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Résumé :

Le transport de liquide interstitiel et d’ions au sein des réseaux poreux de l’os

joue un rôle majeur dans la mécanotransduction osseuse. Dans cette étude, nous

présentons un modèle à trois échelles du transport couplé ayant lieu au sein de

la porosité vasculaire et du réseau lacuno-canaliculaire de l’os cortical. Ces deux

niveaux de porosité peuvent être caractérisés par des échanges au travers de la

paroi perméable des canaux de Havers-Volkmann. Ainsi, les équations couplées

du transport électro-chimio-hydraulique sont obtenues de l’échelle nanométrique

des canalicules vers le tissu cortical, en prenant en compte l’échelle intermédi-

aire du tissu intra-ostéonal. Les lois de réciprocité d’Onsager qui régissent le

transport couplé sont finalement vérifiées.

Abstract:

Interstitial fluid and ionic transport taking place in the fluid compartments

of bone is thought to play a major role in bone mechanotransduction. In this

study, we present a three-scale model of the multiphysical transport phenomena

taking place within the vasculature porosity and the lacuno-canalicular network

of cortical bone. These two porosity levels exchange mass and ions through the

permeable outer wall of the Haversian-Volkmann canals. Thus, coupled equa-

tions of electro-chemo-hydraulic transport are derived from the nanoscale of the

canaliculi toward the cortical tissue, considering the intermediate scale of the

intra-osteonal tissue. In particular, the Onsager reciprocity laws that govern the

coupled transport are checked.
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1 Introduction

Interstitial fluid and ionic transport taking place in the fluid compartments

of bone is thought to play a major role in bone mechanotransduction. In cortical

bone, the two major fluid compartments are the Havers’ and Volkmann’s canals

(HVCs) and the lacuno-canalicular porosity (LCP), see Fig. 1. The HVCs–a

few tens of microns in diameter–contain vasculature and nerves and provide

a fast way to transmit chemo-mechanical information throughout the cortical

tissue. Local messaging takes place within the LCP, a dense network of lacunae

and canaliculi hosting the osteocytes. LCP crosses the bone solid matrix and is

connected with the HVCs.

Figure 1: Multiscale structure of cortical bone.

Interstitial fluid and ionic transport in the LCP were extensively studied by

our group [3, 4] highlighting their effects on bone physiology [2, 7]. This paper

stems from those results and extends them to the osteonal scale, focusing on

the fluid and ionic transport along the osteon. First, a unit-cell was identified

as the annular fluid compartment of a segment of the osteonal canal. Relevant

physical phenomena were described at the unit cell scale, namely: electrostatics

(Poisson-Boltzmann equation); fluid flow (Stokes equation including Coulombic

forces); ionic flow (Nernst-Planck equation). Boundary conditions for the above

equations were obtained by assuming continuity of the hydraulic, ionic, and elec-

tric fluxes between the outer and inner walls of the unit cell and the LCP and the

vasculature, respectively. Moreover, no-slip conditions for the fluid velocity were

assumed at both the walls. Second, an asymptotic homogenisation technique

was used to upscale these equations to the osteonal scale [3, 4]. The homogeni-

sation procedure consists in the non-dimensional writing of the problems, the

asymptotic expansion, the collection of the slow variables and the proposition

of the closure cell-scale problems. The outcome was an explicit description of

the velocity and the ionic flux along the osteon which turned out to be ruled by

generalized forms of the Darcy’s law and convection-diffusion equation, respec-
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tively, in response to pressure, osmotic, and electro-osmotic gradients along the

osteon.

To the best of our knowledge, this theoretical work is the first attempt to

describe the multiphysical transport phenomena taking place within the HVCs

and the LCP at once. These two fluid compartments exchange mass and ions

through the permeable outer wall of the HVCs. The model developed in this

paper accounts for these exchanges by identifying the normal fluxes of mass and

ions through the outer walls of the HVCs with the longitudinal fluxes inside the

canaliculi. Furthermore, a rewriting of the macroscopic equations when con-

vection and diffusion mechanisms are comparable resulted in checking Onsager

reciprocal laws linking the coupled quantities that govern the coupled transport

phenomena.

2 The three scales of the cortical tissue

In this paper, we focus on a biporous treatment of the interstitial bone fluid

transport considering two levels of nested porous networks corresponding to the

Havers-Volkmann canals and the lacuno-canalicular network. Thus, in our three

scale homogenisation process, the microscale corresponds to the canalicular pore

scale (Fig. 1 on the right - characteristic length `µ ∼ 10
−8 m), the mesoscale

corresponds to the intra-osteonal scale (Fig. 1in the middle - `m ∼ 10
−5 m)

and the macroscale corresponds to the cortical tissue scale (Fig. 1on the left

- `M ∼ 10
−2 m). As a consequence, the micro-to-meso and meso-to-macro

characteristic lengths ratios are comparable: `µ/`m ∼ `m/`M ∼ η ≡ 10
−3.

3 From the canalicular pore to the intra-osteonal
tissue

At the microscale, the unit cell is a region of the bone matrix containing a

canaliculus segment. The canalicular fluid compartment is seen as the annular

space between two concentric cylinders—the cell process and the bone matrix

being the inner and outer walls, respectively. The interstitial fluid, which is

assumed to be an incompressible Newtonian monovalent electrolyte (typically

Na-Cl), occupies the annular space between the canalicular wall and the osteo-

cyte process membrane.

As shown by our group in previous studies [3, 4], in addition to the hy-

draulic flow, other electrochemical phenomena are generated by the electrolyte

movement such as osmosis and electro-osmosis. Thus, the microscopic model

combines an electrostatics balance to describe the electrical double layers close

to the canalicular walls, Nernst-Planck equations for the ionic species transport

that include possible electro-migration effects and a Stokes equation consider-

ing the effects of the Coulombic body force. Moreover, the tethering pericellular
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fibers can sensibly reduce the permeability of the canalicular space. Thus, this

friction effect is represented by a Brinkman-like term involving a pericellular

permeability.

After a first homogenisation process, the mesoscopic model includes:

A modified Darcy law. This law describes the mesoscopic average fluid

velocity V
m:

V
m

= −K
m
P ∇mp− K

m
C ∇mn− K

m
E∇mψ̄, (1)

where ∇m represents the space derivative operator with respect to the coor-

dinates of the mesoscopic level, and K
m
P , K

m
C and K

m
E are the effective perme-

ability tensors at the mesoscale quantifying the Poiseuille, osmotic and electro-

osmotic effects in response to the gradients of the pressure p, the salinity n and

the reduced streaming potential ψ̄, respectively. Their expressions are detailed

in our previous works.

Effective diffusion tensors. The ionic transport at the mesoscale is repre-

sented by the ionic effective diffusion tensors D
m

± which account for convective

and electro-diffusive effects as detailed in [4].

4 From the intra-osteonal tissue to the cortical
tissue

The purpose of this section is now to describe the flow phenomena and chem-

ical transport at the macroscale of the cortical tissue. At this scale, the porous

network corresponds to the Havers-Volkmann canals (named Haversian pores

hereafter), whereas the effective solid phase of the porous medium corresponds

to the collagen-apatite tissue and the microporosity of the lacuno-canalicular

system. Hydro-electro-chemical phenomena occurring across the canalicular

network are integrated in the description of transport phenomena across Haver-

sian porosity through the exchanges terms between the different porosity levels.

Since vasculature capillaries and nerves are present in the central part of

Haversian pores, the interstitial fluid flows in the annular space between the

outer wall of the Haversian canal and the walls of the capillaries and nerves.

Again, the pore geometry can be roughly represented by two concentric cylinders

symbolizing the Haversian canal (outer cylinder) and capillary and nerves (inner

cylinder).

The side walls of the Haversian pores are permeable, allowing the exchanges

of matter and ions with the blood vessels (inner wall) and the lacuno-canalicular

network (outer wall). To use again periodic homogenisation, we assume that a

3D-periodic representative cell can be derived.
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Similarly to the multiphysical approach proposed at the canalicular scale,

the description of the transport phenomena at the scale of Haversian porosity

should take into account electro-chemical effects in addition to hydraulic flow.

Thus, our transport model combines a Stokes equation involving the Coulom-

bic force with Nerst-Planck equations representing convection, diffusion and

possible electro-migration of the ionic species.

The key point here is to connect the boundary conditions at the outer wall

of the pores (where the lacuno-canalicular network emerges). On the one side,

the (macroscopic) tangent velocity remains zero at the walls (no-slip condition).

On the other side, the (macroscopic) normal velocity at the walls is equal to the

(mesoscopic) canalicular velocity V
m determined from the previous upscaling

procedure in Eq. (1). Similarly, the normal ionic flux at this pore surface is

determined from the analysis at the lacuno-canalicular scale.

Then, the homogenisation procedure is carried out to provide a macroscopic

coupled description which can be represented in a matrix form involving the

macroscopic fluid flow v
M , the macroscopic total ionic flux J

M (sum of the

cationic and anionic fluxes), the macroscopic electric flux I
M (difference of the

cationic and anionic fluxes), the coupling matrix, the macroscopic hydraulic

gradient ∇Mp, the macroscopic chemical gradient RT ∇M lnn (R being the gas

constant and T the absolute temperature) and the macroscopic electrical gra-

dient ∇Mψ:





v
M

J
M

I
M



 =





−L
PP

−L
PC

−L
PE

−L
CP

−L
CC

−L
CE

−L
EP

−L
EC

−L
EE









∇Mp
RT ∇M lnn

∇Mψ



 (2)

The diagonal terms of the matrix represent the direct parameters whereas

the off-diagonal terms quantify the coupling phenomena. Their expressions are

detailed in [5]. In this paper, we also explicitly show that this coupling matrix

is symmetric, proving in this case the Onsager reciprocity principle.

5 Example of application: recovery of the stream-
ing potentials at the macroscale

The use of this model makes it possible to provide an estimation of the macro-

scopic streaming potentials induced by the stress-generated fluid flow within the

lacuno-canalicular pores. This idea was first proposed by [6] to validate hydro-

mechanical models of bone.

Considering homeostasis and so neglecting chemical gradient effects, we put

forward the Onsager reciprocity relations to obtain the streaming potential dis-

tribution from the macroscopic fluid velocity v
M . The direct phenomena de-

scribed by the coefficients L
PP (hydraulic permeability) and L

EE (electric con-

ductivity of the fluid) are respectively the Darcy and Ohm laws, whereas the
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coupled phenomena are the electro-osmosis and streaming currents described by

the coefficients L
PE and L

EP , respectively. The Onsager reciprocity relations

indicate that these two coupling coefficients are equal.

When steady state is reached, there is no net charge transfer, implying that

I
M

= 0. This is equivalent to setting the Ohmic and convective currents equal

and opposite. Thus, the streaming potential is linearly connected to the macro-

scopic pressure field as shown in [3].

In Fig. 2, streaming potentials derived from this model is compared with

the in vivo recording of stress-generated potentials during walking measured by

Cochran et al. [1]. The model parameters and the macroscopic pressure field

are those presented in [3].
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Figure 2: Comparison between the simulated (solid line) and experimental data
(××) of streaming potentials.

Notwithstanding the coarse approximations in this model (idealized annular

geometry of the pores for instance), this illustration indicates the strength of

the multiscale treatment developed in this study.

6 Conclusion

A multiscale model of the transport phenomena occurring at different scales

of cortical tissue was developed adopting a biporous approach. It takes into

account the hydro-electro-chemical phenomena occurring at the different scales

of pores (Haversian porosity and canaliculi). Through this three-scale model,

the appearance of new exchange terms between the different porosity levels in

the macroscopic equation of ionic transport has been put into relief.
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Furthermore, when convection and diffusion mechanisms are comparable,

we are able to check Onsager reciprocity relations linking the coupled quantities

that govern the coupled transport phenomena. These reciprocity properties are

fundamental when validating hydro-mechanical models of bone using streaming-

potentials measurements.
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