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Résumé :  
 

L'objectif de ce travail est d'étudier l'écoulement turbulent dans un échangeur de chaleur contenant un 

diffuseur incurvée. Pour cela, nous avons développpé des simulations numériques avec un code CFD. 

Le modèle numérique est basé sur la résolution des équations de Navier-Stokes couplées avec le 

modèle de turbulence k-ε. Ces équations sont résolues par discrétisation volumes finis. 

Particulièrement, nous sommes intéressés à visualiser la température, la vitesse, la pression totale, la 

pression dynamique, la vorticité et les caractéristiques de la turbulence. 

 

Abstract:  
 

The objective of this work is to study the turbulent flow inside a heat exchanger using an incurved 

diffuser. For thus, we have developed a numerical simulation using CFD code. The numerical model 

is based on the resolution of the Navier-Stokes equations in conjunction with k-ε turbulence model. 

These equations were solved by a finite volume discretization method. We are particularly interested 

to visualize the temperature, the velocity, the total pressure, the dynamic pressure, the vorticity, the 

turbulent kinetic energy, the turbulent dissipation rate and the turbulent viscosity. 
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1 Introduction  
 

In industrial manufacturing processes, a large amount of thermal energy is directly dumped into the 

environment. This results in a significant waste of energy. Researchers confirm that more than 30- 

40% of fuel energy wastes from the exhaust and just 12–25% of the fuel energy convert to useful work 

[1–3]. The dumped thermal energy can be recovered using a heat exchanger in the exhaust. A heat 

exchanger is a heat transfer device that is used for transfer of internal thermal energy between two or 

more fluids available at different temperatures. The heat exchanger is an essential element to any 

policy of energy conservation. It is used mainly in industrial sectors (chemicals, petrochemicals, steel, 
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food processing, energy production) and transportation (automotive, aeronautics), but also in the 

residential sector and tertiary (heating, air conditioning). The choice of a heat exchanger, for a given 

application depends on many parameters such as field temperature and pressure of fluids, and physical 

properties of these fluids, maintenance, cost and space. The size of the heat recovery system is 

strongly associated with heat recovery potential and fluid temperature. In the literature, relevant 

studies on heat exchanger networks [4-10] can be found. CFD numerical simulations have been used 

in the study of heat exchangers. For example, Zhang and Li [11] proposed a structure of two-stage-

distribution and the numerical investigation shows that the flow distribution in plate-fin heat 

exchanger is more uniform if the ratio of outlet and inlet equivalent diameters for both headers is 

equal. Wen et al. [12] employed CFD technique to simulate and analyze the performance of fluid flow 

distribution and pressure drop in the header of plate-fin heat exchanger. Wasewar et al.[13] studied the 

flow distribution through a plate-fin heat exchanger. A modified header is proposed and simulated 

using CFD. The modified header configuration has a more uniform flow distribution than the 

conventional header configuration. In addition, the efficiency of the modified heat exchanger is seen to 

be higher than that of the conventional heat exchanger. Gan et al. [14] performed a CFD simulation on 

the tubes of a heat exchanger used in closed-wet cooling towers. Pressure drop was found to depend 

on the tube configurations and water to air ratio. The predicted pressure loss coefficient was found 

inversely proportional to transverse pitch, but was in direct relationship with water to air mass flow 

rate. In this context, we are interested in studying the turbulent flow inside a heat exchanger with an 

incurved diffuser. For thus, we make numerical simulations of the turbulent flow and we present all 

the results, such as temperature, pressure, velocity and turbulent characteristics. 

 

2   Numerical results  
 

The CFD code “SolidWorks Flow Simulation” was used for calculation. Two longitudinal planes 

defined by z=0 m and y=0 m and one transverse plane defined by x=0 m are considered.  

 

2.1 Temperature 
 

Figure 1 presents the distribution of the temperature in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, it is clear that the temperature is at its maximum at 

the entry of the diffuser, which is the value of the inlet boundary condition. The temperature 

distribution shows a decrease on the sides of the first diffuser and through the heat exchanger. Out of 

the heat exchanger, the temperature of the gas decreases, but still represents important values of more 

than 250 °C. This fact is due to the heat loss through the heat exchanger. According to the plane 

defined by x=0, the water reaches a temperature of 120 °C.  

 

 

 

 

  

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig. 1. Distribution of the temperature 
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2.2 Magnitude velocity 
 

Figure 2 presents the distribution of the magnitude velocity in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, the maximum value of the velocity appears in the 

gas inlet which is imposed by the boundary conditions. The velocity distribution shows a decrease in 

the first diffuser. Also, a decrease has been noted on the sides of the first diffuser which there is an 

important drop of the velocity. Out of the heat exchanger, the velocity decreases in the second 

diffuser. At the end of the diffuser, an increase of the velocity has been observed due to the reduction 

of the diffuser section. Indeed, it is clear that through the reduction of the size of the diffuser, the 

velocity value increases at the end of the diffuser. According to the transverse plane defined by x=0 m, 

the velocity in the tubes is constant. An increase of the magnitude velocity has been observed in the 

middle. Along the sides, it has been noted a decrease of the magnitude velocity. 

 

 
 

 

 

 

 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig. 2. Distribution of the magnitude velocity  

 

2.3 Total pressure 
 

Figure 3 presents the distribution of the total pressure in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, a compression zone characteristic of the maximum 

values of the total pressure has been observed in the heat exchanger upstream and the middle of the 

diffuser. A progressive decrease has been observed on the sides of the first diffuser. A decrease of the 

total pressure has also been noted at the second diffuser and the heat exchanger downstream. The total 

pressure decreases out of the heat exchanger. In fact, the total pressure has approximately the same 

value and do not have a great value change in all the length of the diffuser. According to the transverse 

plane defined by x=0 m, the distribution of the total pressure is uniform in the tube and the difference 

is located in the heat exchanger. An increase of the total pressure has been observed in the middle. 

Along the sides, it has been noted a decrease of the total pressure.  

 

 

 

 

 

 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 
Fig. 3. Distribution of the total pressure  

 

2.4 Dynamic pressure 

Fig. 4 presents the distribution of the dynamic pressure in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, the compression zones characteristics of the 
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maximum values of the dynamic pressure are localized in the heat exchanger and the middle of the 

diffuser. A decrease of the dynamic pressure values appears in the sides of the diffuser and in the 

second diffuser. In the second diffuser and through the gas flow, the dynamic pressure decreases. This 

fact is due to the difference in the section and size of the diffuser. In the end of the second diffuser, a 

progressive increase of the dynamic has been observed. In the transverse plane defined by x=0 m, the 

distribution of the dynamic pressure is uniform in the tube. An increase of the dynamic pressure has 

been observed in the middle of the heat exchanger. However, along the sides, it has been noted a 

decrease of the dynamic pressure.  

 

 

 

 

 
 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 
Fig.4. Distribution of the dynamic pressure  

 

2.5 Vorticity  
 

Figure 5 presents the distribution of the vorticity in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, a wake characteristic of the maximum values of the 

vorticity have been observed in the entry of the gas inlet. In the sides and in the middle of the first 

diffuser, the values of the vorticity are very low. The vorticity presents an increase in the middle of the 

heat exchanger. In the heat exchanger downstream, the vorticity decreases. An increase of the vorticity 

has been noted in the outlet of the second diffuser. According to the transverse plane defined by x=0 

m, the vorticity is constant in the tube. In the heat exchanger the vorticity is quite high in the middle 

and starts to decrease on the sides. 

 

 

 

 

 
 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig.5. Distribution of the vorticity  

 

2.6 Turbulent kinetic energy 
 

Fig. 6 presents the distribution of the turbulent kinetic energy in the considered planes. According to 

the longitudinal planes defined by z=0 m and y=0 m, a wake characteristic of the maximum value of 

the turbulent kinetic energy has been observed in the first diffuser. The results show also a decrease in 

the value of the turbulent kinetic energy almost at the end of the heat exchanger and at the entry of the 

second diffuser. After then, the turbulent kinetic energy decreases progressively. The transverse plane 

defined by x=0 m presents a wake characteristic of the maximum value of the turbulent kinetic energy. 

In the sides, a progressive decrease of the turbulent kinetic energy has been observed. However, the 

turbulent kinetic energy in the tubes is constant. 
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(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig.6. Distribution of the turbulent kinetic energy 

 

2.7 Dissipation rate of the turbulent kinetic energy 
 

Figure 7 presents the distribution of the dissipation rate of the turbulent kinetic energy in the 

considered planes. According to the longitudinal planes defined by z=0 m and y=0 m, a wake 

characteristic of the maximum values of the dissipation rate of the turbulent kinetic energy has been 

observed in the sides of the diffuser. In the middle of the diffuser and in the gas inlet, the dissipation 

rate of the turbulent kinetic energy decreases. The wake extension has been observed until the gas 

leaves the heat exchanger where there is a great drop on the dissipation rate of the turbulent kinetic 

energy values. The plane x=0 m shows a wake characteristic of the maximum values of the dissipation 

rate of the turbulent kinetic energy in the middle of the planes. The dissipation rate of the turbulent 

kinetic energy decreases in the other sides of the diffuser. However, the dissipation rate of the 

turbulent kinetic energy is constant in the tubes. 

 

 

 

 

 
 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig.7. Distribution of the dissipation rate of the turbulent kinetic energy 

 

2.8 Turbulent viscosity 
 

Figure 8 presents the distribution of the turbulent viscosity in the considered planes. According to the 

longitudinal planes defined by z=0 m and y=0 m, a wake characteristic of the maximum values of the 

turbulent viscosity has been observed in the first diffuser. The turbulent viscosity values decrease 

importantly in the heat exchanger. The results show also an increase in the middle of the second 

diffuser and a decrease in the sides of the diffuser. In the plane defined by x=0 m, an increase in the 

middle of the heat exchanger and a progressive decrease in the sides have been observed. 

 

 

 

 

 
 

(a) Plane z=0 m (b) Plane y=0 m (c) Plane x=0 m 

Fig.8. Distribution of the turbulent viscosity in the transverse plane x=0 m 



22
ème

 Congrès Français de Mécanique                                               Lyon, 24 au 28 Août 2015 
 

3 Conclusions 
 

In this work, numerical simulations have been developed to study the turbulent flow inside a heat 

exchanger using an inurved diffuser. We present all the results from simulation, such as temperature, 

velocity, total pressure, dynamic pressure, vorticity, turbulent kinetic energy, turbulent dissipation rate 

and turbulent viscosity. According to the numerical results, fluid flow characteristics decrease in the 

sides of the first diffuser and in the second diffuser out of the heat exchanger. This knowledge will be 

used in the construction of the heat recovery system.  
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