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Résumé :

Une technique de couplage des sous-domaines garantissaminkervation d'énergie a l'interface
permet de réaliser des simulations fluide-structure pexist stables. Si I'on utilise des intégrateurs
temporels explicites pour réaliser ce couplage, il devigftessaire de pouvoir intégrer chaque sous-
domaine avec un pas de temps distinct afin d'éviter que leBaintes de pas de temps d’'un sous-
domaine soient imposées aux autres sous-domaines du.caécbut de cette étude est de mettre en
place une méthode permettant d’intégrer chaque sous-dmniec des pas de temps différents tout en
respectant les propriétés de conservation d’énergie adiiiace

Abstract :

A previously developed interface energy-conserving d@ogpéechnigue allows to carry out accurate
and stable FSI simulations. In order to prevent the timg-siee requirements of one domain from being
inherited by the other domain, one must be able to integrath elomain with a different time-step. The
purpose of this study is to implement a method allowing tegirsite each domain with separate time-
steps while respecting the conservation properties ofritiaily proposed coupling technique

Mots clefs : Intéraction fluide-structure, conservation del’énergie, couplage
multi-échelle en temps

1 Introduction

An interface-energy-conserving coupling strategy fonsiant fluid-structure interaction was previ-
ously developed to couple Finite-Element and SPH-ALE sslve a non-intrusive and synchronized
manner [1],[2]. By imposing the interface’s normal velgaibntinuity, the proposed coupling method
ensured that neither the energy injection nor dissipaticcuwed at the interface, thus guaranteeing
the coupling simulation’s stability over time. Using diffmt time integrators for each sub-domain (2nd
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order Runge-Kutta scheme for the fluid and an explicit Nevintisne integrator for the solid), the
method allowed for the resolution of problems where the titeps were the same for each subdomain
all while fulfilling the stability and accuracy criteria rebed for successful FSI simulations. The use of
explicit time integrators on both subdomains allows forragification in the system of equations to
solve since the un-updated quantities depend exclusivepreviously known quantities,excluding the
need for iteration procedures to update the solid and flaitdist However, explicit integration schemes
are known for their inherent instability and hence theiretaability on the size of the time steps in
order to procure converged results. When using the samestapeon both subdomains the coupling” s
algorithm rapidity is dictated by the size of the smallestde time-step which is obtained through the
application of the CFL condition on both the solid and thedflun order to optimize the algorithm ?s
efficiency and stability, it becomes important to be ablentegrate each sub-domain with a different
time-step all while respecting the zero energy conditiothatinterface. For this study we propose a
solution for integrating each subdomain with differenteisteps. When a smaller time-step is needed
in the solid subdomain, we implement the incompatible tstep integration method that was devised
for applications in solid mechanics by Gravouil and Comhes¢GC Method) in 2001 [6] as well as
that devised by Mahjoubi, Gravouil and Combescure (MGC outln 2011 [3]. In the case where
smaller time-steps are needed in the fluid, the technique issaore straightforward as the solution
regarding the interface ?s position is given and only dataleé to obtain the pressure at the interface
comes from the fluid solver which is integrated with a smdilae-step.

2 An interface energy-conserving coupling strategy

2.1 Fluid pressure at solid wall

For this study, the SPH-ALE method will be used for fluid siatidn. The hypothesis of a weakly
compressible inviscid flow will be taken into account.

Additionally, Vila’s formulation [4] of the SPH-ALE methodill be expressed in a Lagrangian frame-
work. This becomes very helpful as it allows to track in a ratway the time-evolving fluid-structure
interface, which is of great importance when studying thigetof phenomenon.

The truncation of the kernel function by a solid wall reqgile special treatment in order to impose
adequate boundary conditions that allow to solve the pmtdehand. By solving a partial Riemann
problem at the boundary, Marongiu [5] proposed the follay@xpression for the pressure at the solid
boundary

pe= Y wiWn2pp 1)
i€Dy,
wherep,, stands for the fluid pressure at the solid wall elemientis one of the fluid particles which
are near to the elemeht Wy, is the value of the kernel function at the solid wall and, finalg ;. is
the elemental pressure obtained from the partial Riemaniplggn between the fluid particieand the
solid wall element. Using the acoustic approximate Riemann solver, the elahpressurgy ;;, may
be related to the fluid velocity;, at the solid wall elemenik by :

DE,ik = Pi — PiCi(VE — Vi) -1, (2)
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Substituting (2) into (1) yields a relation between the flpidssure at the wall elemehtand the fluid
velocity pointing in the normal direction

> 2wipieiWak | o +pe = D 2wi(pi + picivi - 0 W 3)
i€Dy, i€Dy,
wherevyy, ;. = vy, - ny, is the fluid velocity along the normal direction at the sdiwlindary element.
Thanks to the latter expression, we can assemble the sy$tequations that relate the interface wall
pressure to the velocity of the wall at both instants of thad&uKutta 2 (mid-point) time integrator
used for the fluid subdomain.
KAy L Anth L gt
fe Vi TATE=8y
K}L:rlv;z;rl + An+1 _ g;clJrl

(4)

To avoid cumbersome expressions, the valuek gf, g ¢, can be obtained by consulting [1].

Equation (4) is the first of a set of three equations that aeslee to solve the FSI problem with the
proposed coupling method.

2.2 Finite-Element method for the solid

The finite-element method is used to discretize the solikeming equations [12]. The semi-discrete
equations for the solid sub-domain are written as

Mas + fint - fea:t =0 (5)

whereM denotes the mass matrix, is the solid acceleration field;,; andf,,; are the internal and
external nodal forces, respectively.

Equation (5) describes the dynamical equilibrium of thédssystem. Considering that at time, a, all
variables are known, a time-integration scheme is impldatkto search the value of variables at time
t"*1. The Newmark time-integration scheme is used to integtaesémi-discrete equations in time.
Taking At = t"*1 — ", (5) is expressed as

Mal ™ + £t — £ =0 (6)

wnt ext
with

At?
v?“ =vy 4+ At [(1 —y)ay + Wagﬂ]

whereu? !, v*1 anda?*! represent the displacement, the velocity and the accielerfitlds at the
next time-step”*!, with 3 and~ being the two coefficients of the Newmark scheme.

Finally, since a mid-point Runge-Kutta scheme is being usethe fluid for time-integration, a mid-
point stage will be calculated with the Newmark integratororder to effectively synchronize both
subdomains
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n+l n+i n+1
Ma, * = femt ? = fint ? (8)
1 1 1
Mall ! = £ — £
In the case of large deformations for the solid structurear-lmear material properties, the expres-
sion of the internal nodal forces becomes more complex tbath€ linear case. In order to avoid an
iterating process that hampers the resolution procedursdkyng it more time-consuming, the explicit

Newmark time-integrator is chosen by settifig= 0 andy = 0.5.

We now proceed to combine the explicit Newmark scheme (obtkirom (7) wherg = 0 andy = 0.5)
, with (8) to yield [1],[2].
ATV s JUSS QRO

n+l_. n+1 nt+lant+l _ _n+l
Ksc Vs +Lp A =85

(9)

whereL,, is a geometric operator that relates the interface predgiceA with the external nodal
forces associated with the fluid pressure loading . In addition, K. andg, are two matrices which
take into account the internal forces and kinematic quastiftom previous iterations. Once again, for
the sake of brevity the expressions of these operators @itirbitted. They can be obtained in [1].

2.3 Coupling strategy

When coupling two continua with different time integratotise numerical stability and the minimal
order of accuracy can be preserved as long as the interfacgyes nil during the numerical simulation

[6].
The following equation defines the increment of the intezfaergy over the time intervak [t7, t"+1]

as
tn+1

AW = / ng - (—psI)-ve+mng- (—psl)-vydlde (20)
Iy

o
wherel';(x, t) denotes the moving fluid-solid interfaae, (x, t) andn(x, t) are the outward-pointing
vectors for the solid and the fluid, respectively. The exdeforces exerted on the solid and fluid subdo-
mains are thus expressedmgx, t) - [—ps(x, t)I] andny(x,t) - [-ps(x,t)I]. Assuiming the pressure
to be homogeneous over each elemental surface, it has bewn 8h[1] that the discrete form of the
algorithmic interface-energy can be written as

Nk

AW =" Atsi(t)pr(t)sk(t) nx(t) - [Va(xk,t) — Vi (Xp, 1)) (11)
k

Hence, to keep a zero algorithmic energy (11) at the intare,fane can simply impose a velocity
constraint condition at each interface element

. (t) - [Vs(Xk,t) = vy(Xp, 1)) = 0 (12)

The above expression is the key point of this coupling methmdead of imposing the velocity continu-
ity at each instant, we ensure the equality of mean normatitglover each time-step. This guarantees
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rigorously the zero interface energy condition over eattetinterval and thus for the whole period of
the simulation.

In order to adapt the energy conserving expression to thégusly presented numerical integrators,
condition (12) is imposed at*> and the next time-stefy ! as

n—l—% n—l—% n—l—%

n - ve(x —ve(x =0
k s( k ) f( k ) (13)
" [V () = v ()] =0

3 Incompatible time step implementation
3.1 Smaller time scale in the solid

Let us consider first the case where the smaller time stepgprasent on the solid subdomain. As
presented before, the solid will be integrated with a cotisaal Newmark scheme using the explicit
central difference scheme. As a first hypothesis, let’s idenghat the solid domain’s time-step is a
multiple of that of the fluid subdomain.

Aty = mAt,, m e N* (14)

For this study we will implement the incompatible time-stefegration method that was devised by
Mahjoubi, Gravouil and Combescure (MGC method) in 2011 T8lis method relies on the use the a
constant Lagrange multiplier representing the interfasssure for the duration of the whole macro
time-step to integrate the micro time steps. This methoddeasloped to be used with integrators of
the Newmark family using increments of of velocity at theeifdce. For the current study this method
was adapted to what was presented in the previous sectitich vepresented a simplification of the
system’s matrices.

Next, lets conside) as one of the micro substeps present in the intefval [1, m]. Applying this to
the conservation equation presented previously gives

ny(t) - [Ve(xp, t) — v(xp, t)] sk(t) =

m—1 _— .
; jzo /t (1) - vs(Xp, t) s (t) dt — Aitf/ ny(t) - v(xg,t) sp(t) dt (15)

mAt j tn

for this integration scheme, we will first consider that theam pressure at each micro—timesjép
is equal to the mean pressure along the macro-timgsteps done previously, we impose a strong
equilibrium condition for the pressure at the interfacetiBaf these assumptions yield

Pr=Df =Ds (16)

We choose then a unigue pressgrm integrate both domains along the micro and macro timesstep
This is the fundamental hypothesis behind the MGC methoduse it is a method that links the
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domains at the macro (larger) time scale. Additionally, wesider that the normals and wall element
surfaces used to solve interface problem at the interfaoaireconstant throughout the whole macro
time-step, i.e.

n{% =n} =n; and sp(t!) = sp(t") = sy, 17)

Hence the interface operators become

Li=L!=L, and L) =L"'=L, (18)

Although at a first glance these assumptions might come affraag approximations to make, the fact
that the present technique is aimed at coupling fast dyrafi®l problems, where the time-step will
be relatively small for both subdomains, makes it safer tu@e that the pressure and the interface
operators will vary only slightly in between iterations.

An alternative against having to make these assumptionddvoe to use a coupling technique that links
the subdomains at the micro-time scale such as the GC méthedsC method method is similar to the
MGC method, only that the pressure or Lagrange multipliestning obtained at every micro-iteration
by solving the interface problem at the micro-time scalésfirethod comes in handy when solving FSI
problems involving strong non-linearities. The drawbaoknes from the fact that information needs
to be exchanged between codes at each micro time-step. Ettiwdwas implemented as well for the
purposed coupling method, but for the sake of brevity we avilly focus on giving an overview of the
MGC method in this paper. The reader can find more about the &8ad in [6].

From [1] we have

ng - VS(Xk) S — nNg - Vf(Xk) Sk = 0 (19)
In matricial terms, we get the following system that needgestor at each time step :

et [vo(x ™) + vl v () 4 v ()]

2 Tk 2

1
—NSk s =0 (20)
m

j=0
The system needed to update the solid status fforio t"+! becomes slightly more complex than
before, as we now have to solve times the system that allows to update fréinto /+! all the

solid kinematic quantities with the inclusion of a trailitgrm that takes into account terms from the

previous micro time-stepf ~!. The great advantage comes from the fact that now each sutl@an
be integrated using an optimal choice for their respective-steps.

When using the MGC method, the calculation of the StenowdoeH requires now the resolution of
a linear system of equations. In order to avoid adding mongbarsome expressions to this review, the
reader can learn more about how to obtain this operator byutiimg [3].

Finally, Figure (1) presents the coupling procedure img@eted for the the integration of both the fluid
and the solid subdomains froth to t”*+!. Notice that the interface problem is solved at the macadesc
but in order to get the necessary information from the solidl {position and normal vectors) and to
get the interface operatdf, iterations through the micro-steps must take place.
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FIGURE 1 — Overview of the coupling procedure when the solid usesadleniime-step than the fluid,
i.e. Atf = mAtg
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FIGURE 2 — Overview of the coupling procedure when the fluid uses dlsnane-step than the solid,
i.e. At, = mAt; and information from the interface comes only at the beggiruf each macro-time
stept? = »

3.2 Smaller time scale in the fluid

Despite the faster propagation of waves through solid naatin general for the the phenomena we
are considering, cases where a smaller particle size maghebded for the coupled calculation could
require the implementation of smaller time steps withinfib&l. In this cases, the integration of the

domain possessing the smaller time step becomes much maightforward as the position of the

interface is given by the calculation from the solid’s andiger’s side which is done with a bigger

time-step.

For the fluid’s subdomain integratio®’® order Runge Kutta (mid-point version) had been implemented
when previously integrating with a larger time step. In ordekeep the the order of accuracy and sta-

bility of this integrating scheme during the integratiomtigh the micro time scale the same integration

scheme will be used as a way of going from micro-steép micro stepj + 1.

Figure (2) shows how the integration procedure is carried Bloe solid and the coupler make use
of a larger time stepAt, = mAty) for the determination of the necessary operators and katiem

guantities, which are then transferred to the fluid, to makenivn integration along the micro-time
scale.

For the current implementation of micro time steps in thedfkliibbdomain, the position of the wall is
given at the beginning of the macro time-step only. This appi allowed for accurate results when
compared to results when both subdomains where integratedhe same time step.

In order to increase the accuracy of the method, one can giestanate)of the position of the wall (21)
using the wall kinematic quantities known at= 0 (here noted aiJ?cb). Nevertheless, this approach
would require a bigger volume of data to transfer, since ttoelaration of the wall will be needed to
calculate the estimated position and velocity of the wall.
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FIGURE 3 — 1D linear beam coupled with a column of water ? propagatfoshock wave across the
fluid ?structure interface

Displacement of the beam’s end

0.0001

same time-scale —
dts = 1000dtf ——

0

-0.0001 [

-0.0002 |

-0.0003

Displacement (m)

-0.0004 -

-0.0005

-0.0006

. . . . . . .
0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004
time (s)

FIGURE 4 — 1D propagation of shock wave across the interface - Casgrabetween the results
obtained when integrating with same and different tim@sia both domains

(jAtf)Q a(}‘b (22)

Up until now, this technique has worked when used for sohiycases where the fluid structure
interface is much smaller when compared to the size of thdeymblem. In the following section,
some examples will be presented where a comparison is dratwebn coupling calculations done
with the same time-steps and those done using differentsteys for each subdomain.

4 Numerical Results

4.1 1-D propagation of shock wave across the fluid-structuren-
terface

For the first test case we couple cantilever 1D linear beanwater tube inside which a strong pressure
gradient induces a shock wave across the interface( Figure 3

The initial length of the beam 8% = 1 m, its initial solid densityp" = 2700 kg/m?, and its initial
section aread’ = 0.01 m?. The Young’s modulus i, = 67.5 GPa. The solid beam is discretized
with 100 linear truss finite-elements. The tube has aIsogtHleofL? = 1 m but contains ten times as
many particles as the beam has elements. A uniform prespe&0 MPa is imposed at the time
t = 0 s in the fluid cavity. For this test case, we use a time step\tof = 106 s for the solid and
Aty = 1079 s for the fluid. Hence a ratien of 1000 exists between both domains.

Figure (4) shows the comparison between the results of thelaiion described above and another one
in which both subdomains are clumsily integrated with theesaime-step, i.eAty = Aty = 1079 s.
The results show good agreement with respect to the samestaeusing the same time-step.
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4.2 2-D hydrostatic water on a linear elastic plate

Next, we consider a 2-D test case in which we couple a linesstiel plate with a column of water
which is initially in hydrostatic equilibrium. Figure 5 siws the configuration of this test case : a rigid
water reservoir has a geometrically linear elastic bottdmctvis clamped at the two sides, a pressure
gradient of water is present due to the gravity effect andhatftee surface the fluid pressure equals
zero. The simulation parameters are given in [2].

L

FIGURE 5 — 2-D hydrostatic water interacting with a linear elastate.

This test case is aimed at assessing the accuracy of the M@®dni@ 2D. As stated in [2] the fluid
and the solid domains are discretized in a similar mannez.spleed of sound being roughly five times
larger in the structure than in the fluid, a time-step usedtegirate the fluid ofAt; = 5 x 107 s will

be used while that of the solid will be twenty times smaller.

The results of the simulation are given in Figure 6. Onceraggiod agreement exists between the re-
sults obtained by clumsily integrating both domains with same time-step and those obtained through
the use of the MGC technique.

4.3 Breaking dam flow on an elastic wall

Next, we consider another 2D test case of fluid-structumradation problem, of which the initial con-
figuration is shown in Figure 7. As one can observe, in a rigadl wontainer a column of water is
initially located at the left side of a container, which ishgdrostatic equilibrium. An elastic wall is
clamped placed to the right at the middle of the containeceCagain the geometric and discretization
parameters are given in [2]. The material properties of ttid are such that the initial solid density is
p% = 2500 kg/m3, the Young’s modulus i€, = 10° Pa and the Poisson’s ratio will be taken to be
v = 0. As Walhorn et al. [8] did, we applied a linear elasticity nabdhich gives a linear relationship
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FIGURE 6 — 2-D hydrostatic water on a linear elastic plate - Comparisetween the results obtained
when integrating with same and different time-steps in lomtimains



22™MeCongrés Francais de Mécanique Lyon, 24 au 28 Ao(t 2015

between the Green strain tenddiand the second Piola-Kirchhoff stress tenSor

¢¢¢¢¢

FIGURE 7 — Initial configuration of the test case : breaking dam flovanrelastic wall.

This test case will aim at assessing how the proposed tashniesponds to the presence of strong
geometrical non-linearities. Once again, due to the saratasmliscretization used on both domains,
we will use a time-step oAty = 2 x 10~° s for the fluid while the structure will have a time-step that
is 10 times smaller. Additionally, we will make use of the G@&ipling technique[6], which is much
more suited for coupling problems involving large deforimiag like this one than the MGC technique
featured previously. The GC technique imposes velocityinaoity at the micro-scale by doing a linear
interpolation of the velocity coming from the domain intagd with the larger time-step. Figure 8
shows the result of the simulation foe= 0.30 s.

Pf(Pa) SXX(Pa)
f.00e+03 iaoema

-2.00e+03

FIGURE 8 — Breaking dam flow on an elastic wall - result of the simolatior { = 0.30 s

Finally we compare in Figure 9 the results of the simulatioththe results obtained by other authors
[8],[9]. A comparison is also made between the current tesamd those obtained previously when
another solid solver was used. In fact, the coupling styaitgitially made exclusive use of Code Aster,
a finite-element implicit/explicit code developed by EDHg@ricité de France). As of now, the SPH-
ALE code (ASPHODEL) can be coupled to the Europlexus codechvis developed by the CEA

(Commissariat a I'Energie Atomique) which is an explicitdeofocusing on the simulation of fast
dynamics phenomena.

As presented in [2], there is still a discrepancy betweerrdlalts obtained in [8] and those obtained
through the use of the present method. However the resuiténeld by [9] come quite close to what
was obtained with the proposed method, especially for thiplowy done with the Europlexus software.
Good agreement between the results obtained when integnatth same and different time-steps is
also found, despite the large displacements undergoneebsgttacture. The latter aspect justifies the
implementation of the GC algorithm for this case-study as#tlocity equilibrium condition is verified
at each micro time-step.
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FIGURE 9 — Displacement of the top left node of the structure unt 0.3 s- result comparison

5 Conclusion

A previously developed interface energy-conserving doggechnique allows to carry out accurate and
stable FSI simulations. If explicit time integrators onlophysical domains are used, the linear systems
involved become much simpler to solve, however dependgloifi the time-step size becomes a major
drawback. In order to prevent the time-step size requirésnarone domain from being inherited by the
other domain, one must be able to integrate each domain wdiifieaent time-step. This objective was
accomplished in different ways for both domains. When thallentime-step is needed for the solid
subdomain, the use of techniques coming from the couplireplid subdomains allows to accomplish
this successfully. For the fluid, the technique used is muedghtforward. Numerical case-studies
allowed to test the implemented techniques and gave satisfaresults. Future work will focus on
adapting this techniques in order to increase its robustaed be able to study complex FSI phenomena.
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