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Résumé :

Une technique de couplage des sous-domaines garantissant la conservation d’énergie à l’interface

permet de réaliser des simulations fluide-structure précises et stables. Si l’on utilise des intégrateurs

temporels explicites pour réaliser ce couplage, il devientnécessaire de pouvoir intégrer chaque sous-

domaine avec un pas de temps distinct afin d’éviter que les contraintes de pas de temps d’un sous-

domaine soient imposées aux autres sous-domaines du calcul. Le but de cette étude est de mettre en

place une méthode permettant d’intégrer chaque sous-domaine avec des pas de temps différents tout en

respectant les propriétés de conservation d’énergie à l’interface

Abstract :

A previously developed interface energy-conserving coupling technique allows to carry out accurate

and stable FSI simulations. In order to prevent the time-step size requirements of one domain from being

inherited by the other domain, one must be able to integrate each domain with a different time-step. The

purpose of this study is to implement a method allowing to integrate each domain with separate time-

steps while respecting the conservation properties of the initially proposed coupling technique

Mots clefs : Intéraction fluide-structure, conservation del’énergie, couplage
multi-échelle en temps

1 Introduction

An interface-energy-conserving coupling strategy for transient fluid-structure interaction was previ-

ously developed to couple Finite-Element and SPH-ALE solvers in a non-intrusive and synchronized

manner [1],[2]. By imposing the interface’s normal velocity continuity, the proposed coupling method

ensured that neither the energy injection nor dissipation occurred at the interface, thus guaranteeing

the coupling simulation’s stability over time. Using different time integrators for each sub-domain (2nd



22èmeCongrès Français de Mécanique Lyon, 24 au 28 Août 2015

order Runge-Kutta scheme for the fluid and an explicit Newmark time integrator for the solid), the

method allowed for the resolution of problems where the timesteps were the same for each subdomain

all while fulfilling the stability and accuracy criteria needed for successful FSI simulations. The use of

explicit time integrators on both subdomains allows for a simplification in the system of equations to

solve since the un-updated quantities depend exclusively on previously known quantities,excluding the

need for iteration procedures to update the solid and fluid status. However, explicit integration schemes

are known for their inherent instability and hence their dependability on the size of the time steps in

order to procure converged results. When using the same timestep on both subdomains the coupling´ s

algorithm rapidity is dictated by the size of the smallest needed time-step which is obtained through the

application of the CFL condition on both the solid and the fluid. In order to optimize the algorithm ?s

efficiency and stability, it becomes important to be able to integrate each sub-domain with a different

time-step all while respecting the zero energy condition atthe interface. For this study we propose a

solution for integrating each subdomain with different time-steps. When a smaller time-step is needed

in the solid subdomain, we implement the incompatible time-step integration method that was devised

for applications in solid mechanics by Gravouil and Combescure (GC Method) in 2001 [6] as well as

that devised by Mahjoubi, Gravouil and Combescure (MGC method) in 2011 [3]. In the case where

smaller time-steps are needed in the fluid, the technique used is more straightforward as the solution

regarding the interface ?s position is given and only data needed to obtain the pressure at the interface

comes from the fluid solver which is integrated with a smallertime-step.

2 An interface energy-conserving coupling strategy

2.1 Fluid pressure at solid wall

For this study, the SPH-ALE method will be used for fluid simulation. The hypothesis of a weakly

compressible inviscid flow will be taken into account.

Additionally, Vila’s formulation [4] of the SPH-ALE methodwill be expressed in a Lagrangian frame-

work. This becomes very helpful as it allows to track in a natural way the time-evolving fluid-structure

interface, which is of great importance when studying this type of phenomenon.

The truncation of the kernel function by a solid wall requires a special treatment in order to impose

adequate boundary conditions that allow to solve the problem at hand. By solving a partial Riemann

problem at the boundary, Marongiu [5] proposed the following expression for the pressure at the solid

boundary

pk =
∑

i∈Dk

ωiWik2pE,ik (1)

wherepk stands for the fluid pressure at the solid wall elementk, i is one of the fluid particles which

are near to the elementk, Wik is the value of the kernel function at the solid wall and, finally, pE,ik is

the elemental pressure obtained from the partial Riemann problem between the fluid particlei and the

solid wall elementk. Using the acoustic approximate Riemann solver, the elemental pressurepE,ik may

be related to the fluid velocityvk at the solid wall elementk by :

pE,ik = pi − ρici(vk − vi) · nk (2)
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Substituting (2) into (1) yields a relation between the fluidpressure at the wall elementk and the fluid

velocity pointing in the normal direction





∑

i∈Dk

2ωiρiciWik



 vfb,k + pk =
∑

i∈Dk

2ωi(pi + ρicivi · nk)Wik (3)

wherevfb,k ≡ vk · nk, is the fluid velocity along the normal direction at the solidboundary elementk.

Thanks to the latter expression, we can assemble the system of equations that relate the interface wall

pressure to the velocity of the wall at both instants of the Runge-Kutta 2 (mid-point) time integrator

used for the fluid subdomain.







K
n+ 1

2

fc v
n+ 1

2

fb +Λn+ 1

2 = g
n+ 1

2

f

Kn+1

fc vn+1

fb +Λn+1 = gn+1

f

(4)

To avoid cumbersome expressions, the values ofKfc, gf , can be obtained by consulting [1].

Equation (4) is the first of a set of three equations that are needed to solve the FSI problem with the

proposed coupling method.

2.2 Finite-Element method for the solid

The finite-element method is used to discretize the solid’s governing equations [12]. The semi-discrete

equations for the solid sub-domain are written as

Mas + fint − fext = 0 (5)

whereM denotes the mass matrix,as is the solid acceleration field,fint andfext are the internal and

external nodal forces, respectively.

Equation (5) describes the dynamical equilibrium of the solid system. Considering that at timetn, a, all

variables are known, a time-integration scheme is implemented to search the value of variables at time

tn+1. The Newmark time-integration scheme is used to integrate the semi-discrete equations in time.

Taking∆t = tn+1 − tn, (5) is expressed as

Man+1
s + fn+1

int − fn+1
ext = 0 (6)

with







un+1
s = un

s +∆tvn
s +

∆t2

2

[

(1− 2β)ans + 2βan+1
s

]

vn+1
s = vn

s +∆t
[

(1− γ)ans + γan+1
s

]

(7)

whereun+1
s , vn+1

s andan+1
s represent the displacement, the velocity and the acceleration fields at the

next time-steptn+1, with β andγ being the two coefficients of the Newmark scheme.

Finally, since a mid-point Runge-Kutta scheme is being usedon the fluid for time-integration, a mid-

point stage will be calculated with the Newmark integrator in order to effectively synchronize both

subdomains
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





Ma
n+ 1

2
s = f

n+ 1

2

ext − f
n+ 1

2

int

Man+1
s = fn+1

ext − fn+1
int

(8)

In the case of large deformations for the solid structure or non-linear material properties, the expres-

sion of the internal nodal forces becomes more complex than for the linear case. In order to avoid an

iterating process that hampers the resolution procedure bymaking it more time-consuming, the explicit

Newmark time-integrator is chosen by settingβ = 0 andγ = 0.5.

We now proceed to combine the explicit Newmark scheme (obtained from (7) whenβ = 0 andγ = 0.5)

, with (8) to yield [1],[2].







K
n+ 1

2
sc v

n+ 1

2
s + L

n+ 1

2
p Λn+ 1

2 = g
n+ 1

2
s

Kn+1
sc vn+1

s + Ln+1
p Λn+1 = gn+1

s

(9)

whereLp is a geometric operator that relates the interface pressurefield Λ with the external nodal

forces associated with the fluid pressure loadingfext,f . In addition,Ksc andgs are two matrices which

take into account the internal forces and kinematic quantities from previous iterations. Once again, for

the sake of brevity the expressions of these operators will be omitted. They can be obtained in [1].

2.3 Coupling strategy

When coupling two continua with different time integrators, the numerical stability and the minimal

order of accuracy can be preserved as long as the interface energy is nil during the numerical simulation

[6].

The following equation defines the increment of the interface energy over the time intervalt ∈ [tn, tn+1]

as

∆WI =

∫ tn+1

tn

∫

ΓI

ns · (−psI) · vs + nf · (−pfI) · vf dΓ dt (10)

whereΓI(x, t) denotes the moving fluid-solid interface,ns(x, t) andnf (x, t) are the outward-pointing

vectors for the solid and the fluid, respectively. The external forces exerted on the solid and fluid subdo-

mains are thus expressed asns(x, t) · [−ps(x, t)I] andnf (x, t) · [−pf (x, t)I]. Assuiming the pressure

to be homogeneous over each elemental surface, it has been shown in [1] that the discrete form of the

algorithmic interface-energy can be written as

∆W
d
I =

Nk
∑

k

∆tsk(t)pk(t)sk(t) nk(t) · [vs(xk, t)− vf (xk, t)] (11)

Hence, to keep a zero algorithmic energy (11) at the inter- face, one can simply impose a velocity

constraint condition at each interface element

nk(t) · [vs(xk, t)− vf (xk, t)] = 0 (12)

The above expression is the key point of this coupling method. Instead of imposing the velocity continu-

ity at each instant, we ensure the equality of mean normal velocity over each time-step. This guarantees
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rigorously the zero interface energy condition over each time interval and thus for the whole period of

the simulation.

In order to adapt the energy conserving expression to the previously presented numerical integrators,

condition (12) is imposed attn+
1

2 and the next time-steptn+1 as











n
n+ 1

2

k ·

[

vs(x
n+ 1

2

k )− vf (x
n+ 1

2

k )

]

= 0

nn+1

k ·
[

vs(x
n+1

k )− vf (x
n+1

k )
]

= 0

(13)

3 Incompatible time step implementation

3.1 Smaller time scale in the solid

Let us consider first the case where the smaller time steps arepresent on the solid subdomain. As

presented before, the solid will be integrated with a conventional Newmark scheme using the explicit

central difference scheme. As a first hypothesis, let’s consider that the solid domain’s time-step is a

multiple of that of the fluid subdomain.

∆tf = m∆ts, m ∈ N
∗ (14)

For this study we will implement the incompatible time-stepintegration method that was devised by

Mahjoubi, Gravouil and Combescure (MGC method) in 2011 [3].This method relies on the use the a

constant Lagrange multiplier representing the interface pressure for the duration of the whole macro

time-step to integrate the micro time steps. This method wasdeveloped to be used with integrators of

the Newmark family using increments of of velocity at the interface. For the current study this method

was adapted to what was presented in the previous sections, which represented a simplification of the

system’s matrices.

Next, lets considerj as one of the micro substeps present in the intervalI ∈ [1,m]. Applying this to

the conservation equation presented previously gives

nk(t) · [vs(xk, t)− vf (xk, t)] sk(t) =

1

m∆ts

m−1
∑

j=0

∫ tj+1

tj
nk(t) · vs(xk, t) sk(t) dt−

1

∆tf

∫ tn+1

tn
nk(t) · vf (xk, t) sk(t) dt

(15)

for this integration scheme, we will first consider that the mean pressure at each micro-timestep
¯̄
pjs

is equal to the mean pressure along the macro-timestepp̄f . As done previously, we impose a strong

equilibrium condition for the pressure at the interface. Both of these assumptions yield

pk = pf = ps (16)

We choose then a unique pressurep̄ to integrate both domains along the micro and macro time steps.

This is the fundamental hypothesis behind the MGC method because it is a method that links the
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domains at the macro (larger) time scale. Additionally, we consider that the normals and wall element

surfaces used to solve interface problem at the interface remain constant throughout the whole macro

time-step, i.e.

n
j
k = nn

k = nk and sk(t
j) = sk(t

n) = sk (17)

Hence the interface operators become

Lj
s = Ln

s = Ls and Lj
p = Ln

p = Lp (18)

Although at a first glance these assumptions might come off asstrong approximations to make, the fact

that the present technique is aimed at coupling fast dynamics FSI problems, where the time-step will

be relatively small for both subdomains, makes it safer to assume that the pressure and the interface

operators will vary only slightly in between iterations.

An alternative against having to make these assumptions, would be to use a coupling technique that links

the subdomains at the micro-time scale such as the GC method.The GC method method is similar to the

MGC method, only that the pressure or Lagrange multiplier must be obtained at every micro-iteration

by solving the interface problem at the micro-time scale. This method comes in handy when solving FSI

problems involving strong non-linearities. The drawback comes from the fact that information needs

to be exchanged between codes at each micro time-step. This method was implemented as well for the

purposed coupling method, but for the sake of brevity we willonly focus on giving an overview of the

MGC method in this paper. The reader can find more about the GC method in [6].

From [1] we have

nk · vs(xk) sk − nk · vf (xk) sk = 0 (19)

In matricial terms, we get the following system that needs solve for at each time step :

1

m
nksk

m−1
∑

j=0

[

vs(x
j+1

k ) + vs(x
j
k)
]

2
− nk ·

[

vf (x
n+1

k ) + vf (x
n
k )
]

2
sk = 0 (20)

The system needed to update the solid status fromtn to tn+1 becomes slightly more complex than

before, as we now have to solvem times the system that allows to update fromtj to tj+1 all the

solid kinematic quantities with the inclusion of a trailingterm that takes into account terms from the

previous micro time-steptj−1. The great advantage comes from the fact that now each subdomain can

be integrated using an optimal choice for their respective time-steps.

When using the MGC method, the calculation of the Stenov-PoincareH requires now the resolution of

a linear system of equations. In order to avoid adding more cumbersome expressions to this review, the

reader can learn more about how to obtain this operator by consulting [3].

Finally, Figure (1) presents the coupling procedure implemented for the the integration of both the fluid

and the solid subdomains fromtn to tn+1. Notice that the interface problem is solved at the macro-scale

but in order to get the necessary information from the solid wall (position and normal vectors) and to

get the interface operatorH, iterations through the micro-steps must take place.
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s s s
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tn tn+1/2 tn+1Δtf/2

Δts

Δtf

fluid

inter

solid

t0tn tj tm=tn+1/2 t0 tj tm=tn+1

FIGURE 1 – Overview of the coupling procedure when the solid uses a smaller time-step than the fluid,
i.e.∆tf = m∆ts

s s s

I C I C I

F F F F FFluid:

Solid:

Δts

Δtf

tn tn+1/2 tn+1

Inter:

t0tn tj tm=tn+1/2 t0 tj tm=tn+1

FIGURE 2 – Overview of the coupling procedure when the fluid uses a smaller time-step than the solid,
i.e.∆ts = m∆tf and information from the interface comes only at the beggining of each macro-time
stept0 = tn

3.2 Smaller time scale in the fluid

Despite the faster propagation of waves through solid continua in general for the the phenomena we

are considering, cases where a smaller particle size might be needed for the coupled calculation could

require the implementation of smaller time steps within thefluid. In this cases, the integration of the

domain possessing the smaller time step becomes much more straightforward as the position of the

interface is given by the calculation from the solid’s and coupler’s side which is done with a bigger

time-step.

For the fluid’s subdomain integration,2nd order Runge Kutta (mid-point version) had been implemented

when previously integrating with a larger time step. In order to keep the the order of accuracy and sta-

bility of this integrating scheme during the integration through the micro time scale the same integration

scheme will be used as a way of going from micro-stepj to micro stepj + 1.

Figure (2) shows how the integration procedure is carried out. The solid and the coupler make use

of a larger time step (∆ts = m∆tf ) for the determination of the necessary operators and kinematic

quantities, which are then transferred to the fluid, to make its own integration along the micro-time

scale.

For the current implementation of micro time steps in the fluid subdomain, the position of the wall is

given at the beginning of the macro time-step only. This approach allowed for accurate results when

compared to results when both subdomains where integrated with the same time step.

In order to increase the accuracy of the method, one can give an estimate)of the position of the wall (21)

using the wall kinematic quantities known atj = 0 (here noted asU0
fb). Nevertheless, this approach

would require a bigger volume of data to transfer, since the acceleration of the wall will be needed to

calculate the estimated position and velocity of the wall.
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x

FIGURE 3 – 1D linear beam coupled with a column of water ? propagationof shock wave across the
fluid ?structure interface
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FIGURE 4 – 1D propagation of shock wave across the interface - Comparison between the results
obtained when integrating with same and different time-steps in both domains

ũ
j
fb = u0

fb + j∆tfv
0
fb +

(j∆tf )
2

2
a0fb (21)

Up until now, this technique has worked when used for solving1D cases where the fluid structure

interface is much smaller when compared to the size of the whole problem. In the following section,

some examples will be presented where a comparison is drawn between coupling calculations done

with the same time-steps and those done using different timesteps for each subdomain.

4 Numerical Results

4.1 1-D propagation of shock wave across the fluid-structurein-
terface

For the first test case we couple cantilever 1D linear beam to awater tube inside which a strong pressure

gradient induces a shock wave across the interface( Figure 3)

The initial length of the beam isL0
s
= 1 m, its initial solid densityρ0

s
= 2700 kg/m3, and its initial

section areaA0
s
= 0.01 m2. The Young’s modulus isEs = 67.5 GPa. The solid beam is discretized

with 100 linear truss finite-elements. The tube has also a length ofL0

f
= 1 m but contains ten times as

many particles as the beam has elements. A uniform pressure step of20 MPa is imposed at the time

t = 0 s in the fluid cavity. For this test case, we use a time step of∆ts = 10−6 s for the solid and

∆tf = 10−9 s for the fluid. Hence a ratiom of 1000 exists between both domains.

Figure (4) shows the comparison between the results of the simulation described above and another one

in which both subdomains are clumsily integrated with the same time-step, i.e.∆tf = ∆ts = 10−9 s.

The results show good agreement with respect to the same case-study using the same time-step.
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4.2 2-D hydrostatic water on a linear elastic plate
Next, we consider a 2-D test case in which we couple a linear elastic plate with a column of water

which is initially in hydrostatic equilibrium. Figure 5 shows the configuration of this test case : a rigid

water reservoir has a geometrically linear elastic bottom which is clamped at the two sides, a pressure

gradient of water is present due to the gravity effect and at the free surface the fluid pressure equals

zero. The simulation parameters are given in [2].

L

H
e

g

water

FIGURE 5 – 2-D hydrostatic water interacting with a linear elastic plate.

This test case is aimed at assessing the accuracy of the MGC method in 2D. As stated in [2] the fluid

and the solid domains are discretized in a similar manner. The speed of sound being roughly five times

larger in the structure than in the fluid, a time-step used to integrate the fluid of∆tf = 5× 10−7 s will

be used while that of the solid will be twenty times smaller.

The results of the simulation are given in Figure 6. Once again, good agreement exists between the re-

sults obtained by clumsily integrating both domains with the same time-step and those obtained through

the use of the MGC technique.

4.3 Breaking dam flow on an elastic wall
Next, we consider another 2D test case of fluid-structure interaction problem, of which the initial con-

figuration is shown in Figure 7. As one can observe, in a rigid wall container a column of water is

initially located at the left side of a container, which is inhydrostatic equilibrium. An elastic wall is

clamped placed to the right at the middle of the container. Once again the geometric and discretization

parameters are given in [2]. The material properties of the solid are such that the initial solid density is

ρ0s = 2500 kg/m3, the Young’s modulus isEs = 106 Pa and the Poisson’s ratio will be taken to be

ν = 0. As Walhorn et al. [8] did, we applied a linear elasticity model which gives a linear relationship
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FIGURE 6 – 2-D hydrostatic water on a linear elastic plate - Comparison between the results obtained
when integrating with same and different time-steps in bothdomains
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between the Green strain tensorE and the second Piola-Kirchhoff stress tensorS.

b

a

4L

L L

2
L

g

FIGURE 7 – Initial configuration of the test case : breaking dam flow onan elastic wall.

This test case will aim at assessing how the proposed technique responds to the presence of strong

geometrical non-linearities. Once again, due to the same spatial discretization used on both domains,

we will use a time-step of∆tf = 2× 10−5 s for the fluid while the structure will have a time-step that

is 10 times smaller. Additionally, we will make use of the GC coupling technique[6], which is much

more suited for coupling problems involving large deformations like this one than the MGC technique

featured previously. The GC technique imposes velocity continuity at the micro-scale by doing a linear

interpolation of the velocity coming from the domain integrated with the larger time-step. Figure 8

shows the result of the simulation fort = 0.30 s.
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FIGURE 8 – Breaking dam flow on an elastic wall - result of the simulation for t = 0.30 s

Finally we compare in Figure 9 the results of the simulation with the results obtained by other authors

[8],[9]. A comparison is also made between the current results and those obtained previously when

another solid solver was used. In fact, the coupling strategy initially made exclusive use of Code Aster,

a finite-element implicit/explicit code developed by EDF (Electricité de France). As of now, the SPH-

ALE code (ASPHODEL) can be coupled to the Europlexus code which is developed by the CEA

(Commissariat à l’Energie Atomique) which is an explicit code focusing on the simulation of fast

dynamics phenomena.

As presented in [2], there is still a discrepancy between theresults obtained in [8] and those obtained

through the use of the present method. However the results obtained by [9] come quite close to what

was obtained with the proposed method, especially for the coupling done with the Europlexus software.

Good agreement between the results obtained when integrating with same and different time-steps is

also found, despite the large displacements undergone by the structure. The latter aspect justifies the

implementation of the GC algorithm for this case-study as the velocity equilibrium condition is verified

at each micro time-step.
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FIGURE 9 – Displacement of the top left node of the structure untilt = 0.3 s- result comparison

5 Conclusion
A previously developed interface energy-conserving coupling technique allows to carry out accurate and

stable FSI simulations. If explicit time integrators on both physical domains are used, the linear systems

involved become much simpler to solve, however dependability on the time-step size becomes a major

drawback. In order to prevent the time-step size requirements of one domain from being inherited by the

other domain, one must be able to integrate each domain with adifferent time-step. This objective was

accomplished in different ways for both domains. When the smaller time-step is needed for the solid

subdomain, the use of techniques coming from the coupling ofsolid subdomains allows to accomplish

this successfully. For the fluid, the technique used is more straightforward. Numerical case-studies

allowed to test the implemented techniques and gave satisfactory results. Future work will focus on

adapting this techniques in order to increase its robustness and be able to study complex FSI phenomena.
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