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The Wave Resistance of a Moving Pressure
Distribution in a Canal

J. N. Newman and F. A. P. Poole

David Taylor Model Basin, Washington, D. C.

Expressions are derived for the wave resistance of a pressure distribution which is moving with constant forward
speed along the free surface of a canal of constant width and depth. Calculations are made for the case of
rectangular and elliptic plan forms with constant pressure, as functions of speed, beam-length ratio, and the
width and depth of the tank. Except in the vicinity of the critical Froude number gh/c 2 

= 1, the tank walls
are not generally important for widths greater than one or two lengths of the pressure distribution. The other
parameters are more important and their effects on the wave resistance are shown in Figures 1-6.

Introduction
If a pressure distribution is moving along the free surface

of a fluid, waves will be generated of nature similar to those
generated by a ship. Since work must be done to generate
these waves, it follows that the pressure distribution will
experience a drag force, or wave resistance. In fact the
earliest study of ship waves was made by Kelvin, who con-
sidered the waves generated by a moving pressure point. Sub-
sequently Havelock [1] studied the wave resistance of a one-
dimensional pressure distribution and [2], [3] of certain two-
dimensional distributions with circular symmetry. Recently
Wehausen [7] presented expressions for the wave resistance
of an arbitrary pressure distribution in water of finite depth.
Interest in this problem has been renewed by recent investi-
gations of ground effect machines qver water.

We consider here the problem of a pressure distribution
which is moving with constant speed down the center of a
canal of constant finite width and depth. The later stages of
the analysis are restricted to a pressure distribution which
is uniform and bounded by either a rectangle or an ellipse.
For these particular distributions, calculations of the wave
resistance are presented as functions of the Froude number,
beam-length ratio, depth, and width of the canal. The analysis
is based upon Wehausen's expression for an unbounded free
surface, and the method of images is used to represent the
canal walls, in the same manner as in similar studies of sur-
face ships [4], [5]. The effect of the walls is introduced not
only to determine the experimental error involved in towing
tank.experiments, but also to overcome the need for numerical
methods of integration, for the resulting infinite series may be
summed directly, and the case of an infinite free surface may
be approached by increasing the canal width. The calculations
have been made on an IBM digital computer and are presented
here in graphical form. The effect of tank walls is found to be
negligable in most cases and for this reason most of the com-
putations involve a very wide, or essentially infinite, canal.
We begin the analysis with the necessary modification of
Wehausen's results to include the effects of walls, for an
arbitrary distribution of pressure. This is followed by separate
analyses for the rectangular and elliptic plan forms with
constant pressure distribution. The last section presents the
graphical results of calculations for these shapes for various
beam-length ratios, depths, and widths of the canal.

Wave Resistance of
a General Pressure Distribution

Let (x, y, z) be a Cartesian coordinate system with the
plane y = 0 in the undisturbed free surface and y positive
upwards.

If a pressure distribution p (x, z) moves with constant
velocity c in the + x directioh on the surface of a fluid of
constant depth, the work W, done in overcoming the wave
resistance is given by Wehausen [7] as

W =
x/2c ko3cos& _'

_c f k_3_COSa. [P (E)12 + [Q (e))1} dE
- 9gl 1 - vh sec2 E sech2 ko h

0o (1)
where

P(0) =f J p(x,z) cos[k o (xcos E) + zsin 0)]dxdz
-co -co

00 W
Q (0) = f p (x, z) sin [ko (x cos E) + z sin 0)] dx dz

-0 -0

o = cos-1 /vh ifvh <1
10 if vh > 1

= fluid density
g = gravitational acceleration
h = depth of fluid
v = g/c 2

and ko = ko (0) is the positive real root of
ko -vsec 2 8tanh k oh=0, E 0<E<;/2.

First we shall change the variable of integration to k = ko h.
It follows that

cos 9 = /vh tanh k
k

/ tanhk
sin - 1 -vhb kSk

dO /vh cosh k sinh k - k

dk 2k cosh2 k /tanh k (k - vh tanh k)

and thus that
W =

Kv

KO

k2 tanh kk2 tanhk ([P (k)]2 +

/k2 - vh k tanh k
[Q (k)]} dk

(2)
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where

P(k) + iQ (k) = ff p (x,z) exp i /Vvh k tanh k +
-0 -0 h

+ )/k '-vh k tanh k dxdz,
h

and Ko is the real positive root of the equation Ko - vh tanh
Ko = 0 if vh > 1
while K. = 0 if vh < 1.

From energy considerations the wave resistance R is equal
to W/c.

The above equations hold for an unbounded free surface,
but they are readily adapted to the case of a canal of constant
width, by using the "method of images". To simplify the
algebra we shall assume that the original pressure distribution
is symmetric with respect to the center of the canal, which
we take to coincide with the x-axis. If the walls are a distance
w apart, then the boundary condition on these walls may be
satisfied by locating image pressure distributions along the
z-axis, centered at the points z = ± nw (n = 1, 2, 3, . .).
Thus the total pressure distribution will be' periodic,
p (x, z + wn) = po (x, z), say, where I z I < w/2 and Po (x, z) is
the original pressure distribution located within the canal. It
is necessary to start with a finite number of images, say 2 N,
so that (n = 1, 2, . ..N), to ensure convergence of the inte-
grals. The functions P + iQ may then be written

N
N in w/h 1/k'-vh ktanhk

P + iQ = 2 (Po + iQo) cw/h k'-vhtanhk

n=-N
where

P o + iQo = f Po (x, z) exp i - /vh h k tanh k +
so h

z 1+ i z- /k2-vh k tanh k dxdz (4)
h J

and So is the surface over which the pressure po acts.

Since Po + iQo does not depend on n, the sum in (3) may
be evaluated from the formula

N sin[ z (2N + 1)]
e
inz =

n = -N sin i zThus
wsin (2N + 1) - Vk2-vhktanhk

P + iQ -= 2 h (Po + iQo)

sin )/k2- vh k tanh k

and the total work done to overcome the wave resistance of all
2 N + 1 pressure distribution is then

W =

[2 N+1 1
oa sin [2- Vk'-vh k tanh k

vc k tanh k 2h

23'g h2 J J A1/k2-vhktanhk sin 2 [w V v k tanh k
K o  2h

([Po (k)]2 + [Qo (k)]2 } dk. (5)

The wave resistance of a single pressure distribution (say
the central pressure, n = 0) in a canal is given by the average
of the resistance of all the images in the limit N-- 0, or

W
R = lim

N-oo (2N + 1)c
assuming that this limit exists.

Thus

The function

E = w J/k - vh k tanhk
2h

is a monotonic increasing function of k, which varies from 0
to 00 as k goes from Ko to oc. Thus we may express (6) in the
form

0o

R=lim. F(k) sin' [(2 N + 1) ] dk
R = lim F (k) d

N-oo 2 N + 1 sin' 0
Ko

o

0dO
i 1 f() sin'2 [(2 N + 1) O] d

N--2 N + 1 .f sin'
o

where

F(k) .vw k2 tanhkf (O) -- - = - (Po2 + Qo' ) .
dO/dk 4 gg h' 0 (d@/dk)

Subdividing the interval of integration, it follows that

R lim 1 x f' ()) sin'(2 N + 1) d

N-oo 2N + 1 o sin20

$(2n+1)30/2 sin2 (2 N+1

= sin2 N) dE
n=1 (2 n-1) x/2 S

lim 1 f/ 2  sin2(2N + 1) 9 dO= lim- f (0) dO
N-oo 2N+1 0 sin2 O

+ I f/" sin2 (2 N + 1) d+ j f (O + na) dO
n=1 -xi2 sin2 E)

In this form the limit of the integrals as N--+ c may be ob-
tained directly from a known result in the theory of Fourier
series [8]. Thus

lim 1 n/2 O 2) sin2 +) O d O= n f(0)
N-.oo 2 N + 1 o sin' O 2

and

lim 1 , f (0 + na) sin (2 N + 1) dO = a f (nn)
Noo 2 N + 1 -/2 sin2 O

and therefore
0o

R = 2 E, f (mR) (7)
m=o

where ,=1 and em= 2 if m 1, or

v kme tanhkm {([Po(km)] + [Qo(km)12'} (8)
Qgwh mIo 2 km - vh tanh k. - vh km sech' k., I

where km is the positive real root of the equation

km2 - vh k, tanh km = 4 Mh (9)
w

2

For vh <1, ko = 0 and the term with m = 0 in equation
(8) vanishes. However as vh tends to one from above, that is

vh- 1 + 0,

the term with m = 0 tends to the finite limit

ko' tanh ko (Po2 + Qo2)

2 ko - vh tanh ko - vh ko sech2 k

00 sin [2N w 1 /k -vhktanhk
v k2 tanh k 2 hR = -- lim - ( [Po (k)? +.[Q(k)2} dk

2Qgh o N /k-vhktanhk (2Nwl)sil Vk2-vhktanhk]
K (2 N + 1) sin2 - J/a-vhhk ktanh k

o 2hI
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Thus as vh passes through one, there is a jump, AR, in the
resistance, of magnitude

3 [ ff po (x, z) dx dz] 2

AR= so
(gw h

2 (10)

This expression is zero for vh < 1 and for the infinite set of
velocities such that

2 = gL tanh (2 anh / L)

c= 2n
(n = 1, 2, 3,...)

It follows hat this discontinuity will give rise to a sudden de-
crease in resistance for increasing speed, when passing
through the critical Froude number gh / c2 

= 1. However this
discontinuity vanishes as w-- oo, and is thus a consequence
of the canal walls. Except for this singular point, the denomi-
rtator of each term in (.8) is greater than zero. Therefore the
terms in (8) are all bounded, and furthermore we may remove
the absolute value sign from the denominator.

Thus we have obtained the wave resistance of a pressure
distribution in a canal as an infinite series. For infinite depth,
h--- co, the limit of (8) is readily found to be

V
2

Qgw m=o

where

[1 + 1 +(4,m)2]
VW (P0

2ooo + Qooo 2)

vw (11

Po0 + iQoo =

fJ'f po (x,z)ex(i ivx i + 1/-(4tm 2 2 niym/w)dx dz
So V \vw /

The Rectangular Distribution

As a special case we now consider the pressure distribution

po (x,z) po for Jx <L/2 and z < B/2
Po (x,z) = 0for [xj >L/2 or Iz > B/2

where L and B are the length and beam respectively, and po
is a constant. Substituting in (4) and integrating with respect
to x and z, it follows that

Po (k) =

4Po h 2 sin ( 2h vh k tanhk)sin ( 2 - Vk2-vh k tanhk)

I/vh k tanh k /k2- vh k tanh k (12)
and

Qo=0.
Substituting (12) in (8) and using (9), we find that the wave
resistance of a rectangular uniform pressure distribution is

a rB, L -__

km sin2 (- ) sin2  /vh km tanh k m

R 
4 p w EZ- w/ 2 h

Mtgm-o m 2 ki - vh tanh ki - vh k, sech2 k

(13)
An interesting special case is w = B, where the pressure distri-
bution extends completely across the canal and the problem
is two-dimensional. The only non-zero term in (13) is the term
with m = 0 and it follows that

ko sin2 L Vvh kotanhko)
4 o s W 2 h

R =
Lg 2k o -vhtanhk o-vhko sechk o

or, since
ko-vh tanh ko =0,

The Elliptic Distribution

As another special case we shall consider a pressure distri-
bution which is constant over the interior of an ellipse and
zero elsewhere, or

Po (x, z) = Po for
4 X2  4 z2

L2 B2

4 x2 4 Z2

Po (x,z) =0 for 4 +2  4 2

L2  B2

Before substituting in the integral for P0 und Qo we make
the following substitutions:

S= 2x/L

1 = 2y/B

L
a = L /vh k tanh k

2h

B
= - 1/k2-vh k tanhk

2h
Then

Q0 = 0

1
Po = Po BL

4

1 VI/-

fd f d 
ei (a  + )

-1 -V1- 
z

1 PoBL -1. Po.. cos a sin P 1/1 - - 2d $
2 P f- 

-

SPo BLf n/2

0 o
cos (a cos cp) sin (P sin (P) sin pr d(p

where we have changed the variable of integration to I = cos p.
Using the relations1 )

it c os (Pt
cos (a cos c) = (J - 1/2 (a cos )2

./ sin <p \'
sin (P sin c) = Psin T ) 1 (3 sin )

and Sonine's second finite integralS), it follows that

Po0

it A/2
-- Po BL J/a f J - 1/2 (a cos () Ju2 (P sin p) cos'/ 'qc sin'/ q dq
2 o

it J1 (V a
2 + P2)- P0 BL -- _

2 1/a
2 + P2

where J1 is the Bessel function of the first kind or, substituting
for d and 0,

Po (k) = 2 Po BL

(/(L2-B2\ B2k2\J h_ -  -vh k tanh k + 
4h 2 /4h 2 /

V(L2 -B 2 2 k2
- - vh k tanhk+

4h2 / 4h 2

2 s n 2 k o L )4pow sin 2 L)h
R =

Qg 2k o

sinh 2k o

Substituting in equation (8) and using (9), we find that the
(14) wave resistance of an elliptic uniform pressure distribution is

1) cf. Watson [6] paragraph 3.4.
2) ibid, paragraph 12.13.
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n Vpo2 B L2 - kmn tanh km

4 c gw m= o 2 km - vh tanh km - vh km sech km

- L~kn 2 L 2-B 2  1 2

(V 4 w2  (15)
k3 L' km__ L2 - B2) 32 m2

The Numerical Results

The infinite series given by equations (13) and (15) and
their limiting forms for infinite depth have been evaluated
using IBM 704 and 7090 type digital computers. The results
of these computations are shown in Figures 1-8. Figures 1
and 2 show the normalized wave resistance of a rectangular
pressure distribution in a very wide canal (w/L = 10) for
infinite depth and for a finite depth h = L/4. Curves are
shown for various beam-lengt I ratios as functions of the

S/L LO
B/LLO5

0 05 L i L5 20 25S/L-O,25L,(1205 .. 0.

Figur 1a Wav Resistance ofhhenRectangularPressure Distribution-- D V i

_o_

5.0 L5 0.4: i
Frauds ~ ~ WeerCl

Figure~~~~ 1 WReitanc ofteRcaglrPrsueDsrbto

in a Canal of Infinite Depth and Various Beam-Length Ratios

.- 10 20 L5 to06 05025 04 03' F2L a oN oob o

Figure 2 Wave Resistance of the Rectangular Pressure Distribution
In a Canal of Depth h L/4 and Various Beam-Length Ratios. The
Curve for B/L = 10 is a Mfaximum of 24 at the Critical Froude

Number 'I/, and is Zero for Higher Froude Numbers

reciprocal of the Froude number. Figure 3 shows the results
for a single beam-length ratio (B/L = 0.5) and various values
of the depth of the canal. Figures 4-6 show the corre-
sponding results for the elliptic plan form. Figures 7-8 show
the influence of canal width for an elliptic distribution of
beam-length ratio B/L = 0.5, for infinite depth and for a

depth h = L/4. One striking feature of these results is the
severe "humps and hollows" at low Froude numbers, due to

interference effects. This feature is more apparent than in
Havelock's [3] computations since his assumed pressure
distribution extends to infinity and therefore does not possess
the same interference characteristics as a bounded pressure

distribution. The "humps and hollows" of the elliptic plan
form are less pronounced than those of the rectangle. This
is presumably due to the very strong interference caused by
the predominantly two-dimensional nature of the rectangle.
In fact except for high Froude numbers or small beam-length
ratios, the wave resistance of the rectangular distribution
differs very little from the two-dimensional (infinite beam-
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Figure 3 Wave Resistance of the Rectangular Pressure Distribution
with Beam-Length Ratio 1/h for Various Depths
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Figure 8 Wave Resistance of the Elliptic Pressure Distribution
with Beam-Length Ratio /Is in a Canal of Depth h = L/4, as a
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length ratio) case. This is also true, to a lesser extent, for the
elliptic distribution. At the high Froude numbers, however,
the departure from the two-dimensional results is greater, as
a consequence of the fact that the waves are longer and thus
the beam must become larger to maintain a two-dimensional
flow.

These characteristics are also illustrated by the asymptotic
approximations which may be obtained from equation (2) in
the case of infinite width and depth. These are shown in
Table 1.

Table 1

The asymptotic approximations for the wave resistance
coefficient QgR/po' B for infinite width and depth, in the limits of
high and low Froude number and high and low beam-length ratio.
Here 7 is Euler's constant, y = 577 . . . and H1 is the Struve
function [6].

gL/c'- 0

gL/c
= 

-2 oo

B/L -+ 0

B/L -- oo

Rectangle

L )[3-y+log(
AB ctL 

-

2

1

4sin' ( 2-)

Ellipse

I gL

4 B k cl 1
2

2

H

The jump in resistance at the point gh/c 2 = 1 is apparent
in Figures 2, 3, 5, and 6. As shown in equation (10) this jump
vanishes if the tank width tends to infinity. In this case
equation (2) shows that the resistance is finite and continuous
at the point gh/c 2 = 1, but there is a discontinuity in the slope.

Figures 7 and 8 show that except for the neighborhood of
the point vh = 1, the effects of the walls on the resistance
of the elliptic distribution are negligible for tank widths
greater than two model lengths, and not serious for widths
greater than one model length. The corresponding results for
the rectangular distribution are not included since these are
not significantly different. It would appear therefore that the
results shown in figures 1-6 may.be used for any reasonable
tank width up to infinity, or the case of an unbounded free
surface, except for the vicinity of the critical Froude number
gh/c 2 

= 1, where the width of the tank is important.

(Eingegangen am 23. September 1961)
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km
L

m, n
P, Q

Po, Q0o
p
P0Po
R
w
w

am
v

0

Nomenclature
beam of pressure distribution
forward elocity
gravitational acceleration
depth of the canal
Bessel function of the first kind
= 0 if vh ! 1; the real positive root of Ko - vh tanh
Ko = 0 if vh > 1
root of equation (9)
length of the pressure distribution
indexes of summation
integrals defined following equation (1)
integrals defined following equation (3)
pressure
pressure of the central pressure distribution in the
sequence of images
wave resistance
= Rc, work per unit time to overcome wave resistance
width of canal
-= 1 when m = 0, = 2 when m Z 1
= g/c,
fluid density
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