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Résumé :

Le but de ce travail est l’étude théorique et la modélisation d’un champ scalaire passif dans une tur-
bulence homogène anisotrope à l’aide d’une fermeture EDQNM (Eddy-Damped Quasi-Normal Marko-
vian) adaptée à un tel contexte. Cette fermeture est une extension du modèle spectral pour le champ de
vitesse de V. Mons et. al. [10] à un champ scalaire passif et au flux scalaire, qui naı̂t de l’interaction
de gradients de vitesse et de scalaire. Des résultats généraux originaux de croissance et décroissance
des énergies du scalaire et du flux en présence de gradients moyens sont ici présentés ainsi qu’une
validation du modèle.

Abstract :

This work aims at studying both numerically and theoretically a passive scalar field in a homogeneous
and anisotropic turbulent flow, thanks to an adapted EDQNM (Eddy-Damped Quasi-Normal Marko-
vian) closure. This closure is an extension of the spectral model for the velocity field developed by V.
Mons et. al. [10] to the passive scalar and scalar flux cases. The latter is created thanks to both velocity
and scalar mean gradients. New general results regarding decay and growth laws of passive scalar and
scalar flux energies in the presence of mean gradients are presented, along with the validation of the
present model.

Mots clefs : Passive scalar, Scalar flux, Anisotropy, Shear flow, Mean scalar
gradient

1 Introduction

The study of Homogeneous Anisotropic Turbulence (HAT) is of great interest for the complete under-
standing of real problems, such as atmospheric flows where scalar (temperature) and velocity gradients
strongly interact. Velocity and temperature gradients can also be the consequence of boundary condi-
tions (no-slip condition, adiabatic wall, ...).

Shear flows have received a particular attention [1, 2, 3, 4] so that some results are now well-known,
such as the exponential growth of the kinetic energy and the return to isotropy of small scales, according
to Kolmogorov local isotropy hypothesis [5]. The specific case of Homogeneous Isotropic Turbulence
with a mean Scalar Gradient (HITSG) has also been widely studied, in particular by Bos [6]. However,
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in his spectral model based on EDQNM closure, there were several adjustable constants for the velocity
field and transfers kept isotropic for the passive scalar field.

Finally, the case of a shear flow with scalar gradient (HSTSG), or more generally, of HAT with both
velocity and scalar gradients, has not been fully investigated yet, both numerically and theoretically. Im-
portant results are nevertheless reported by Bos [7], with the issues mentioned earlier, and the workable
experimental results date back to Tavoularis and Corrsin [8].

These different points are the motivation for the present work, which is a first step into a complete HAT
study. We aim at mapping the behavior of a passive scalar field under various kinds of anisotropy and
for different Prandtl numbers, very large or very small. Here, both HITSG and HSTSG are investigated
numerically with a fully consistent EDQNM model based on the pioneering work of Cambon [9]. Such a
study of the scalar field, for different kinds of anisotropic flows, has never been performed so far, at least
with an unique model that does not rely on adjustable constants (except the classical one of EDQNM).
This spectral modelling has been the object of a previous work by Mons, Cambon and Sagaut [10] on
the velocity field exclusively. This models relies on the intrinsic decomposition of the spectral Reynolds
stress tensors into directional and polarization parts. The main equations of the existing model [10] for
the velocity field are recalled. Then, the new extension to the passive scalar and scalar flux is presented.
Finally, the code is validated in the HITSG and HSTSG frameworks and new results are presented in
HITSG regarding the scalar variance and the cospectrum energy.

2 Equations of the model

In this part, the three final evolution equations of the anisotropic spectral model of Mons, Cambon
and Sagaut [10] are given. The starting point is the dynamical equations for the full spectral tensor
of velocity correlations R̂ij , in terms of the complete (3D) wave vector k. These equations involve
terms, which reflect the direct effect of the mean velocity gradients, that are linear and closed, and
call into play unclosed contributions from third-order correlations. The latter deal with energy transfers
and nonlinear pressure-strain correlations, and are closed by a generalized EDQNM procedure, as a
nonlinear contribution. In the final step, the model does not retain the full spectral information, but only
an optimal set of spherical-averaged descriptors, which depend on the wave vector modulus k only.
This set is extracted from the decomposition of the spectral tensor R̂ij in terms of angular spherical
harmonics at the first non-trivial degree (second degree here). The evolution of the velocity field is thus
driven by three sets of equations : the isotropic part of the kinetic spectrum E, its directional anisotropy
part EH(dir)

ij and its polarization anisotropy part EH(pol)
ij :

(∂t + 2νk2)E(k, t) = SL(iso)(k, t) + SNL(iso)(k, t), (1)

(∂t + 2νk2)E(k, t)H
(dir)
ij (k, t) = S

L(dir)
ij (k, t) + S

NL(dir)
ij (k, t), (2)

(∂t + 2νk2)E(k, t)H
(pol)
ij (k, t) = S

L(pol)
ij (k, t) + S

NL(pol)
ij (k, t). (3)

ν is the kinematic viscosity, SNL(iso), SNL(dir)
ij and SNL(pol)

ij are non-linear transfer terms fully com-

puted with EDQNM, and SL(iso), SL(dir)
ij and SL(pol)

ij are linear ones, directly depending on the velocity

gradients. H(dir)
ij and H(pol)

ij are deviatoric anisotropy indicators tensors linked to the spectral Reynolds
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stress tensor R̂ij through

2E(k, t)H
()
ij (k, t) =

∫
Sk

R̂
()
ij(k, t)d

2k, (4)

where Sk denotes a sphere of radius k. The original result here is the extension to the passive scalar and
scalax flux cases with the same compact shape. Similar calculations give the evolution of the isotropic
part of the scalar spectrum ET and its pseudo-directional part ETH

(T )
ij :

(∂t + 2ak2)ET (k, t) = ST,NL(iso)(k, t) + ST,L(iso)(k, t), (5)

(∂t + 2ak2)ET (k, t)H
(T )
ij (k, t) = S

T,NL(dir)
ij (k, t) + S

T,L(dir)
ij (k, t). (6)

a is the scalar diffusivity and H(T )
ij is a pseudo scalar directional anisotropy indicator obtained with

2ET (k, t)H
(T )
ij (k, t) =

∫
Sk

E(T,dir)(k, t)d2k, (7)

where E(T,dir) is the directional part of the spectral scalar-scalar correlation

< θ̂(−p)θ̂(k) >= ET (k)δ(k − p). (8)

The scalar spectrum is simply the spherical average of ET , similar to E for the velocity field [10]. The
scalar flux Fi(k), or the spectral velocity-scalar cross-correlation, is driven only by one equation, as
this quantity remains zero in isotropic turbulence. We define the spherical average of the scalar flux

EFH
(F )
i (k, t) =

∫
Sk

Fi(k, t)d
2k, (9)

so that
(∂t + (a+ ν)k2)EFH

(F )
i (k, t) = SF,NLi (k, t) + SF,Li (k, t). (10)

The spectrum EF cannot exist on its own and is always linked to the anisotropy indicator H(F )
i as the

scalar flux is zero in the isotropic framework. ST,NL(iso), ST,NL(dir)
ij , SF,NLi (k, t), ST,L(iso), ST,L(dir)

ij

and SF,Li (k, t) are the non-linear and linear passive scalar and scalar flux transfers.

For the numerical integration of these 20 independent equations, a logarithmic discretization in wave
numbers is used. The kinetic and scalar spectra are initially isotropic and the scalar flux is zero. Reλ is
the Reynolds number based on Taylor microscale, and in what follows, the Prandtl number is 1, so that
ν = a.

3 Numerical results

3.1 Validation in HITSG
Firstly, the code is validated in the HITSG framework : the velocity field is isotropic and decays ac-
cording to Comte-Bellot and Corrsin (CBC) theory [11] whereas the mean scalar gradient Λ creates the
cospectrum F = EFH

(F )
3 , the only non-zero component of the scalar flux, and produces scalar energy

KT (t) =
∫∞

0 ET (k, t)dk. The cospectrum energy evolves as

dKF
dt

= PF (t)− εF (t) + ΠF (t) (11)
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FIGURE 1 – At left, comparison of the cospectrum dissipation and production ratio with DNS. At right,
the k−7/3 range of the cospectrum F .

where ΠF (t) =
∫∞

0 SF,NL3 (k, t)dk is the cospectrum destruction, driven by pressure effects, εF (t)

the cospectrum dissipation rate, and PF (t) =
∫∞

0 SF,L3 (k, t)dk = 2
3ΛK(t) the cospectrum production.

The ratio of cospectrum dissipation and production is investigated and compared to the direct numerical
simulation (DNS) of Overholt and Pope [12]. The initial Reynolds number is Reλ(0) = 2330 so that
inertial ranges can be clearly observed. Results are presented in Fig. 1 along with the k−7/3 range of
the cospectrum, predicted by dimensional analysis by Lumley [13]. Moreover, the theoretical Re−1

λ

dependence at high Reynolds number, found by Bos, is recovered as well, using a simple calculation

εF (t)

PF (t)
=

3(ν + a)

2Λ

∫∞
0 k2F(k, t)dk∫∞

0 E(k, t)dk
∼

∫ kη
kL
ε1/3k−1/3dk∫ kη

kL
ε2/3k−5/3dk

∼ Re−1
λ

where 1/kL is the integral scale and kη the Kolmogorov wavenumber. The good agreement between
theory, DNS and EDQNM simulations validates our code.

3.2 Decay and growth laws in HITSG

In this section, new results regarding the decay of the cospectrum in the HITSG framework are pre-
sented. The emphasis is put on the decay of the cospectrum energy

KF (t) =

∫ ∞
0
F(k, t)dk.

We propose theoretical decay exponents, following [11], Meldi and Sagaut [14] in the isotropic case,
and Briard, Gomez and Sagaut [15] for the passive scalar.

Let’s introduce the infrared exponent σ so that E(k → 0, t) ∼ kσ and the decay exponent α of the
kinetic energy K(t) =

∫∞
0 E(k, t)dk ∼ tα. Simulations show that the cospectrum infrared slope

is exactly σ and does not depend at all on the scalar one σT . In the high Reynolds numbers regime
(Reλ ≥ 200), inertial effects are dominant and thus KF (t) =

∫∞
kL
F(k, t) ∼ k

−4/3
L ε1/3. Using the

well-known decay exponent of the integral scale 1/kL, one finds

KF (t) ∼ tαF , αF = −σ − pF − 1

σ − p+ 3
(12)
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FIGURE 2 – At left, decay exponent αF of the cospectrum energy in high and low Reynolds numbers
regimes for various infrared exponents σ, and at right, decay exponent nεF of the cospectrum dissipation
in low Reynolds numbers regime.

where pF is chosen to be (p + pT )/2 and accounts for backscatter in Batchelor turbulence (σ = 4)
and is zero otherwise. In the low Reynolds numbers regime, there are no longer inertial ranges. Hence,
production effects lead the decay of the cospectrum so that dKF

dt ∼ PF (t) which directly gives

KF (t) ∼ tαF , αF = −σ − 1

2
. (13)

The great agreement between these theoretical decay exponents and numerical simulations is illustrated
in Fig. 2 and is one of the main result of this paper. It is worth noting that these new results could not
be obtained in existing DNS as the kinetic field was forced so that no decay could occur. As for the
cospectrum dissipation εF , it is not a conserved quantity in the inertial range unlike the kinetic and
scalar ones ε and εT . Hence, it is impossible to derive a similar power law in high Reynolds numbers
regime. Nevertheless, in low Reynolds numbers regime, as inertial ranges disappear, it is possible to
express the decay exponent of εF , simply as nεF = αF − 1 according to (12). This is confirmed in Fig.
2 as well.

A similar result is now presented regarding the passive scalar itself. In the presence of a mean-gradient,
there is a continuous production of scalar energy according to

dKT

dt
= 2ΛKF (t)− εT (t), (14)

where εT (t) is the scalar energy dissipation rate. Instead of decaying [15], the scalar energy KT grows
both in high and low Reynolds numbers regimes, and scales as ΛKF . Using the previous results on the
cospectrum exponent αF , we find the scalar growth exponent αΛ

T in high Reynolds numbers regime

KT (t) ∼ tαΛ
T , αΛ

T =
1

2

pF − p+ 8

σ − p+ 3
(15)

and in low Reynolds numbers regime

KT (t) ∼ tαΛ
T , αΛ

T = −σ − 3

2
. (16)

The good agreement between these theoretical exponents and numerical simulations is revealed in Fig.
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3. It is interesting to point out that the growth exponent of the scalar energy with a mean gradient was
already found by Chasnov [16] in the particular case of Saffman turbulence (σ = 2) where αΛ

T = 4/5.
Chasnov computed analytically decay and growth exponents for passive and active scalar fields for
constant and non-constant mean gradients in Saffman turbulence. His results for the active scalar were
assessed by Large Eddy Simulation (LES). Our result here for the passive scalar is more general as it is
valid for all kind of initial turbulence state, and can be seen as an a posteriori validation of Chasnov’s
result. The last point to explore is the behavior of the scalar dissipation rate εT which was not studied
in [16]. From the evolution equation of KT (16), it seems clear that εT behaves like KF and so one
simply has nΛ

εT
= αF , which is also recovered in Fig. 3.

A striking result is that with a mean scalar gradient, decay and growth exponents, both in high and low
Reynolds numbers regimes, for the cospectrum and the scalar field, do not depend at all on the infrared
scalar slope σT , meaning that the kinetic field fully leads the dynamics of the flow through the mean
gradient Λ.

We conclude this part with a remark on the return to isotropy mechanism of small scales. Scalar
anisotropy tensors H(T )

ii are displayed in Fig. 4 : they clearly show that small scales of the flow have re-
turned to isotropy as H(T )

ii → 0 there. This is in agreement with Kolmogorov local isotropy hypothesis
[5] for second-order moments.
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3.3 Shear flow and scalar gradient
Here, the case of shear flow is addressed. Few results only exist regarding the passive scalar and scalar
flux in presence of both velocity and scalar gradients. The shear rate is S = dU1/dx3 where Ui is the
mean velocity field. Scalar indicators analogous to kinetic ones are now defined. First, the scalar shear
rapidity as

STR =
εT
KTS

,

and the scalar anisotropy tensors

bTij(t) =
1

KT (t)

∫ ∞
0

ET (k, t)H
(T )
ij (k, t)dk.

In Fig. 5, the case of a shear flow without mean scalar gradient is presented. In such a framework,
there is no scalar flux. Simulations show that STR and bTij reach constant values for St ≥ 30, as for the
analogous kinetic anisotropy indicators [4, 10].
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FIGURE 5 – At left, scalar anisotropy tensors bTij with STR . At right, K(t), KT (t) and εT . Both for
σ = 2, Λ = 0 and S = 10−2.

Moreover, an exponential decrease of the scalar energy is observed, in agreement with the evolution
equation ∂tKT = −εT . Let’s replace KT and εT in this equation by KT (t) = K∞T exp(γTSt) and
εT (t) = ε∞T exp(γTSt). An analytical expression for the scalar exponential rate γT is then obtained

γT = − εT
SKT

= −STR, KT (t) ∼ KT (0) exp(γTSt). (17)

Such an expression for γT has already been obtained with different arguments by Gonzalez [17]. The
exponent γT found by plotting KT is in very good agreement with the asymptotic value of STR , which
gives γT ' −0.52. The important result is that the final value of the scalar decay rate γT does not
depend on the shear rate S nor on the infrared exponents σ and σT .

When a scalar gradient is added, the scalar flux has two non-zero components. The second one, the
streamwise flux FS , arises from shear effects, and its energy is KS

F (t).

A short validation is proposed against Tavoularis and Corrsin [8] results in Fig. 6. Appropriate char-
acteristic parameters give the dimensionless shear S = 6, 19 and scalar gradient Λ = 0.1823. Let’s
mention that we start from an initial isotropic condition, which is clearly not the case in the experi-
ment. Two final Reynolds numbers are given in [8] : Rλg = 160 scaled for an isotropic framework, and
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Rλ11 = 266 for inhomogeneous flows, more appropriate. We chose the second one. Data is available at
three locations : x1/h = 7.5, 9.5 and 11. Using the appropriate conversion in dimensionless time this
provides experimental information at St = 8.63, 10.94 and 12.66. There are good agreements in Fig.
6 for the cospectrum and streamwise flux correlations ρvθ and ρuθ. Finally, a difference is observed for
the turbulent Prandtl number

PrT (t) =
Λ

S

R12(t)

KF (t)
, (18)

which is Prexp
T ' 1.1, whereas PrEDQNM

T ' 0.74. The value obtained experimentally seems quite large :
indeed, Herring et. al. [18] and Lesieur [19] have both reported, from atmospheric data and theoretical
considerations, that one should obtain 0.6 ≤ PrT ≤ 0.8, in agreement with our result. Moreover, other
values of the turbulent Prandtl numbers reported from DNS and experiments agree better with 0.7 than
with 1.1. This brief comparison validates our model for the HSTSG case.

In Fig. 7, the scalar energy grows exponentially with the presence of the scalar gradient, with the same
growth rate as the kinetic energy, and so do the energies of the scalar flux. This is an original result,
although it could have been deduced from experimental works and existing DNS as ρvθ and ρuθ become
always constant for sufficiently high St. One can see in Fig. 7 that the ratios εF/(KFS) and εSF/(K

S
FS)

both tend to zero. This will be used in an upcoming work to give analytical expressions for the scalar
flux growth rates.

4 Conclusions
This work is a step further into the theoretical and numerical study of the Homogeneous Anisotropic
Turbulence. The present EDQNM spectral model relies on six equations, that can be seen as generalized
Lin equations, including three for the velocity field (equations (1), (2), and (3)) which are part of the
Mons, Cambon and Sagaut model [10]. The present study extends this model to the cases of a passive
scalar field (equations (5) and (6)) and the associated scalar flux (equation (10)).

The model is assessed both in the frameworks of Homogeneous Isotropic Turbulence with Scalar Gra-
dient and of Homogeneous Shear Turbulence with Scalar Gradient. New decay laws are found for the
cospectrum energy KF (t) :
– In high Reynolds numbers regime, the decay is driven by inertial effects and the decrease of the

kinetic energy K(t).
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– In the low Reynolds numbers regime, as inertial effects are negligible, production of cospectrum
leads the decay.

The decay exponent of the cospectrum dissipation rate εF (t) is found as well, only in the low Reynolds
numbers regime, in agreement with Bos study [6]. Similarly, the scalar dissipation rate εT (t) is found
to decay as KF (t), whereas the scalar energy KT (t) grows with time because of the production term
linked to the cospectrum. The latter is in agreement with the theoretical work of Chasnov [16] in
Saffman turbulence, and thus can be seen as a generalization and an additional validation.

The strong result with these new theoretical exponents, assessed with numerical simulations, is that they
do not depend on the intensity of the scalar gradient Λ, nor on the scalar large scales initial conditions
σT (ET (k → 0, t) ∼ kσT ). Therefore, we conclude that in HITSG, the passive scalar is fully dominated
by the velocity field, even its large scales.

Then, the cases of a passive scalar with shear only, and shear combined with scalar gradient, are briefly
investigated. In the first case, the exponential decrease of the scalar energy KT (t) is recovered both
numerically and analytically. In the second case, all energies are found to grow exponentially with the
same rate γ as the kinetic field, found in [10]. These two last cases deserve more investigation and are
at the center of an upcoming work, along with the influence of a Prandtl number very different from 1.
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