

)
(37)

Therefore P1 is the only real root of the following polynomial of degree 3 :





Q(U) = −J2E2
0 −

σ0
µ0

γ(JJ0)
2

3U − σ0
µ0

(1− γ)(JJ0)
2

3U2 +
J0
E0

U3

si
J0
E0

≥ J2E2
0

Q(U) = −J2E2
0 +

σ0
µ0

(1− γ)(JJ0)
2

3U2 +

(
J0
E0

+
σ0
µ0

γ(JJ0)
2

3

)
U3

si
J0
E0

≤ J2E2
0

(38)

This latter root can be calculated completely analytically and enables to evaluate all the unknowns of

the problem P1, P2 and P3.
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4 Tresca yield surface

In this section the problem is solved by considering the Tresca yield surface. This choice is relevant

insofar as the second step of the winding model (contact with the rest of the coil) will be much easier

with this yield surface. In contrast, for the specific curvature problem presented in this paper, difficulties

related to the non-differentiability at the vertices of the Tresca yield surface (see figure 4) should be over-

come. This issue is well identified, especially for numerical aspects. Regularization consisting in eroding

vertices of non-smooth yield surfaces (Tresca, Mohr-Coulomb etc...) have been proposed [17, 18]. An

other approach consists in considering that the flow direction at the vertex lies in the sub-differential

and can be written as a linear combination of normal directions of surfaces that constitute the vertex.

This gives rise to efficient numerical schemes [19, 20, 21] or more recently [22, 23]. In this paper the

latter view is adopted and there is no regularization of the non-smooth Tresca yield surface. The flow

direction is sought as a linear combination of normal directions adjacent to the vertex. The following

developments show that the only stable flow direction corresponds to the flow direction of the von Mises

yield surface.

The Tresca yield surface is written as follows :

max(Ψj)
j∈{rr,θθ,zz}

− min(Ψj)
j∈{rr,θθ,zz}

≤ k(pcum) (39)

In the elastic zone : P1 = P2 = P3 = 1, thus Ψrr = Ψzz using (22). And the Tresca yield criterion

reduces to :

|Ψθθ −Ψrr| ≤ k(pcum) (40)

Ensuring equality instead of inequality in (40) at the elastic/plastic boundary enables to determine uni-

vocally the plastic zones :





µ0(JJ0)
− 2

3

(
J0
E0

− J2E2
0

)
= k(pcum(t = 0)) = σ0 if

J0
E0

≥ J2E2
0

µ0(JJ0)
− 2

3

(
J2E2

0 −
J0
E0

)
= k(pcum(t = 0)) = σ0 if

J0
E0

≤ J2E2
0

(41)

It is exactly the same equation as those obtained with the von Mises yield surface (25). Besides that, at

the elastic/plastic boundary plasticity is obtained at one of the two vertices such as σrr = σzz . Plastic

zones are defined by points where the yield criterion (computed with elastic stresses) exceeds the yield

stress in (40), thus in plastic zones the following equation holds :





J2E2
0 ≤ J0

E0
− σ0

µ0
(JJ0)

2

3 if
J0
E0

≥ J2E2
0

J2E2
0 ≥ σ0

µ0
(JJ0)

2

3 +
J0
E0

if
J0
E0

≤ J2E2
0

(42)

The flow rule is associated that is to say that the plastic strain rate is normal to the yield surface, however

as mentioned before, the Tresa yield surface is non-differentiable at the possible points where plastic

deformations occur (vertex, see figure 6). Therefore, the flow direction can a priori be any vector in

the sub-differential. Let nα denote one of these vectors obtained by a rotation of nC with an angle

α ∈
[
−π

6 ,
π
6

]
in the plane of deviatoric stresses (normal e = (1, 1, 1)) as shown in figure 5. The

extremal values α = −π
6 and α = π

6 corresponds to classical flow directions of one or the other faces
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Figure 6 – Tresca yield surface and plastic mechanisms

of the Tresca yield surface. It is shown in figure 5 that :

nα

‖nα‖
= cos(α)

√
2

3
eθθ − cos(α)√

6
(err + ezz) +

sin(α)√
2

(−err + ezz) (43)

The plastic strain rate being collinear to nα, it is obtained :





Ṗ2

P2
=

Ṗ1

P1

(
−1

2
−

√
3

2
tan(α)

)

Ṗ3

P3
=

Ṗ1

P1

(
−1

2
+

√
3

2
tan(α)

) (44)

Hence after integration :

{
P 2
2 = P

−1−
√
3 tan(α)

1

P 2
3 = P

−1+
√
3 tan(α)

1

(45)

This latter expression is compatible with the isochoric condition P1P2P3 = 1. Stable flow directions

are sought. Clearly enough by considering (22), if α 6= 0 then Ψrr 6= Ψzz in plastic zones because

P2 6= P3 according to (45). In this case, the vertex of the yield surface is not activated anymore and

one of the face adjacent to this vertex is activated instead. Therefore the normal direction of the yield

surface becomes immediately α = −π/6 or α = π/6. Thus, the three possible stable flow directions

are α ∈ {−π/6, 0, π/6}. It is shown in the following that flow directions α = −π/6 and α = π/6 are

also unstable.

Indeed, if α = π/6 (a similar demonstration can be done for α = −π/6), the plastic mechanism that

should be activated so that this flow direction is stable is |Ψθθ −Ψrr| as shown in figure 6. By injecting

α = π/6 in (45) :





|Ψθθ(X,Y, Z)−Ψrr(X,Y, Z)| = µ0(JJ0)
− 2

3

∣∣∣∣
J2E2

0

P 2
1

− J0P
2
1

E0

∣∣∣∣

|Ψθθ(X,Y, Z)−Ψzz(X,Y, Z)| = µ0(JJ0)
− 2

3

∣∣∣∣
J2E2

0

P 2
1

− J0
E0

∣∣∣∣
(46)

The plastic mechanism actually activated is not |Ψθθ −Ψrr| but |Ψθθ −Ψzz|, this leads to an immediate

change of the flow direction and α goes from π/6 to −π/6 during the plastic increment. (Reciprocally,

if the flow direction is −π/6, the activated mechanism is |Ψθθ −Ψrr| instead of |Ψθθ −Ψzz|, which
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leads to change immediately α from −π/6 to π/6). In order to simply demonstrate this, let consider a

plastic zone where : J2E2
0 ≥ J0

E0
, that is to say that the upper vertex of the yield surface is activated

(see figure 6). Thus
J2E2

0

P 2

1

− J0P
2

1

E0
≥ 0 and

J2E2

0

P 2

1

− J0
E0

≥ 0 (a similar expression would be obtained for

the lower vertex of the yield surface i.e., for J2E2
0 ≤ J0

E0
). Thus, the activated mechanism depends on

the computed value P1. If P1 ≥ 1 then the activated mechanism is not |Ψθθ −Ψrr| but |Ψθθ −Ψzz|,
which leads to the instability of the flow direction α = π

6 . In contrast if P1 ≤ 1 then the activated

mechanism is |Ψθθ −Ψrr| and the flow direction α = π
6 would be stable. The assumption P1 ≤ 1

is intuitively impossible because since J2E2
0 ≥ J0

E0
the plastic zone under consideration is stretched.

One can propose a very simple proof without hardening. Indeed, in the plastic zone if the activated

mechanism was |Ψθθ −Ψrr| then the equality in the Tresca yield criterion would give :

µ0(JJ0)
− 2

3

(
J2E2

0

P 2
1

− J0P
2
1

E0

)
= σ0 (47)

This is a quadratic equation inP 2
1 whose only positive root isP 2

1 = −b+
√
∆

2a with a = J0
E0

, b = σ0

µ0
(JJ0)

2

3 ,

c = −J2E2
0 and ∆ = b2 − 4ac > 0. In the plastic zone J2E2

0 ≥ σ0

µ0
(JJ0)

2

3 + J0
E0

according to (42).

This proves after elementary calculations that P 2
1 ≥ 1 therefore P1 ≥ 1. Thus, finally the activated

mechanism is not |Ψθθ −Ψrr| and the flow direction α = π
6 is unstable. If hardening is considered the

equation is not quadratic and the proof is less obvious even though the result remains true.

These considerations can be adapted for the lower vertex of the yield surface (see figure 6) and for the

flow direction α = −π
6 . Therefore directions α = −π/6 and α = π/6 are unstable and the only stable

flow direction is α = 0. Indeed, in this case Ψrr = Ψzz holds in both elastic and plastic zones. The

obtained equations are therefore exactly the same as for the von Mises yield surface. It should be noted

that the equality in the Tresca yield criterion in the plastic zones leads to the same equation (37) as for

the von Mises yield criterion because Ψrr = Ψzz . Both solutions are therefore identical and given by

(38).

A comparison between the analytical solution proposed in this paper and a finite element simulation

at finite strains [24] is proposed. Results are perfectly overlapped (see figure 7) and this validates the

exactness of the solution. For this numerical example the residual stress field and the hardening has

been set to zero in order to simplify the finite element simulation. Besides this, E = 210000 MPa,

k0 = 175000 MPa, σ0 = 400 MPa, the strip thickness is 2 mm and the radius of curvature is R = 100

mm.

5 First results

In this section the presented solution is tested in order to generate several plastic and elastic zones through

the strip thickness. In this example four zones are obtained. Material parameters are E = 210000 MPa,

k0 = 175000 MPa, σ0 = 600 MPa and γ = 1. The strip thickness is 2 mm and the radius of curvature

is R = 150 mm. The residual stress profile presented in figure 8a is compressive at both surfaces and

the core is stretched. Cauchy stresses are presented in figure 8b. von Mises and yield stresses enable to

see clearly plastic and elastic zones and the hardening as shown in figures 8c and 8d.

For the global coiling model, during the second step the infinitesimal strip portion is put in contact with

the rest of the coil, and is pre-stressed considering these results. An analytical solution is sought and

results obtained during step 1 should clearly be interpolated so that pre-stresses at the beginning of step 2
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Figure 7 – FEM vs Analytical solution

are expressed analytically. Considering results presented in figure 8 and the non-differentiable points at

elastic/plastic boundaries, a good choice seems to interpolate each zone separately with polynomials of

low degrees so that the slope changes at the elastic/plastic boundaries are not smoothed, which would

be the case if only one polynomial of higher degree were used.

(a) Residual stress (b) Cauchy stress

(c) von Mises stress (d) Yield stress

Figure 8 – First tests

6 Conclusion

This work extends the approach proposed in [14] to an elasto-plastic behavior with isotropic hardening

and finite strains. The former work [14] aims at establishing a fast model of windings in order to evaluate

the residual stress evolution during the coiling process. A strip submitted to an imposed transformation
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of curvature has been considered with von Mises and Tresca yield surfaces. Issues related to the non-

differentiability of the Tresca yield surface have been broached. The exactness of the analytical solution

has been basically validated using a finite element model. It remains to deal with the second step that

consists in making contact with the rest of the coil assuming an elasto-plastic behavior, so that the global

coiling model succeeds. A numerical example has been proposed in order to define a strategy for the

following step 2 that takes as inputs the results of the presented solution.
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