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Abstract :

The near wake behind helicopter rotors, wind turbines and more generally behind rotating devices are
dominated by helical vortices. Investigating their stability properties is a necessary step to predict their
dynamics. Instabilities in such vortex systems have mainly been studied theoretically (Widnall 1972 [1],
Okulov [2] and Sørensen 2007 [3]) in an inviscid framework for small core size vortices. The aim of the
present study is to generalize these works to the viscous framework for arbitrary core sizes and vorticity
profiles.The base flows considered here are helically symmetric: fields are invariant through combined
axial translation of distance ∆z and rotation of angle θ = ∆z/L around the z-axis, where 2πL denotes
the helix pitch.We first perform a linear temporal stability analysis of these base flows, using an Arnoldi
[4] procedure coupled to two different codes : (i) a linearised version of the helical DNS code HELIX
[5], (ii) another linear code called HELIKZ, which computes the dynamics of arbitrary perturbations
in the vicinity of a helically symmetric base flow. These two codes permit the investigation of different
types of instability modes: (i) modes having the same helical symmetry as the base flow which generalize
the Okulov modes ; (ii) modes depending on z as exp ikz which generalize the Widnall modes. In the
first case (i), instabilities are found to be dominated by displacement modes of the type presented in
figure 1 for the case of two vortices. In the second case (ii), modes will be compared to those observed in
recent experimental work (Leweke et al. 2014 [6]). We then compute the nonlinear dynamics of a basic
flow perturbed with a linear mode of type (i) set at a small initial amplitude. In the helical framework,
the displacement mode is shown to be responsible for leap-frog dynamics (cf. figure 2) and/or vortex
merging (cf. figure 3) with characteristics depending on the various parameters.
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Figure 1 – Linear stability analysis : (a) Structure of the most unstable mode. The base flow corresponds
to two helical vortices with pitch 2πL = 0.3 and core size ab = 0.06. The mode is represented by the
helical vorticity component of the perturbation field in the horizontal (x, y)-plane by colored contours.
(b) Mode in a 3-D representation. The arrows indicate the perturbation action on the base flow. The
displacement induced by the mode has two components : one along the radial direction and one along
the z direction. On the radial direction, one vortex goes inwards while the other goes outwards. (c)
Schematic representation : the structure is analogous to the pairing instability mode for an infinite row
of point vortices.
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Figure 2 –Nonlinear evolution of the baseflow perturbedwith the unstablemode described figure 1 : The
vortices undergo a leapfrogging process. Time evolution goes from left to right. Top figures : Isovalue
of the vorticity component ωB = 10 represented at different instants for two helical vortices of pitch
2πL = 0.3 and core size ab = 0.06. Bottom figures : vorticity component ωB in the (r, z)-plane.
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Figure 3 – Nonlinear evolution of the baseflow perturbed with the unstable mode described figure 1 :
After a given number of leapfrogs the vortices merge due to viscous diffusion. Isovalue of the vorticity
component ωB = 4 of two helical vortices of pitch 2πL = 0.3 and core size ab = 0.06 represented at
different instants. Time evolution goes from left to right and top to bottom.
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