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Résumé :

Dans cette contribution, une approche se fondant sur l’utilisation d’approximants
de Padé est étudiée afin de permettre une résolution efficace de problèmes dépendants
d’une variable, tels que les balayages en fréquence. Une amélioration est ici proposée,
concernant le développement de chaque composante du vecteur solution sous forme
d’approximant, sur la base du calcul a priori des poles de la réponse. Ceci permet
une décomposition a priori en sous-intervalles de convergence pour une reconstruction
robuste de la solution sur l’intégralité du domaine de variation du paramètre d’intérêt
(e.g. fréquence). Un exemple de problème d’acoustique est traité afin d’illustrer le
potentiel de cette approche.

Abstract :

In this work, a solution strategy based on the use of Padé approximants is investi-
gated for efficient solution of parametric finite element problems such as, for example,
frequency sweep analyses. An improvement to the Padé-based expansion of the solu-
tion vector components is proposed, suggesting the advantageous a priori estimate of
the poles of the solution. This allows for the intervals of approximation to be chosen
a priori in connection with the Padé approximants to be used. The choice of these ap-
proximants is supported by the Montessus de Ballore theorem, proving the convergence
of a series of approximants with fixed denominator degrees. An acoustic case study is
presented in order to illustrate the potential of the approach proposed by the authors.

Mots clefs : Approximants de Padé; modèles réduits; balayage en
fréquence; éléments finis.
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1 Introduction
The use of Padé approximants in order to improve the performance of Finite Element
(FE) solution procedures, e.g. for frequency sweeps in structural-acoustic applications,
has been given substantial attention in the last decade. These expansion methods have
shown to be very efficient for a wide range of problems such as for the control theory [1,
2], acoustics or structural dynamics problems [3, 4, 5], or coupled problems [6, 7, 8, 9,
10].

In the work initiated with the present paper, the authors build upon previous contri-
butions related to both a modal approach for coupled structural-acoustic problems with
dissipative media [11, 12], and its combination with the component-wise solution ap-
proximation by Padé approximants [6]. The main idea is to introduce an early step in the
Padé approximation procedure where poles of the response would be calculated. This
step has a twofold objective: i) with an accurate estimate of the poles of the response, a
solid foundation is provided for the Padé approximants to be calculated, thus ensuring
a good convergence of these approximants, and ii) with the poles known early in the
procedure, the choice of approximants in combination with their subdomains of con-
vergence may be done a priori, thus ensuring an efficient reconstruction of the response
over the entire domain of interest.

In the first part, the main steps of the component-wise Padé approximation proce-
dure, as previously used by the authors [6], are recalled . In the following section, the
addition of a priori knowledge of the poles of the response –an original step to best of
the authors’ knowledge– is detailed. It is then tested in the last part on an academic
acoustic problem allowing for a detailed discussion of the potential of the proposed
method. Further steps, currently under investigation by the authors, are presented in the
conclusion.

2 Univariate solution expansion using Padé approximants
2.1 Numerical calculation of the Padé coefficients
The starting point of the component-wise Padé univariate sweep, as described in [6], is
given by a linear system of equations in the following form,

Z(x)U(x) = F(x), (1)

where x is the independent variable of the problem, e.g. the angular frequency ω for
the problems of interest in this contribution. In an FE problem, Z(x),U(x), and F(x)

represent the systemmatrix of the discretized problem, the solution vector and the vector
of externally applied loads, respectively.

A component-wise solution expansion of the solution vector may be sought as Padé
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approximants in the form

u(x0 + ∆x) ≈ PL(∆x)

QM (∆x)
, (2)

where the solution vector U(x0), of which u(x0) is a component, is assumed to be
known after solving the system in Eq. (1). PL(∆x) and QM (∆x) are two truncated
power series in the variable ∆x = (x − x0), to the orders L and M respectively, and
given by

PL(∆x) =

L∑
k=0

pk(∆x)k, (3a)

QM (∆x)=

M∑
k=0

qk(∆x)k. (3b)

In previous works, it was shown that the coefficients of these power series may be
determined from the coefficients of the Taylor series expansion [13]

AL+M (∆x) =

L+M∑
k=0

ak(∆x)k, (4)

where
ak =

u(k)(x0)

k!
, with u(0)(x0) = u(x0) = a0. (5)

These coefficients pk and qk are indeed solutions of the system of linear equations re-
sulting from equating the Padé approximant in Eq. (2) to the Taylor series expansion
Eq. (4), such that

PL(∆x)−AL+M (∆x)QM (∆x) = 0, (6)

where the identification of the coefficients of equal order in∆x enables the formation of
a set of (L+M+1) equations, after normalizing the zero-order denominator coefficient,
i.e. q0 = 1. In a first step, this leads to the following system of linear equations with
the denominator coefficients qk as unknowns, aL · · · aL−M+1

...
...

aL+M−1 · · · aL


 q1

...
qM

 = −

 aL+1

...
aL+M

 with ai := 0 if i < 0. (7)

The numerator coefficients may subsequently be determined in a second step by simple
algebraic operations,

pk =

M∑
i=0

qia(k−i), (8)

with {
k = 0 · · ·L
aj := 0 if j < 0

.
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The calculation of these Padé coefficients however depends on the ability to effi-
ciently calculate the L + M successive partial derivatives of the solution vector, at the
reference point x = x0, as implied by Eq. (5). This may be achieved via a recursive
scheme, using a Leibniz formula resulting from the differentiation of Eq. (1) with re-
spect to x, at order k, in x0,

k∑
j=0

(
k
j

)
Z(k−j)(x0) U(j)(x0) = F(k)(x0), for k = 1, . . . , (L + M), (9)

where the zero-order derivatives correspond to the non differentiated functions, and the
binomial coefficients are given by(

k
j

)
=

k!

j!(k − j)!
. (10)

The recursive expression for U(k)(x0) follows from extracting the highest-order term
from the summation in Eq. (9),

Z(x0)U(k)(x0) = F(k)(x0)−
(k−1)∑
j=0

(
k
j

)
Z(k−j)(x0)U(j)(x0), for k = 1, . . . , (L+M),

(11)
This implies that the successive derivatives of U with respect to x, required for the
determination of the Padé approximations, can be efficiently calculated as the solution
of a full-sized system of equations, with multiple right-hand sides.

2.2 Comments on the procedure
In agreement with the theoretical background recalled in the previous section, a cor-
responding efficient approach to calculate the Padé-expansion around a solution vector
U(x0) (only one reference point at x0 is considered in the present discussion) essen-
tially consists of 5 steps:

1. Factorize the system matrix Z of Eq. 1 at x0, and calculate the solution U(x0)

(coefficient a0).

2. Solve for the L + M successive derivatives of U with respect to x using an iter-
ative multiple right-hand-side procedure, Eq. (11) (coefficients a1 · · · aL+M ).

3. For each component of interest in the solution vector, solve for the denominator
coefficients via a small linear system of equations Eq. (7) (coefficients q1 · · · qM ,
q0 = 1).

4. For each component of interest in the solution vector, evaluate the numerator
coefficients via simple algebraic operations as presented in Eq. (8) (coefficients
p0 · · · pL).
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5. For each component of interest in the solution vector, evaluate the solution ex-
pansion around x0 by evaluating Eq. (2).

Note that while the first two steps have to be performed at a global scale, involving the
full size of the original problem, the last three steps may be limited to the degrees of
freedom of interest for the solution. A few remarks may be made in relation with the
five main steps detailed above:

• Step 2 involves a multiple right-hand-side problem with as many recursions as
the number of numerator and denominator coefficients. In practice, there is a
limit in the number of recursions that can be performed: the propagation of the
small numerical error made at each recursion eventually affects the accuracy of
the successive partial derivatives.

• More importantly, the system matrix involved in the solutions of Eq. (7) has the
form of a Toeplitz matrix, which, although benefiting from very efficient algo-
rithms, may become rapidly ill-conditioned with its increasing dimension. This
implies that the solution of Eq. (7) may become sensitive to small errors of the
right-hand-side, which consists of the Taylor coefficients, dependant on the accu-
racy of the successive partial derivatives.

• In addition to the previous points, the right-hand-side of Eq. (7), as well as the
components of the system matrix, consist of the Taylor coefficients of highest
order, i.e. those most costly to calculate (latest stages of the recursive procedure
in step 2) and those with the most accumulated approximation error.

Even though the procedure presented in this section has proved to be very efficient
for a wide variety of examples [4, 6, 7], it appears that some of its steps may be im-
proved in light of the points aforementioned. The following section discusses one such
possibility, which additionally opens for the possibility of an a priori choice of Padé
approximants and their associated range of convergence.

3 Apriori choice of Padé approximants and convergence
3.1 Convergence of Padé approximants
The convergence of Padé approximants is a broad topic which has been given much
attention by specialists for decades [13]. In the present work, a key result from the
so-called Montessus de Ballore theorem, on the convergence of a series of Padé ap-
proximants [14], is highlighted. This theorem guarantees, assuming a meromorphic
function within a disk (which is typically the case for the FE solutions of interest in
this work), the uniform convergence, except at poles of this function, of a sequence
of Padé approximants of increasing numerator degree, fixed denominator degree, and
whose poles correspond to simple poles of the approximated function within the con-
sidered disk. Thus, this result implies that, given a set of simple poles of the function to
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be approximated, which define a disk of anticipated convergence, uniform convergence
will be observed on this disk, except at the poles location, for a denominator degree
corresponding to the number of poles, and an increasing numerator degree.

It is on the basis of this result that the following section suggests an improved ap-
proach in order to determine a priori, both the Padé approximants and their anticipated
domain of convergence, thus enabling the systematic approximation of FE solutions
involving parameter sweeps in a wide range.

3.2 An improved procedurewith a priori control of the convergence
Following the observation made in the previous section, the poles of the Padé approx-
imants play a key role in order to ensure a reliable reconstruction of the solution. Ad-
ditionally, the poles of these Padé approximants should correspond to the zeros of the
characteristic equation of the FE system matrix. Thus, starting with a step at a global
scale (full-sized system of equations) by determining the zeros of this characteristic
equation within subsets of the range of parametric sweep, would allow to address the
comments made in Section 2.2:

• Replace the vector-component-wise step of solving for the denominator coeffi-
cients with Eq. (7).

• Ensure to have the same poles from one component to the other of the approxi-
mated solution vector, and thus, in light of the convergence properties recalled in
the previous section, to enforce the same domain of convergence for all compo-
nents.

• Reduce the number of Taylor coefficients required to be recursively calculated
with Eq. (11), or reallocate them in order to have numerator polynomials of higher
degrees, thus ensuring a more accurate approximation over the domain of con-
vergence of the approximants.

• Use the information provided by the location of these poles in order to decom-
pose the range of the parametric sweep into subdomains corresponding to one
reference point of solution expansion and its associated convergence interval.

For the sake of validation in the scope of this contribution, the system matrix Z(x)

in Eq. (1) is here supposed to be a quadratic function of x with real-valued eigenvalues,
solution of a polynomial characteristic equation. The application to more general cases
is an important extension for the validation of such an approach which will be presented
in further contributions by the authors. Thus, Step 3 in Section 2.2 would be replaced by
a step at the global scale, including the calculation of the roots {x̂01, · · · , x̂0M} closest
to x0, solution of the characteristic equation

det (Z (x)) = 0. (12)
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The steps of Section 2.2, for the Padé-based approximation of the solution around x0

may therefore be updated to the following 6-step procedure aiming at the same domain
of convergence (i.e. the same number of poles):

1. Solve for a set of roots {x̂1, · · · , x̂n} , n > M, solution of the characteristic
equation Eq. (12), including the subset of the M closest roots to x0 denoted
{x̂01, · · · , x̂0M}.

2. Factorize the system matrix Z of Eq. 1 at x0, and calculate the solution U(x0)

(coefficient a0).

3. Solve for the L′ successive derivatives of U with respect to x using an itera-
tive multiple right-hand-side procedure corresponding to Eq. (11) (coefficients
a1 · · · aL′ ).

4. Once for all the components of interest in the solution vector, and assuming sim-
ple roots at this stage, identify the M coefficients q1, · · · , qM such that

(−1)M

x̂01x̂02 · · · x̂0M
(x− x̂01) (x− x̂02) · · · (x− x̂0M ) = 1+q1x+q2x

2+· · ·+qMxM .

(13)
(coefficients q1 · · · qM , q0 = 1).

5. For each component of interest in the solution vector, evaluate the numerator
coefficients via simple algebraic operations as presented in Eq. (8) (coefficients
p0 · · · pL′ ).

6. For each component of interest in the solution vector, evaluate the solution ex-
pansion around x0 by evaluating Eq. (2).

The first step becomes an important stage when considering a parametric sweep
encompassing a large number of poles, as well as higher-multiplicity poles. An initial
step where a sufficiently large number of poles may be determined –potentially all the
poles in the range of interest– allows for an a priori decomposition in subintervals of
Padé-based reconstructions. These intervals are typically defined by a fixed number of
poles, or by pushing poles with a higher order multiplicity to their bounds. In contrast
with the original procedure in Section 2.2, this latter point prevents the procedure from
being potentially hampered by the appearance of a higher-multiplicity pole within an
interval of reconstruction, which would concentrate the approximation at a singularity
where no convergence can be expected in the sense of the Montessus de Ballore theo-
rem. It may be argued that the pole-based bounds from one interval to the other can be
chosen as distinct poles. Then, if we consider three consecutive intervals centered on
the interval associated with x0,

· · · [· · · , x̂01−1] [x̂01, x̂0M ] [x̂0M+1, · · · ] · · · (14)
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This suggestion is supported by the empirical evidence available for engineering ap-
plications [4, 6, 7] showing the slow divergence of Padé approximants outside of the
convergence bounds, especially for smooth responses. The analysis of the reconstruc-
tion of solutions around multiple intervals is however left for a discussion beyond the
scope of this contribution where the attention is turned towards the validation of this
procedure on a single interval of reconstruction.

Another point to be highlighted from the upgraded procedure presented above con-
cerns the fact that the numerator polynomial degree L′ may be increased (L′ ≥ L)
thanks to the reduced number of successive derivatives that need to be calculated in
Step 3. In light of the Montessus de Ballore theorem on the convergence of a series of
Padé approximants and the limitations associated with the number of successive deriva-
tives of the global solution vector that may be iteratively calculated, this may imply the
possibility to increase the range of convergence of each interval in the reconstruction
procedure. As a consequence, the number of required intervals required to cover the
entire parametric sweep may be subsequently reduced.

Finally, the reference point at x0 may be placed in the close vicinity (x0 should not
coincide with a pole so as not to jeopardize the calculation of the successive derivatives
of the solution vector) of the interval mid-point

x0 =
x̂01 + x̂0M

2
. (15)

Note that if the poles are complex-valued, e.g. in the case of a frequency sweep for a
damped dynamics problem, the mid-point may be calculated from the real part of the
poles.

4 Numerical experiment and validation
In this section, some points of comparison between the original procedure in Section 2.2
and the updated one are analysed on a simple validation case consisting of a conservative
acoustic problem. A rigid acoustic cavity of dimensions 0.1×0.15×0.25 m3 is excited
at the corner (0, 0, 0) with a time-harmonic acoustic point source for consideration in
the range f = [500, 2250] Hz. The acoustic pressure fluctuation at the arbitrary position
(0.06m, 0.11m, 0.16m) is used in order to compare the frequency sweeps obtained by
using a Padé approximant on one interval with the reference solution. There are 11

eigenfrequencies of the acoustic cavity within the range of interest, see Table 1.

Table 1: Eigenfrequencies of the acoustic cavity in the range f = [500, 2250] Hz.

Mode order (l,m, n) (0, 0, 1) (0, 1, 0) (0, 1, 1) (0, 0, 2) (1, 0, 0) (0, 1, 2)
Eigenfrequency (Hz) 686 1143 1333 1372 1715 1786

Mode order (l,m, n) (1, 0, 1) (0, 0, 3) (1, 1, 0) (1, 1, 1) (1, 0, 2)
Eigenfrequency (Hz) 1847 2058 2060 2172 2196
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First, anticipating a limitation in the Padé approximants orders mostly due to the
loss in precision associated with the recursive multiple-right-hand-side solution step, a
convergence test is made for a fixed denominator degree of 7 (at most seven poles in the
solution can be captured). The two procedures are compared, for one Padé approximant
with increasing orders of its numerator, which should imply a uniform convergence on
an interval encompassing the 7 closest poles to the reference frequency. The reference
frequency is first chosen at 1500 Hz, thus limiting the convergence to an interval in-
cluding the eigenfrequencies {1143 Hz · · · 2058 Hz}. Fig. 1 compares the convergence
for these two procedures with Padé approximants of numerator expansion orders 6, 9

and 11. The main conceptual difference between the two procedures can be clearly seen
in Figs. 1a and 1b as the original procedure relies on the scalar-component data in order
to determine the pole of the Padé approximant when the updated approach relies on the
eigenfrequencies of the full-size problem. Consequently, the latter approach enforces
the position of the poles no matter which step of convergence is reached thanks to the
polynomial order of the numerator. Thus, as soon as expansion order L = 6 for the
numerator, the 7 expected poles are visible on the approximated solution of the updated
procedure in Fig. 1b. In contrast, it appears that two poles are missing for the origi-
nal procedure (at 1847 Hz and 2058 Hz). A typical behaviour is for the poles to be
shifted away in such circumstances, in the higher frequency region in this case. Upon
convergence with increasing numerator order, one of the missing poles is shifted down
to the domain of interest, as can be seen in Figs 1c and 1e. It is however shifted from
the eigenfrequencies of the cavity, and one pole remains uncaptured by the approxi-
mation. The updated procedure, however, manages to capture the dynamic content of
the response in the entire interval, all 7 eigenfrequencies as well as the sound pressure
level in between being accurately approximated after an expansion of the numerator to
polynomial order 11.

The convergence limit of the original procedure is further illustrated in Figs 2,
where 9 poles are considered, with a reference frequency of 1425 Hz, thus limiting the a
priori convergence to an interval including the eigenfrequencies {686 Hz · · · 2060 Hz}.
Note that this interval includes two very close eigenfrequencies (2058 Hz and 2060 Hz)
at one bound of the domain, a challenge for the approximation. Upon reaching limita-
tions due to a combination of the high order of recursive derivatives in Eq. (11) and the
ill-conditioned nature of the problem in Eq. (7), the Padé-approximation based upon the
original procedure fails to capture the eigenfrequency at 686 Hz, and collapses in the re-
gion 1715−1847 Hz and above (see Figs 2a and 2c). Indeed, estimating the location of
the 9 poles captured by the approximant (L = 12;M = 9) in Fig. 2c gives two complex
conjugate poles together with {1143Hz, 1210Hz, 1333Hz, 1374Hz, 1717Hz, 1809Hz,
2431Hz}. Note that only 4 eigenfrequencies are accurately captured as poles of the ap-
proximant. In contrast, the updated procedure allows to have a good representation over
the entire domain anticipated, even giving a fair approximation of the response at the
challenging upper bound, where two eigenfrequencies almost coincide (see Fig. 2d).
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Figure 1: Convergence of the Padé-approximated solution with 7 poles (M = 7), refer-
ence point at 1500Hz: original procedure (Left) and updated procedure (Right); (a)–(b)
L = 6, (c)–(d) L = 9, (e)–(f) L = 11.

5 Conclusions
In this contribution, a procedure for the scalar-component Padé approximation approach
is proposed as an alternative to the method where the Padé coefficients are derived ex-
clusively from the polynomial coefficients of the power series expansion of the solution.
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Figure 2: Convergence limits of the Padé-approximated solution with 9 poles (M = 9),
reference point at 1425 Hz: original procedure (Left) and updated procedure (Right);
(a)–(b) L = 10, (c)–(d) L = 12.

This enhancement suggests that the denominator coefficients, i.e. the poles of the Padé
approximant, may be be advantageously determined from the full system of equations.
Subsequently, the numerator coefficients may be determined, for each scalar component
of the solution vector, from the polynomial coefficients of its power series expansion.

Several points of interest may be highlighted for the potential of this alternative
approach: i) by calculating the denominator coefficients from the full system of equa-
tions, the polynomial coefficients of the power series expansion are used exclusively for
the calculation of the numerator coefficients of the approximant, thus allowing to in-
crease the order of expansion of this Padé approximant; ii) the calculation of the poles
of the solution from the full system of equation may ensure that the accurate poles are
enforced for the Padé approximant in the neighbourhood of the expansion point con-
sidered, which opens for the possibility to rely fully on the convergence theorem by
Montessus de Ballore; iii) consequently, the bounds of the intervals of convergence may
be determined a priori, which allows for an optimal decomposition of the parametric
range of interest into several intervals of convergence.
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After the illustration on a conservative acoustic problem in this contribution, current
work aims at extending themethod to fully coupled dissipative problems and integrating
it in a multi-point solution reconstruction.
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