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Abstract:  
Gun accuracy is influenced by several parameters during the internal ballistics phase. Accuracy is 

defined by the bias and dispersion of impact points on the target. The aim of this study is to determine 

the influence of gun barrel straightness on projectile exit conditions, in order to understand how to 

improve weapon accuracy. A numerical firing analysis was carried out with LS-Dyna software. The 

model validity is proven by its ability to accurately predict the measured circumferential strains 

caused by the forcing effect of the projectile, and by the consistency of the contact forces at the 

projectile-tube interface. To validate the firing simulation, circumferential strains of the tube were 

measured and compared to LS-Dyna results. Subsequently, the barrel geometry was modified to add a 

straightness defect to the initial curvature due to gravity. Lastly, a post-treatment was performed to 

determine the angular and transverse velocities of the projectile during internal ballistics phase.This 

analysis shown the influence of specific shapes on ammunition balloting and velocity. 
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1 Introduction (16 gras) 
 

Gun accuracy is influenced by several parameters during projectile travel. In the present study, only 

the internal ballistics phase is considered. Accuracy is defined by the bias and dispersion of impact 

points on the target. According to previous studies, these parameters are influenced by ammunition 

design, tube and weapon geometry, and propulsive powder quantity [1]. Experiments performed to 

determine the effects of these factors on gun barrel performances made it possible to infer a reliable 

predictive model of the ammunition flight. Using this model, several parameters were improved to 

increase weapon accuracy. 

In order to understand the influence of gun tube geometry on accuracy, a statistical analysis using the 

data base of firing results of the medium caliber gun was conducted here. The impact of different 
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parameters was estimated from calculation of the correlation coefficients, following a method similar 

to that used in [2]. In the latter study, the concentricity between the peaks and groove troughs, some 

play in the gun, and certain characteristics of the barrel shapes were observed. It was found that 

defects in barrel straightness appear to significantly affect accuracy. This was confirmed by the results 

reported in [3], which showed that straightness defects contribute to projectile balloting, i.e., the small 

oscillations both in translation and rotation undergone by the projectile while traveling through the 

gun tube. When the projectile exits the tube, balloting affects the muzzle crossing velocity of the 

ammunition and hence influences initial conditions of the flight phase of the projectile [4]. Thus a high 

degree of balloting decreases the accuracy and increases dispersion on the target. 

The distance between aim point and target impact is named total jump. An American study calculated 

total jump of the 155 mm M198 Howitzer to identify and possibly improve the largest contributors to 

jump [5]. In the study, the following equation was developed to compute the aerodynamic jump,    , 

using the exit conditions of the projectile: 

     
  

   

   
   

 
     

 
  

with: 

-    the sub-projectile transverse radius of gyration; 

-     the sub-projectile pitching moment coefficient;  

-     the projectile lift coefficient;  

-   a scaled spin rate; 

-  
 
 and  

 
 
 are the initial sub-projectile complex yaw angle and transverse angular rate 

evaluated at the muzzle, respectively. 

 

It was concluded that the main contributor to total jump is the CG-jump, which is the angular 

deviation of the projectile at the muzzle relative to the instantaneous muzzle center line at shot exit. 

CG-jump is obtained by subtracting the sum of the muzzle crossing velocity components from the 

initial projectile trajectory angle. Muzzle crossing velocity is the angle formed by the ratio of the gun 

muzzle transverse velocity at the instant of shot exit to the projectile exit velocity. 

In order to understand the effect of different barrel shapes on the projectile trajectory, a numerical 

firing analysis was conducted here with LS-Dyna software. Through the post-processing of this model, 

angular rates and transverse velocities of the projectile were determined. Due to industrial property 

concerns and for reasons of confidentiality, the curves submitted in this article have been normalized 

by dividing them by the maximum value of the results. The signals were not filtered. 

 

2 Materials and Methods 

2.1 Numerical calculation 
 

To assess the tridimensional dynamics of the system, we developed a finite element model (FEM) 

with the LS-Dyna software. This code is designed to model highly dynamic phenomena with possible 

non-linearities due to contact, geometry, or material inhomogeneities. The study focuses on the 

angular and transverse velocities of the projectile. 

To prevent non-convergence and aberrations of calculation, the barrel and projectile were meshed with 

hexahedral elements. A view of the model is presented in Figure 1. The barrel is blocked in translation 

in the three directions to represent the interface with the weapon near the projectile entrance. Contact 

between the barrel and the ammunition uses the penalty method. 
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Figure 1: View of the barrel and projectile meshes. 

Then the gas pressure effect on the barrel wall is added to the model using the proportional loading 

described by Safont [6]. The pressures and longitudinal displacement of the projectile originate from a 

time dependent function given by an internal ballistic code. Therefore, the tube is divided into thirty 

equal length segments, and the pressure curve applied on each of them is the one observed in the 

middle of the part (Figure 2). To finish, the ammunition travel in the barrel is defined by its 

displacement curve. 

 

 
Figure 2: Gas pressure curves applied on the barrel wall. 
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In order to represent a straightness defect in the vertical plane, and to apply gravity, a numerical 

quasistatic calculation was carried out using the implicit solver of LS-Dyna. The dynamic calculation 

with the explicit solver was then performed using the deformed shape obtained with the quasistatic 

step. 

Figure 3 presents the four barrel shapes used in this study. The first barrel is perfectly straight and has 

a deflection due to gravity. The other three have a parabolic shape. Before gravity application, the 

amplitude defect given to barrel 4 was three times greater than the amplitude given to barrel 2. For 

barrel 3, the amplitude was twice as great. 

 

 
Figure 3: Straightness shapes in the vertical plane of the modeled barrels. 

2.2 Circumferential strain measurements 
 

Strain gauges were used to measure circumferential strains of the barrel as in previous tests [6]. The 

gauges were bonded on the external surface 680 mm from the rear face of the barrel (Figure 4). To 

exclude strains due to flexural stresses a Wheatstone half bridge was assembled, thus isolating 

circumferential strains. The results were compared with post-processing data from the dynamic 

calculation. 

 

 
Figure 4: Strain gauges position on the tube length. 

 
 



22
ème

 Congrès Français de Mécanique                                               Lyon, 24 au 28 Août 2015 

3 Results 

3.1 Validation of the dynamic model 
 

In order to use the numerical model to analyse the effect of straightness shapes is first had to be 

validated. Therefore, vertical deflection due to gravity, contact force between the projectile driving 

band and barrel, and circumferential strains were observed in order to check the representativeness of 

the LS-Dyna model. It is customary to measure both experimental and numerical circumferential 

strains in order to validate firing models [7]. 

To verify the vertical deflection of 0.92 mm resulting from the implicit solver, a finite element 

calculation was carried out using a simple conical tube with a fixed extremity. In this aim, the 

characteristics of mass, average inertia and volume of the true barrel were kept. With these 

simplifications, a maximum deflection of 0.83 mm was obtained. Thus, a 10 percent difference was 

observed in LS-Dyna results, which means that deflection of the quasistatic model is coherent. 

Good contact logic between the projectile driving band and the barrel is essential to compute reliable 

numerical data. In order to check the contact, the force on the driving band surface was observed 

(Figure 5). The graphic exhibits a peak corresponding to the ammunition entrance. In order to ensure 

gas tightness, the projectile driving band has a larger diameter than that of the barrel bore, and is 

compressed by the tube wall. After the entrance, the contact force varied only slightly until the 

projectile exit, meaning that no calculation problem occurred on the tube/projectile interaction. 

 

 
Figure 5: Contact force of the barrel on the projectile driving band. 

Finally, to validate the dynamic model, circumferential strains were computed and compared with 

experimental results (Figure 6). The LS-Dyna peak of strain, corresponding to the driving band 

passage, is fourteen percent higher than that of the experimental data. This difference can be explained 

by the pressure which is applied shortly before the driving band passage in the model. In fact, gases 

are retained behind the driving band and their effect takes place just at the peak time. Thus, the peak 

strain slope on the LS-Dyna curve begins before the peak strain slope of the experimental results. 
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Considering the hypothesis of the model, the difference between experimental and LS-Dyna strains is 

considered acceptable.  

 
Figure 6: Comparison between experimental circumferential strains and LS-Dyna results. 

Once these checks had been made, each shape presented in Figure 7 was used to calculate the dynamic 

response of the projectile. 

 

3.2 Projectile exit conditions 

3.2.1  Angular rates 
 

When the projectile exits the barrel, its angular and transverse velocities depend on its in-bore travel 

conditions (Figure 7). Yaw rate and pitch rate were therefore observed during the projectile passage 

in the tube to understand the influence of different types of barrel shape. To facilitate comparison 

between the phenomena observed and the barrel shapes, each angular rate curve is a function of the 

distance from the barrel rear face. The projectile leaves the barrel 1800 mm from the rear face of the 

latter. 

 
Figure 7: Yaw rate and pitch rate definitions. 
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Angular rates were normalized by dividing by the maximal pitch rate of the barrel 4. 

Yaw rates and pitch rates of a projectile traveling in a straight barrel and one with a parabolic shape 

are presented on Figures 8 and 9, respectively.  

 

 
Figure 8: Yaw rate of the ammunition for a perfect barrel and one with a straightness defect. 

 
Figure 9: Pitch rate of the ammunition for a perfect barrel and one with a straightness defect. 
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Figure 8 shows curves close to one another, with constant amplitude and similar, but not identical, 

frequencies. In the barrel with a straightness defect (Figure 9), the pitch rate of the projectile is three 

times greater than the yaw rate whereas in the straigh barrel, the yaw rate and pitch rate are in the 

same order of magnitude. An increase in the pitch rate just before the barrel muzzle is observable, but 

the amplitude is smaller than the maximum angular velocity noted 400 mm from the rear face of the 

barrel. 

With barrel 2, the pitch rate is the highest where the curve slope is the steepest and deviates from the 

tangent at the origin. Indeed 1.6 m from the rear face of the barrel, the straightness value is close to 

zero and the pitch rate is minimal whereas the slope is steep. Thus, the pitch rate is maximal 500 mm 

from the rear face. 

In order to observe the influence of the amplitude of the parabolic defect, the angular velocities of 

barrels 2 to 4 are plotted on Figures 10 and 11. It can be seen that the angular rate frequencies are 

similar for the three barrels and that the pitch rates have the same shapes. However for barrel 2, the 

velocities are up to four times lower than for barrels 3 and 4. As previously, the pitch rate increases 

just before the projectile exits the tube and is higher than the yaw rate. For barrels 3 and 4, the 

maximum amplitudes of pitch rates are similar and occur when the projectile is close to the barrel 

muzzle. 

 
Figure 10: Yaw rate of the ammunition for the barrels with a parabolic shape. 
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Figure 11: Pitch rate of the ammunition for the barrels with a parabolic shape. 

3.2.2  Angular rates 
 

To define the muzzle crossing velocity, it is necessary to know not only the angular rates but also the 

transversal velocities of the projectile until it enters the flight phase. The horizontal and vertical 

velocities of a perfectly straight barrel and of barrel 2 are shown on Figures 12 and 13, respectively. 

To compare the influence of the defect amplitude of barrels 2 to 4, Figures 14 and 15 show the 

horizontal and vertical velocities respectively. As previously, the curves are a function of the distance 

from the barrel rear face. 

All the transverse velocities were normalized by dividing by the maximal vertical velocity of the 

barrel 4. Figure 12 shows that the horizontal velocity of the perfect barrel is slightly greater than the 

horizontal velocity of barrel 2. However it can be seen on Figure 13 that the vertical velocity of barrel 

2 is four times greater than that of the barrel without defect. The horizontal and vertical velocities of 

barrel 1 have the same shape and amplitude. For barrel 2, its vertical velocity is four to five times 

higher than its horizontal velocity. 

The Amplitudes of the horizontal velocities shown in Figure 14 are similar, while the vertical 

velocities (Figure 15) are much higher. The greater the straightness defect is, the higher the vertical 

velocities are. 
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Figure 12: Horizontal velocity of the ammunition for a perfect barrel and one with a 

 straightness defect. 

 
Figure 13: Vertical velocity of the ammunition for a perfect barrel and one with a straightness defect. 
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Figure 14: Horizontal velocity of the ammunition for the barrels with a parabolic shape. 

 
Figure 15: Vertical velocity of the ammunition for the barrels with a parabolic shape. 
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3 Discussion 
 

The results obtained using the dynamic model have highlighted relationships between projectile exit 

conditions and barrel straightness. First of all, figures 8 to 15 show that angular rates and transverse 

rates are amplified in the straightness defects plane. The motion amplitudes of the ammunition are 

greater in the vertical plane than in the horizontal plane. Generally, the greater the straightness defects 

are, the more the angular velocity increases when the projectile leaves the barrel. In the case of barrel 

2, angular velocity increases at the ammunition exit but the amplitude is lower than the peak observed 

400 mm from the barrel rear face. For each tube with defects, a local maximum is observed at the 

distance from the rear face where an inflection point of the straightness curve occurs (Figure 16). The 

shape of the angular rate curves is related to the first and second derivative curve which represent the 

slope and the curvature, respectively. Even by using the simple beam model, previous works [8] have 

demonstrated the influence of the local slope and curvature on the tube response.  

Concerning the transverse velocities of the projectile, the curves plotted in Figures 12 to 15 seem to be 

composed of two distinct ammunition motions. Thus, it is possible to discern a sinusoidal curve, 

probably due to projectile balloting, added to the trajectory imposed on the projectile following the 

slope of the straightness curve of the tube (Figure 16). For the barrel with defects, the amplitudes of 

the sinusoidal are similar in the first half of the barrel. However, near the muzzle, the greater the 

amplitude defect is, the more the projectile, and thus the sinusoidal, is affected by disturbances. 

Previous studies conducted on total jump calculation concluded that the higher the angular rates and 

transverse rates are when the projectile exits the tube, the greater the aerodynamic jump is. Based on 

the observations made, barrel straightness appears to directly influence the exit conditions of the 

projectile. Thus, a barrel with significant straightness defects can amplify the total jump. 

This analysis is a first approach to understanding the influence of barrel straightness on firing 

accuracy. Thereafter, to obtain the CG-jump it will be necessary to calculate the ratio of the barrel 

muzzle velocity to the projectile velocity at shot exit. To achieve this, displacements of the muzzle 

barrel and lateral accelerations of the projectile will be measured in order to adjust the numerical 

simulation. When the model is sufficiently representative of reality, the CG-jump will be calculated 

for different barrel geometries. The ultimate aim is to avoid the use of barrel shapes which make a 

significant contribution to reducing gun performances. 
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Figure 16: Slope of normalized straightness curves of the modeled barrels. 
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