
    Proceeding of  International Conference On Research, Implementation And Education  
Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 

  
 

 
M-1 

M – 1 
MODIFICATION OF CROSSOVER OPERATOR ON GA APPLICATION 

FOR TSP 
 

Darmawan Satyananda 
Jurusan Matematika FMIPA Universitas Negeri Malang 

darmawan.satyananda.fmipa@um.ac.id 
 

Abstract 
 

Genetic Algorithm (GA) has been widely used in many fields of 
optimization; one of them is Traveling Salesman Problem (TSP). GA in the TSP 
is primarily used in cases involving a lot of vertices, which is not possible to 
enumerate the shortest route. One of stages in GA is crossover operation to 
generate offspring’s chromosome based on parent’s.  

Example of some crossover operators in GA for TSP are Partially 
Mapped Crossover (PMX), Order Crossover (OX), Cycle Crossover (CX), and 
some others. However on constructing the route, they are not considering length 
of the route to maximize its fitness. The use of random numbers on constructing 
the route likely produces offspring (a new route) that is not better than its parent. 
Sequence of nodes in the route affects the length of the route. To minimize 
uncertainty, then the crossover operation should consider a method to arrange the 
chromosomes. 

This article studied incorporating two methods into crossover stage, in 
order to ensure the offspring has good fitness. Methods to be combined with 
algorithms are commonly used in the route searching; those are Nearest 
Neighbor algorithm, and Sequential Insertion. Operators used are CSI (Crossover 
combined with Sequential Insertion) and CNN (Crossover combined with 
Nearest Neighbor), named after the method used. 

Those operators are compared with PMX operator on test using 
benchmark data from TSPLIB on some independent executions. The tests 
showed that CSI are better than two other and length of its route was relatively 
equal to optimal length recorded. 
Keywords: Genetic Algorithm, Traveling Salesman Problem, Crossover 
operator 

 
 

Introduction 
A. Background 
1. Traveling Salesman Problem 

Traveling Salesman Problem (TSP) is one of applications of graph theory. TSP is a 
problem of finding minimum weight Hamiltonian cycle in a graph. TSP models a salesman who 
must visit all cities exactly once and return to his hometown, with least distance (or cost, time, 
and other). Node in the graph symbolizes city, and weight between two nodes symbolizes 
distance (or cost, time, etc.) between two cities. TSP applications are used to solve some 
problems, some of them are distribution/transportation, job scheduling, scheduling lectures, 
PCB drilling, X-ray crystallography, and computer wiring ([Al Rahedi & Atoum, 2009], [Philip, 
Taofiki, and Kehinde, 2011]). 

In algorithmic term, TSP is NP-complete problem, meaning that require completion in 
polynomial time as number of node increases. The only optimal algorithm for TSP is Brute 
Force algorithm, but it is not efficient because adding 1 node into the graph will increase 
computation by 1000%. Up to now there is no known algorithm to solve the TSP that is both 
optimal and efficient, particularly to large number of nodes.  

At n-node symmetric graph, there are (n-1)!/2 possible Hamiltonian cycle. By using 
exhaustive search (brute force), it would have obtained a solution (it’s optimal), but this would 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lumbung Pustaka UNY  (UNY Repository)

https://core.ac.uk/display/33523175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Darmawan Satyananda / Modification of Crossover.....                                      ISBN. 978-979-96880-8-8 
     
 

 
M-2 

require a very large running time (it isn’t efficient). For some problems it is possible to design 
algorithms that are significantly faster than exhaustive search, though still not polynomial time 
(Woeginger, 2002). 

A number of methods that considered "traditional" and exact, has been used to solve 
TSP, among them is Nearest Neighbor, Cheapest Link, and Christofides. They provide exact 
optimal solution to the problem. Several other methods are "non-traditional", among of them are 
Simulated Annealing (SA), Genetic Algorithms (GA), Ant Colony Optimization (ACO), Bee 
Colony Optimization (BCO), Particle Swarm Optimization (PSO) (Sureja & Chawda, 2012). 
These are stochastic method that mimics some natural phenomenon, which is designed to 
problems that cannot be dealt with classical methods (Michalewics, 1996). "Non-traditional" 
method looks for a “good” solution within a reasonable time, instead of searching for the 
optimal solution (Ahmed, 2010). 
 
2. Genetic Algorithm (GA) 

GA is one of the best heuristic algorithms that have been used widely to solve the TSP 
instances. GA mimics Darwinian evolutionary principles of natural evolution, in which the 
individual must be able to adapt to a changing environment. Good quality individuals will 
survive, and the bad will be extinct. Good individuals are expected to produce good offspring as 
well. Each individual has chromosomes; parent’s chromosomes are passed on to offspring 
through the process of crossover (marriage), and chromosome of an individual can change due 
to mutation. Michalewics (1996) and Al Rahedi & Atoum (2009) stated that GA can be applied 
to problems such as routing optimization, production scheduling, transportation, TSP, control, 
games, arrangement layout, and database query optimization. 

In general, GA consists of some stages (Dr´eo, 2006): 

 
Figure 1. Stages on Genetic Algorithm 

 
Initial population (μ individuals) can be determined randomly; this is generally defined 

in input parameter. Each individual has a single chromosome (the terms are interchangeably, it 
is often synonymous between individuals and chromosomes). Each chromosome consists of a 
number of genes. In the use of GA for solving the TSP case, the gene is a representation of node 
(vertex) in the graph and chromosome is a representation of route (Hamiltonian cycle). 
Chromosome size is equal to the number of nodes in the graph. Chromosome {1,4,3,2,5} 
represents a complete tour {1→4→3→2→5→1} 

Fitness evaluation is used to determine the quality of a chromosome. Fitness evaluation 
function equals to the objective function. For TSP, the fitness evaluation is to calculate the 
length of the route (Hamiltonian cycle) from a particular starting point. In general GA seeks 
maximum objective function (the best fitness is the maximum value), whereas in the TSP is to 



    Proceeding of  International Conference On Research, Implementation And Education  
Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 

  
 

 
M-3 

find the minimum of the objective function. Hence the fitness function is inverted; that is 
퐹(푥) = 	

( )
, where f(x) is the objective function. 

GA process is done iteratively. There are three operations that apply on each iteration: 
- Selection operation to choose chromosomes to be crossed (subject to crossover operation), 

based on the fitness of chromosomes (good-fitness chromosome has a great chance of being 
selected).  

- Crossover operation to combine two individual parent’s chromosomes, produces a new 
chromosome for the individual offspring (sexual reproduction) 

- Mutation operation to modify gene of a chromosome (asexual reproduction) 
End of the mutation operation is calculating fitness of chromosomes resulted from 

crossover and mutation operation. In the end of iteration, selection is performed to select μ 
individuals out of λ + μ individuals resulted from mutation operation. Chromosomes resulted 
from mutation phase is sorted by its fitness ascending, and then only μ chromosomes are taking 
into account. These are chromosomes with the best fitness and become individuals for initial 
state of next iteration. This is survival selection which is parents and offspring compete to 
survive.  

Al Rahedi & Atoum (2009) stated that there are 15 kinds of methods for crossover 
operation and 11 kinds of methods for mutation operations are discussed in some literatures. 
Not all methods can be applied to a particular problem. 

Stages from selection to replacement is a whole generation. Those stages will be 
repeated several times (to state some generations of population), and somehow it stops on a 
certain condition: number of generation, goodness of solution to a specific standard, 
convergence of population, or any other specific stopping criterion (Rexhepi, Maxhuni, and 
Dika, 2013). 

 
3. Crossover operator 

Crossover operation is necessary to produce a good individual. Parents' characteristics 
are inherited mainly by crossover operator. The operator that preserves good characteristics in 
the offspring is said to be good operator (Ahmed, 2010). Three crossover operators most 
commonly used for TSP are PMX (Partially Mapped Crossover), OX (Ordered Crossover), and 
CX (Cycle Crossover). Number of researches produce other operator such as ERX (Edge 
recombination operator), GNX (Generalized N -point crossover), TBX (Tie-Break Crossover), 
and MX (Moon Crossover. Among those, perhaps PMX is the best since which it founds near-
optimal solutions to a well-known 33-node problem (Ahmed, 2010).  

In general, the crossover operation on TSP ensures no similar genes on one 
chromosome (since the route only passes a vertex exactly once). Length of the route has not 
been taken into consideration at the time because it can be done by selecting the best route at the 
end of the iteration. It means that the route cannot achieve optimal state immediately. 

 
B. Formulation of the problem 

According to the fact that crossover operators for solving TSP don’t incorporate node 
arrangement in generating route, the route cannot achieve optimal state immediately. This 
research will incorporate heuristic for arranging nodes into crossover stage, to ensure GA could 
generate route optimally. The heuristic will be stated as crossover operator. 

 
C. Goal and Benefit 

Goal of this research is to crossover operator that produce the most optimal route. 
Meanwhile it’s benefit is to have GA for TSP which has more optimal solution and faster 
convergence. 

 



Darmawan Satyananda / Modification of Crossover.....                                      ISBN. 978-979-96880-8-8 
     
 

 
M-4 

Research Method 
A. Crossover operator proposed 

In all crossover operations to TSP, each generated chromosome (offspring’s 
chromosome) is valid, but cannot guarantee that produce individual offspring better than their 
parents. It is proposed intervention on chromosome arrangement. This intervention is done by 
utilizing the principle of the Nearest Neighbor and Sequential Insertion algorithm. Both only 
produce one chromosome of offspring for every pair of parent’s chromosome subjected to 
crossover operation. Offspring chromosome is added to the end of the set of chromosomes in 
the crossover phase. 

Nearest Neighbor is one of algorithms that are used to get a minimum weight 
Hamiltonian cycle on a graph. It has a complexity of O (n2). According to Rosen (2000), 
Nearest Neighbor algorithm is: 

input:undirected network G = (V,E) 
output:a traveling salesman tour 
i0 := any vertex of G {the starting vertex} 
W := V − {i0} 
P := ∅ 
v := i0 
while W _= ∅ 
let k ∈ W be such that cvk = min{ cvj | j ∈ W } 
add (v, k) to P 
W := W − {k} 
v := k 
add (k, i0) to the path P to produce a tour 

 
In the Nearest Neighbor algorithm, from one starting node searched next node which 

has closest distance. Selected node serve as a starting point for the next iteration. It will take 
place until there is no more nodes that may be selected, and in the end the last node is connected 
with the initial starting node to form the complete tour. 

The selected node is added to the last node in the route (which is closest to the previous 
node). However, according to Gutin & Punned (2002) this method has a drawback, that it does 
not exploit the geometric structure of the problem. It means that there are possibilities that 
different position of the nodes (that make different route) would give better result.  

Nearest Insertion Algorithm uses node insertion to the existing route, by selecting 
position that can maximize saving: inserting a node between two other nodes will give shorter 
distance. Suppose there are two nodes i and j, and a node k will be inserted between them, then 
total distance cik + ckj must be smaller than cij. Since there are many possible pairs as that, then 
the algorithm will select position that gives least min(cik + ckj, cij). Basically this originates from 
Clark and Wright in 1964. In other literature, this is used in VRP, known as Sequential Insertion 
in Poot, Kant, and Wagelmans (2002), and as a base of developing Constricting Insertion 
Heuristic for TSP with Neighborhood in Alatartsev, Augustine, and Ortmeier (2013). 

Still according to Rosen (2000), Nearest Insertion algorithm is: 
input:undirected network G = (V,E) 
output:a traveling salesman tour 
i := any vertex of G {the starting vertex} 
j := subscript such that cij = min{ cir | r ∈ V − {i} } 
S := {i, j} 
C := {(i, j), (j, i)} 
while S _= V 
let k be such that dS(k) = min{ dS(r) | r ∈ V − S } 
S := S ∪ {k} 
find an edge (u, v) ∈ C so cuk + ckv − cuv = min{ cxk + cky − cxy | (x, y) ∈ C } 
add (u, k) and (k, v) to C, and remove (u, v) from C 



    Proceeding of  International Conference On Research, Implementation And Education  
Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 

  
 

 
M-5 

This algorithm firstly looks for a node that is closest to a specific starting point to be 
formed as initial cycle. On each iteration it finds one unselected node that is closest to one of 
nodes in the cycle. The selected vertex is inserted between pair of nodes in the cycle considering 
the smallest saving value. Iteration is done until all vertices are selected. 

This principle of insertion will be used to arrange gene on chromosome in crossover 
phase. It will benefit more than merely adding to last node in the route. 

Considering the manner in each algorithm, it is designed to incorporate those algorithms 
to the crossover stage to ensure that the offspring’s chromosomes have good fitness. Crossover 
operator using Nearest Neighbor algorithm named as CNN, Crossover operator using Sequential 
Insertion operator named as CSI. Those will be compared to original PMX operator. This 
research was only to compare the quality of operator and solution by different crossover 
operator, instead of to improve the solution quality. 

For a discussion of each case, it is assumed that two chromosomes have been selected 
as parent (referred as K1 and K2): 
 
a. Crossover operator using Nearest Neighbor algorithm (CNN) 
1. Select randomly one of the first gene in each of K1 and K2, to be the first gene of offspring 

chromosome (referred as gene α) 
2. Find next gene after gene α in each of K1 and K2 that is not selected as an offspring 

chromosome genes (referred as gene β and γ respectively). If there are no possible genes 
selected (e.g. because α is the last gene in the chromosome or all next genes have been 
selected), then get a gene that has not been selected in random manner (referred as gene δ). 

3. a. When two genes are obtained (gene β and γ), select a gene which has closest distance from 
gene α (referred as gene δ). Add gene δ into the route right after gene α. 

b. When only one gene obtained (one of genes β, γ, δ) then add the gene into the route after 
gene α. 

4. Set gene that just added into the route as as the initial gene of next iteration (as gene α) 
5. Return to step 2 until all genes have been selected 
6. Count its fitness 
 
b. Crossover operator using Sequential Insertion algorithm (CSI) 
1. Select randomly one of the first genes in each of K1 and K2, to be the first gene of offspring 

chromosome (referred as gene α), create an initial route α-α 
2. Find next gene after gene α in each of K1 and K2 that is not selected as an offspring 

chromosome genes (referred as gene β and γ respectively). If there are no possible genes 
selected (e.g. because α is the last gene in the chromosome or all next genes have been 
selected), then get a gene that has not been selected in random manner (referred as gene δ). 

3. a. When two genes are obtained (gene β and γ), select a gene which has closest distance from 
gene α (referred as gene δ). Insert gene δ into the route in position which gives smallest 
saving: min (cθδ + cδλ - cθλ), θ and λ is a pair of successive genes in the route 

b. When only one gene obtained (one of genes β, γ, δ) then insert the gene into the route in 
position which gives smallest saving: min (cθδ + cδλ - cθλ), θ and λ is a pair of 
successive genes in the route 

4. Set gene that just added into the route as as the initial gene of next iteration (as gene α) 
5. Return to step 2 until all genes have been selected 
6. Count its fitness 
 

CSI doesn’t use all Nearest Insertion algorithm, it just use insertion principle. The only 
difference between CNN and CSI is just on step 3.a and 3.b (adding and inserting node to 
route). Both operators do not depend on the parents' structure; it introduces new edges to the 
offspring. By using specific treatment, the chances of producing a better offspring are more than 
PMX operator that rely on random-generated position. 



Darmawan Satyananda / Modification of Crossover.....                                      ISBN. 978-979-96880-8-8 
     
 

 
M-6 

Let us illustrate the algorithms through the example given as cost matrix in Figure 2. 
Let a pair of selected chromosomes be K1: (1, 4, 2, 6, 5, 3) and K2: (6, 1, 2, 4, 3, 5) with fitness 
290 and 190 respectively. 

 1 2 3 4 5 6 
1 - 23 57 67 12 14 
2 23 - 87 12 65 52 
3 57 87 - 39 72 41 
4 67 12 39 - 54 27 
5 12 65 72 54 - 30 
6 14 52 41 27 30 - 

Figure 2. The cost matrix 
 
a. CNN 
α = 1 (random) 

Iteration α β γ δ Route Fitness 
1 1 4 2 2 1-2 23 
2 2 6 4 4 1-2-4 23+12 = 35 
3 4 - 3 3 1-2-4-3 35+39 = 74 
4 3 - 5 5 1-2-4-3-5 74+72 = 146 
5 5 - - 6 1-2-4-3-5-6 146+30 = 176 

Finally, the fitness is 176+14 = 190, as adding edge 6-1 to complete the tour. Step 3 
could not find gene β because node 2 had been selected previously, step 4 could not find gene β 
because node 3 was the last node in K1, and in step 5, gene δ was generated randomly as node 3 
in K1 is the last node and node 5 in K2 was previously selected.  
 
b. CSI 
α = 1 (random) 

Iteration α β γ δ Route Fitness 
1 1 4 2 2 1-2-1 46 
2 2 6 4 4 1-4-2-1 102 
3 4 - 3 3 1-3-4-2-1 131 
4 3 - 5 5 1-5-3-4-2-1 158 
5 5 - - 6 1-5-6-3-4-2-1 157 

The fitness is 157, much smaller than CNN result or fitness parent’s chromosome. 
Sequence and cases of node selection in this case is similar to CNN; the difference is in route 
construction process. 
 
B. Procedure of Testing 

GA using CNN and CSI to solve TSP is implemented as a computer program, made by 
Delphi language. Experimental data is taken from TSPLIB dataset, namely gr21, berlin52, and 
eil21. Each dataset tested for the PMX, CNN, and CSI operator. For each dataset and crossover 
operators it takes 10 independent executions. The most optimal route and its length for each 
generation is noted, to count of its final average. Then, the average result of 3 operators 
compared to the most optimal result recorded in TSPLIB website. 

The parameters used in each test: 
- Number of generations: 50, 100 
- Number of population: 100 
- Probability of crossover (pc): 0.6 
- Probability of mutation (pm): 0.1 
- Survival selection: 0 



    Proceeding of  International Conference On Research, Implementation And Education  
Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 

  
 

 
M-7 

Result and Discussion 
The tests gives following result: 

Table 1. Result of testing 

Dataset Optim
al Criteria 50 generations 100 generations 

PMX CNN CSI PMX CNN CSI 

gr21 2707 
Average 4416,07 3491,34 2710,42 3973,98 3329,20 2718,65 
Minimum 3906,98 3120,56 2707,00 3712,86 3054,82 2707 
Maximum 4814,22 3800,56 2736,66 4265,45 3694,45 2773,37 

berlin52 7542 
Average 20736,38 14162,47 7954,34 18577,54 12471,62 7999,23 
Minimum 18806,45 13097,68 7730,92 17480,53 11438,46 7825,18 
Maximum 22295,99 15106,77 8145,75 19664,22 13828,14 8153,76 

eil76 538 
Average 1892,85 1173,74 579,58 1702,10 1010,42 582,24 
Minimum 1811,53 1083,89 570,71 1617,69 927,48 573,77 
Maximum 1969,54 1254,13 587,74 1796,18 1086,20 590,02 

 
Observations were made in 10 independent executions (10 independent runs). Each 

execution was carried out in 50 and 100 iterations/generations, in each generation the best route 
is noted. The best route is calculated from the shortest, longest, and its average, as listed in 
Table 1.  

It appears that in general that the crossover operator combined with Sequential Insertion 
algorithm provides better results than the other operators, while the PMX operator gives the 
worst results. However, average length of the cycle in all operators is above optimal solution 
known, with slight difference to optimal on CSI operator. 

Figure 3 to 8 show performance graphic of different crossover operator for every dataset 
and every generations. 

 
Figure 3. Performance of operators for gr21 case on 50 generations 

 

 
Figure 4. Performance of operators for berlin52 case on 50 generations 



Darmawan Satyananda / Modification of Crossover.....                                      ISBN. 978-979-96880-8-8 
     
 

 
M-8 

 
Figure 5. Performance of operators for eil76 case on 50 generations 

 

 
Figure 6. Performance of operators for gr21 case on 100 generations 

 

 
Figure 7. Performance of operators for berlin52 case on 100 generations 

 

 
Figure 8.  Performance of operators for eil76 case on 100 generations 



    Proceeding of  International Conference On Research, Implementation And Education  
Of Mathematics And Sciences 2015, Yogyakarta State University, 17-19 May 2015 

  
 

 
M-9 

For all the cases observed, the crossover operator combined with Sequential Insertion 
(CSI) gives stable results. The two other operators tend to lead to optimal results, with faster 
rate in the crossover operator combined with Nearest Neighbor (CNN). This shows that PMX 
works better on longer generations. 

CSI gives stable results because since the early generation, position of the insertion has 
been taken into account to generate the shortest possible route, which is based on the calculation 
of saving. The insertion of a node in between a pair of nodes should provide a shorter distance, 
or give maximum saving (maximum saving means least difference between cik + ckj and cij). 

Result of CNN operator tends to lead to optimal solution on each generation although 
there is still a significant difference with the results of CSI operator. This is because the node 
added to the route is the nearest node to the last node on the route, which is not necessarily 
shorter overall.  

The slope of the graph for CNN operator is steeper than the graph for PMX operator in 
50 and 100 generations testing; however they both lead to an optimal state. Basically each 
operator has relatively equal slope on all datasets tested. CNN operator has faster rate to get into 
convergence state than PMX operator in all testing. 

At the testing, found that the CNN and PMX crossover operator lead to optimal but still 
has significant difference. All of all, for 100 generations average result of CNN and PMX is 
better than 50 generations; the value is smaller. Meanwhile for CSI the result for 100 
generations slightly decrease. This can be inferred from Table 1. 
 
Conclusion and Suggestion 

We have proposed two crossover operator for genetic algorithm for the Traveling 
Salesman Problem (TSP) that use Nearest Neighbor and Sequential Insertion principles, named 
Crossover operator using Nearest Neighbor algorithm (CNN) and Crossover operator using 
Sequential Insertion algorithm (CSI) , respectively. Comparative study among them and original 
PMX operator was performed for three benchmark TSPLIB instances. Some conclusions are: 
1. Arrangement (“intervention”) in route construction of the crossover stage proved to give 

better result than in the absence of arrangement. 
2. The arrangement in the route construction required to ensure optimal results, as well as 

minimizing the number of generations needed to achieve optimal result. 
3. CSI proven to give better result than CNN and PMX operators in data instances tested. CSI 

could solve exactly instance gr21, at least in one of 10 runs, while not for the other instances. 
CNN and PMX could not give exact solution for all instances; furthermore they gave worse 
solution than the optimal result known. 

4. Incorporating heuristic into crossover stage of GA improves overall performance of GA. 
 

Some improvements or future work to be done are: 
1. The operator should be tested for more various data instances,  
2. Improvement in solution quality 
3. Research for optimal parameter, such as number of populations and number of generations. 

Also, value of crossover probability and mutation probability could be taken into 
consideration, as Rexhepi, Maxhuni, and Dika (2013) stated that there were a correlation 
between number of population and probability of mutation, and correlation between number 
initial population and final result. 

 
Bibliography 
Ahmed, Z.H. (2010). Genetic Algorithm for the Traveling Salesman Problem using Sequential 

Constructive Crossover Operator. International Journal of Biometrics & 
Bioinformatics, 3(6), 96-105. Retrieved from 
http://www.cscjournals.org/library/manuscriptinfo.php?mc=IJBB-41 



Darmawan Satyananda / Modification of Crossover.....                                      ISBN. 978-979-96880-8-8 
     
 

 
M-10 

Al Rahedi, N.T, and Atoum, J. (2009). Solving the Traveling Salesman Problem Using New 
Operators in Genetic Algorithms. American Journal of Applied Sciences, 6(8): 1586-
1590, 2009. 

Alatartsev, S., Augustine, M., and Ortmeier, F. (2013). Constricting Insertion Heuristic for 
Traveling Salesman Problem with Neighborhoods. Proceedings of the Twenty-Third 
International Conference on Automated Planning and Scheduling. Retrieved from 
https://cse.cs.ovgu.de/cse/administrator/components/com_jresearch/files/publications/IC
APS2013.pdf 

Dr´eo, J. (2006). Metaheuristics for Hard Optimization. Berlin: Springer-Verlag 
Gutin, G., Punnen, A.P. (2002). The Traveling Salesman Problem and Its Variations. Berlin: 

Springer Science & Business Media. Retrieved from 
https://books.google.co.id/books?id=JBK_BAAAQBAJ 

Michalewics, Z. (1996). Genetic Algorithms + Data Structure = Evolution Programs (3rd 
edition). Berlin: Springer-Verlag 

Philip, A., Taofiki, A.A., Kehinde, O. (2011). A Genetic Algorithm for Solving Travelling 
Salesman Problem. International Journal of Advanced Computer Science and 
Applications, 2(1), 26-29. doi: 10.14569/IJACSA.2011.020104 

Poot, A., Kant, G., and Wagelmans, A. P. M. (2002). A Savings Based Method for Real-Life 
Vehicle Routing Problems. The Journal of the Operational Research Society, 53(1), 57-
68. Retrieved from 
http://www2.eur.nl/WebDOC/doc/econometrie/feweco19991013123552.ps. 

Rexhepi, A., Maxhuni, A., and Dika, A. (2013). Analysis of the impact of parameters values on 
the Genetic Algorithm for TSP. International Journal of Computer Science Issues, 10(1-
3), 158-164. Retrieved from http://www.ijcsi.org/contents.php?volume=10&&issue=1 

Rosen, K.H, et.al. (2000). Handbook of Discrete and Combinatorial Mathematics. Florida: CRC 
Press 

Sureja, N.M. and Chawda, B.V. (2012). Random Travelling Salesman Problem using SA. 
International Journal of Emerging Technology and Advanced Engineering, 2(4), 621-
624. Retrieved from http:// www.ijetae.com/files/Volume2Issue4/ 

Woeginger, G.J. (2003). Exact Algorithms for NP-hard Problems: A Survey, In M. Juenger, G. 
Reinelt and G. Rinaldi (Eds.), "Combinatorial Optimization - Eureka! You shrink!" (pp 
185-207). Berlin: Springer.  

 
 


