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Abstract

This paper addresses an original numerical coupling between surface me-

chanics of a gradually oxidizing liquid metal surface, and a supporting annular

MHD �ow, in the general layout of the classical annular viscometer, originally

developed by Mannheimer et al. [ J. Colloid Interface Sci., 32:195�211, 1970].

A purely hydrodynamic interplay between a main azimuthal �ow (induced by a

rotating �oor) and a secondary overturning �ow generated by centrifugation is

found to be strongly a�ected by both surface viscous shear and surface viscous

dilatation. When centrifugation competes with electromagnetic e�ects, advec-

tion of the main �ow by the secondary �ow is proved to a�ect signi�cantly the

core MHD �ow, leading to original MHD �ow patterns. The latter phenomenol-

ogy reveals to be relevant to characterise the surface viscosities of a gradually

oxidising liquid metal surface.
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1 Introduction

Modeling of magnetohydrodynamic (MHD) two-phase �ows has recently be-

come an issue of major interest, given the numerous industrial applications po-

tentially a�ected. It potentially a�ects many �elds, such as metallurgy (stirring

by bubble plumes in reactors [1]), microelectronics (MHD-driven metal cooling

processes [2]), or nuclear fusion technology (two-phase MHD issues with the

breeder blanket based cooling loop [3]).

To our knowledge, little is actually known about the surface rheology of

MHD �ows, e.g. when a liquid metal is progressively contaminated through
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oxidation processes. On the one hand, the viscoelastic properties of liquid met-

als have been experimentally investigated by researchers including Kolevzon et

al. [4, 5], Larsen et al. [6] or Liu et al. [2], who each highlighted radically di�er-

ent mechanical behavior characteristics that depend on the level of oxidation.

However, their results were not coupled with MHD.

On the other hand, the MHD of single-phase laminar �ows has been exten-

sively studied for many years. The �ow can be either con�ned (see Shercli� [7]),

or may have a free surface � for a Couette �ow with a free surface, see e.g. Lehn-

ert [8]. However, the fundamental issue of varying boundary conditions would

seem to have only been considered from an electrical point of view. Thus, in

the case of duct �ows, the walls can have in�nite electrical conductivity (see

Shercli� [7]), no conductivity (Moreau [9]), mixed in�nite and vanishing con-

ductivities (Hunt et al. [10]), or arbitrary conductivity (Tabeling et al. [11]).

The electrical in�uence of the walls, governed by the ratio of bulk and wall elec-

trical conductivities σ/σw, completely modi�es the electric circuit, and results

in a major impact on the topology of the MHD �ow.

In this study, the same kind of general approach for the boundary conditions

is taken, but this time from a mechanical point of view. In this respect, for �ows

including liquid/gas interfaces, the competition between bulk MHD and surface

rheology (driven by the contamination rate of the liquid surface) may lead to

a mechanically varying boundary condition, suspected to a�ect considerably

the overall MHD �ow. To deal with the practical conditions of molten met-

als in metallurgy industry, we need to investigate surface mechanics separately

from bulk �ow, especially when the free surface is gradually oxidizing. The

mechanical coupling can therefore be considered between a liquid surface and

the underlying bulk, through the emergence of dilatational and shear surface

viscosities.

2 Outlines

The system under considerationis an annular MHD viscometer (Fig. 1). The

problem is considered 2-D axisymmetric (∂/∂θ = 0), so that the domain can be

reduced to the cross-section of an annular open channel. The latter consists of

a rectangular cross-section, where the inner and outer radii are, respectively,

ri and ro, and the height is h, where h < ri, ro (indicative values: ri = 3 cm,

ro = 7 cm and h = 1 cm). The coordinate system used is the cylindrical system

{O, e⃗r, e⃗θ, e⃗z}. The annular �oor of the channel rotates around the z axis with a

varying angular speed of Ω, while the two side walls are �xed. An outer vertical

permanent magnetic �eld B⃗0 = B0e⃗z is imposed, and the channel is �lled with

an electroconductive �uid, e.g. a liquid eutectic alloy called Galinstan.

There are numerous interest in this con�guration, which is inspired by the

deep channel viscometer [12, 13, 14, 15]. First, the electroconductive rotating
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Figure 1. The annular MHD viscometer.

�uid subjected to an outer magnetic �eld constitutes a MHD liquid/gas strati�ed

�ow, which is a basic study case in view of the description of di�erent MHD

two-phase �ow regimes. Besides, this particular layout allows for a wide variety

of physical phenomena to be enhanced, beginning with bulk e�ects. Thus,

inertial e�ects can be easily highlighted by changing the value of the angular

speed Ω of the rotating �oor [16]. On the contrary, if the goal is to extinguish

centrifugation, tuning the value of the outer magnetic �eld B0 may lead to

a fully 2-D MHD �ow, due to the well-known two-dimensionality tendency of

magnetic induction � Delacroix and Davoust [17].

Concerning surface e�ects, and compared to the classical Taylor-Couette

layout, the vertical shear is in this case particularly emphasized in the annular

viscometer con�guration, through a shallow con�guration (h < ri, ro). This

means that strong velocity gradients are generated along the e⃗z-axis, whereas

these gradients preferentially develop along the e⃗r-axis in the Taylor-Couette

case. Anticipating what follows, it is shown later in Eq. (12) and (13) that the

coupling term between surface and sub-phase �ows involves ∂vr/∂z and ∂vθ/∂z

terms, where vr and vθ are the radial component and the azimuthal component

of velocity, respectively. Consequently, the resulting shearing is expected to be

magni�ed, and the impact of varying boundary conditions at the liquid surface

on the overall MHD �ow may be highlighted.

In the light of all these considerations, the physical insight provided by the

annular MHD viscometer is expected to be signi�cant. The goal of this 3-D

numerical study is to extend signi�cantly the scope of a companion paper [17],

focused on the 2-D analytical study of the annular MHD viscometer. This

benchmarking analytical study is based on the assumptions Ha ≫ 1 and Ha ≫

Re, where Ha and Re are the Hartmann and Reynolds numbers, respectively.

These assumptions allowed the authors to ignore the inertial e�ects, and to

highlight solely the competition between surface viscous shearing and the e�ects

due to Lorentz force. Typically, it has been shown that surface rheology actually

monitors the electrical activation of Hartmann layers.

For the present study, no particular assumptions have been made concerning
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the values of Re and Ha (except that Re ≤ 104 in order to avoid turbulence

issues). Consequently, a swirling �ow occurs when Ha < Re, leading to inertial

centrifugal e�ects. As a consequence, a new rheological parameter is solicited at

the interface, linked to surface viscous dilatation, which might a�ect core �ow.

Furthermore, interacting with the outer magnetic �eld, the centrifugal e�ects

bring an original MHD �ow into play, which in turn competes with surface

rheology. This peculiar strong coupling is investigated in this paper.

3 Physical modelling

3.1 Notations and assumptions

With respect to purely hydrodynamic assumptions, the annular shear �ow

considered is assumed to be a permanent, axisymmetric (∂/∂θ = 0), incompress-

ible and viscous Newtonian �ow with no temperature dependence, so that the

bulk physical properties of Galinstan are considered to be constant. The �ow is

laminar with Re = ρΩr2
o/η, where η is the dynamic viscosity and ρ is the density

of Galinstan (indicative values: η = 2.4 × 10−3 Pa⋅s and ρ = 6.4 × 103 kg⋅m−3, see

Liu et al. [2]). In this paper, and unlike in the supporting analytical study [17]

where Re is set to be su�ciently small, Re varies in order to study inertial ef-

fects, and increased up to the onset value Re ≤ 104, in order to avoid turbulence

issues (see Serre et al. [18] for similar turbulence considerations).

Moreover, the quasi-static approximation is made, which consists in ignoring

the displacement current when compared with the conduction current. Also, the

magnetic Reynolds number Rm = µσroΩh is considered to be negligibly small,

where µ and σ are the magnetic permeability and the electrical conductivity

of the liquid metal, respectively (indicative values: µ = 4π × 10−7 H⋅m−1, σ =

2.3 × 106 S⋅m−1, see Liu et al. [2]). This allows us to form the classical weakly

coupled MHD model, which results in the fact that the electromotive current is

approximated as v⃗×B⃗ ∼ v⃗×B⃗0, where v⃗ is the �ow velocity, and that the Lorentz

force is approximated as j⃗ × B⃗ ∼ j⃗ × B⃗0, where j⃗ is the electric current density.

When normalizing the MHD equations, the Hartmann number, Ha = B0h
√
σ/η,

is highlighted.

Finally, several assumptions are made to describe the behavior of the liq-

uid/gas interface. First, the interface is considered to be �at, with a capillary

length lc =
√
γ/ρg ≪ ro − ri, where g is the gravity and γ is the surface tension

of Galinstan (indicative value: γ = 0.534N⋅m−1, see Liu et al. [2]). Furthermore,

the �ow of the liquid surface is modeled through a surface momentum conserva-

tion (jump momentum balance: JMB), in which use is made of two rheological

parameters: surface shear viscosity, ηS , and surface dilatational viscosity, κS
� see Eq. (12) and (13). In the case of liquid metals, it is assumed that these

parameters only depend on the O2-rate of the surrounding atmosphere (that di-
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rectly rules interface oxidation), which implicitly requires thermodynamic equi-

librium. The hypothesis of a uniform layer of oxidation is put forward which

yields that no radial dependence of ηS or κS is taken into account in this paper.

Due to centrifugal e�ects, a swirling �ow is generated. A distinction is

made between the (main) azimuthal �ow vθ, and the (secondary) meridian �ow

(vr, vz) (also referred to as overturning �ow in this paper). When the elec-

troconductive liquid is subjected to an outer magnetic �eld, electric current

densities are induced. Once again, the (main) components (jr, jz) (due to the

main azimuthal �ow) are distinguished from the (secondary) component jθ (due

to the secondary meridian �ow). The investigation of the interaction between

the main and secondary MHD �ows is worthwhile, because, depending on the

relative value of Ha and Re, the �ow switches from 2-D to 3-D topology. This

also greatly a�ects the surface dynamics, because if Ha≫ Re, the meridian �ow

vanishes, and only the azimuthal component of JMB is involved. Consequently,

the only relevant rheological parameter is surface shear viscosity ηS , the value

of which may dramatically a�ect the main MHD �ow [17]. On the contrary, if

the inertial e�ects are signi�cant, the radial component of JMB is brought into

play. Thus, the interface tends to stretch, and the surface dilatational viscosity

κS can also a�ect the surface dynamics. Surface rheology may then modify in

turn both the main and the secondary MHD �ows.

3.2 Geometry, governing equations, boundary
conditions

3.2.1 Geometry

The geometry of the numerical problem, along with the conditions imple-

mented at the boundaries of the calculation domains, are given in Fig. 2.

Figure 2. Geometry and boundary conditions of the channel cross-section used for numerical
computation. Note the presence of cutting lines (A) ∶ z = h0/2 and (B) ∶ r = (ri + ro)/2, used
hereafter for interpretation of the results.
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3.2.2 Bulk �ow

Electromagnetism

A potential formulation is used to describe the electromagnetic part of the

problem. The basic equations derive fromMaxwell's equations, and in particular

Ampère's law and the continuity equation, completed by Ohm's law generalized

to moving matter. Using now the de�nition of the electric potential φ and the

magnetic vector potential A⃗, with respect to the electric �eld E⃗ and magnetic

induction B⃗, at steady state:

E⃗ = −
ÐÐ→
grad (φ) , B⃗ =

ÐÐ→
curl (A⃗) , (1)

Ampère's law can be rewritten as:

ÐÐ→
curl (

ÐÐ→
curl (A⃗)) − µσv⃗ × (

ÐÐ→
curl (A⃗)) + µσ

ÐÐ→
grad (φ) = 0, (2)

and the continuity equation as:

div (µσv⃗ × (
ÐÐ→
curl (A⃗)) − µσ

ÐÐ→
grad (φ)) = 0, (3)

completed by the Coulomb gauge to de�ne uniquely A⃗, i.e. div (A⃗) = 0. Eq. (2)

and (3) are the solved electromagnetism equations.

The electromagnetic boundary conditions �rst consist of an externally ap-

plied constant axial magnetic �eld, imposed through an �in�nite� box surround-

ing the �uid area: B⃗∞ = B0e⃗z. The assumption Rm ≪ 1 yields: Bz e⃗z ∼ B0e⃗z,

throughout the entire computational domain. The result is, in terms of the

magnetic vector potential:
1

r

∂rAθ
∂r

= B0. (4)

The second electromagnetic boundary condition is the electrical insulation at

the liquid metal boundaries (side-walls, rotating �oor, and liquid/gas interface):

j⃗ ⋅ n⃗∣
fluid walls

= 0. Using Ohm's law and the low Rm assumption, this condition

is written with respect to electric potential:

σ (−
ÐÐ→
grad(φ) + v⃗ × B⃗0)∣

fluid walls
⋅ n⃗ = 0, (5)

where n⃗ is the unit normal vector at the considered boundary � see Fig. 2.

Fluid mechanics

A primitive pressure-velocity formulation is used, based on the complete set
of Navier-Stokes equations:

div (v⃗) = 0, (6)

ρ (v⃗ ⋅
ÐÐ→
grad) v⃗ = div (−pI + η(grad (v⃗) + grad

⊺

(v⃗))) + F⃗ . (7)
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The coupling term F⃗ is the Lorentz force, de�ned as F⃗ = j⃗ × B⃗, which can be

explicitly written as follows, using Ohm's law and the approximation Rm≪ 1:

F⃗ = j⃗ × B⃗0.

Let us now examine the hydrodynamic boundary conditions, starting with

the rotating �oor at the bottom of the annular channel:

v⃗(r, z = 0) = vθ(r, z = 0)e⃗θ = rΩe⃗θ for r ∈ [ri, ro] . (8)

At the inner and outer side-walls, a no-slip boundary condition is normally im-

posed for velocity. However, in order to circumvent the boundary discontinuity

between the side-walls and the rotating �oor, two matching functions are intro-

duced for the azimuthal component of velocity (see Fig. 2). These functions ap-

ply along segments of typical length δ ≪ ri, ro (indicative value: δ = 2.5 × 10−4 m)

at the inner and outer walls of the annular channel cross-section. With these

matching functions, a Couette-like pro�le is classically assumed at the matching

segments [19], which leads to:

vθ(r = ri, z) =

⎧⎪⎪
⎨
⎪⎪⎩

riΩ (1 − z
δ
) if z ∈ [0, δ] ,

0 if z ∈ ]δ, h] ,
(9)

for the inner wall and to

vθ(r = ro, z) =

⎧⎪⎪
⎨
⎪⎪⎩

roΩ (1 − z
δ
) if z ∈ [0, δ] ,

0 if z ∈ ]δ, h] ,
(10)

for the outer wall. Thus, velocity is imposed such that lubrication conditions

along the gaps are taken into account, the continuity of vθ being warranted

at the matching points z = δ at both walls. These lubrication conditions are

not simply a numerical technique. They stem from a true experimental layout,

where this gap concretely exists between a rotating dish (rotating �oor) and an

inert cover (side walls), as described in Fig. 3.

Figure 3. Lubrication gaps between the rotating �oor and the motionless side-walls, with
respect to the experimental layout (see e.g. Mannheimer et al. [12]).

The last remaining velocity boundary conditions at the liquid gas/interface

are given by the surface rheology equations, governing surface dynamics � see
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Eq. (12) and (13):

v⃗(r, z = h) = v⃗S(r) = vrS(r)e⃗r + vθS(r)e⃗θ. (11)

Dimensionless quantities

As mentioned above, when normalizing MHD equations, two scaling param-

eters emerge, i.e. Ha = B0h
√
σ/η and Re = ρΩr2

o/η. A third one can be used

instead of Re: the Stuart Number or interaction parameter: N = Ha2
/Re. Clas-

sically in MHD, a (Ha,N) formulation is favored, where N governs the actual

competition between inertial and electromagnetic e�ects. However, in this pa-

per, Ha and Re are preferred for the following reasons. First, some results are

displayed for a purely hydrodynamic �ow, meaning that N = 0, regardless of the

value of the Reynolds number. Moreover, the Couette-like layout of the prob-

lem, with an imposed velocity at the rotating �oor, makes us tend towards the

(Ha,Re) description, since the boundary condition at the bottom of the channel

is directly linked to Re through the angular speed Ω. Consequently, by moni-

toring the Reynolds number, di�erent dynamic con�gurations are described.

The bulk dimensionless quantities of interest, superscripted ⋆, are then de-

�ned as follows:

� the radial coordinate r⋆ = (r − ri)/(ro − ri);

� the axial coordinate z⋆ = z/h;

� the velocity v⃗⋆ = v⃗/V , where V = roΩ. The azimuthal component v⋆θ ,

and the meridian components (v⋆r , v
⋆

z ) allow for analysis of the main and

secondary MHD bulk �ows, respectively;

� the electric current densities: j⃗⋆ = j⃗/J , where J = σB0V . The meridian

components (j⋆r , j
⋆

z ), and the azimuthal component j⋆θ allow for analysis

of the main and secondary MHD bulk �ows, respectively;

� and �nally, the Lorentz force: F⃗ ⋆ = F⃗ /F , where F = σB2
0V . The radial

component F ⋆

θ , and the azimuthal component F ⋆

r allow for analysis of the

main and secondary MHD bulk �ows, respectively.

3.2.3 Surface �ow

Surface rheology

The boundary condition (11) brings a new unknown into play, which is
the surface velocity vθS . This stands as a �rst coupling term of the two-way
coupling between the surface and MHD bulk �ow equations. To model the
relationship between surface stress and surface strain, the Boussinesq-Scriven
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constitutive law is used (Aris [20]) to write the two following components of the
jump momentum balance (JMB):

(ηS + κS)(
d2vrS
dr2

+
1

r

dvrS
dr
−
vrS
r2

) = η
∂vr
∂z

∣
z=h

, (12)

ηS (
d2vθS
dr2

+
1

r

dvθS
dr
−
vθS
r2

) = η
∂vθ
∂z

∣
z=h

. (13)

where ηS is the surface (in-excess) shear viscosity, and κS is the surface (in-

excess) dilatation viscosity. The left-hand term of Eq. (12) represents a joint

in�uence of viscous shear and viscous dilatation along the liquid surface, while

only the surface viscous shear is present in Eq. (13). The right-hand terms

are the liquid shears vertically imposed from the supporting sub-phase, with

η, the Newtonian bulk shear viscosity. They stand as the second term of the

latter two-way coupling. Eqs. (12) and (13) are solved along the interface by

calculating their respective weak forms, with two Dirichlet end-point boundary

conditions:

vrS (r = ri) = vrS (r = ro) = vθS (r = ri) = vθS (r = ro) = 0. (14)

Scaling parameters

Normalizing Eq. (12) and (13) leads to the de�nition of two rheological

scaling parameters:

BoηS =
ηS
ηh
,BoκS

=
κS
ηh
, (15)

where BoηS and BoκS
are the surface shear and surface dilatational Boussinesq

numbers, respectively. The BoηS number describes the balance between bulk

and surface viscous shears, while BoκS
expresses the ratio between the dilata-

tional stress along the interface and the bulk viscous shear. It should be noted

that, compared to the supporting article [17], BoκS
is a new feature emerging

due to the centrifugal e�ects.

3.2.4 Numerical implementation

With respect to numerical methods, due to the basic layout of the com-

putational domain, a fully-coupled approach is implemented, based on the full

Jacobian matrix as one entity. This approach is based on the Newton-Raphson

method, which linearizes the non-linear problem based on the current solution,

at each iteration. A linear stationary direct solver is implemented to solve the

linearized problem, i.e. the MUltifrontal Massively Parallel sparse direct Solver

(MUMPS), based on LU factorization (see MUMPS support [21] for further

details).

Finally, the implemented mesh is displayed in Fig. 4a). It consists of 27,524

elements, mainly triangular, with mesh re�nement on the Galinstan domain. As
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shown in Fig. 4b), a speci�c rectangular boundary layer mesh is set up at the

boundaries of the �uid domain. Typically, the relative thickness of this layer is

set so as to be much lower than the reciprocal of the Hartmann and Reynolds

numbers, which both monitor the thickness of the physical boundary layers.

Figure 4. Mesh used for the numerical computation: a) global view, b) zoom on the boundary
layer mesh.

4 Results and interpretation

Before any extrapolation to unknown areas, numerical modelling is �rst sys-

tematically benchmarked with asymptotic cases. For the classical annular vis-

cometer layout (i.e. with no applied magnetic �eld), the �rst analytical bench-

mark takes surface viscous shearing into account, in the case of a supporting

creeping �ow (Mannheimer et al. [12]). Then, the outer magnetic �eld is added,

and the numerical results are benchmarked with the supporting 2-D analytical

study [17], which highlights the interactions between surface viscous shearing,

electromagnetism, and creeping �ow. Note that in addition to the comparison

with the present 3-D numerical study, a second 2-D numerical study is added for

the sake of multiple benchmarking, within the asymptotic limit N≫ 1 (inertial

e�ects neglected). Once these benchmarking cases have been secured, the inter-

actions between the MHD bulk �ow (with inertial e�ects) and surface rheology

(including both surface shearing and dilatation) are discussed.

4.1 Benchmarking cases

The analytical and numerical results obtained for the two asymptotic cases

previously mentioned are compared in Fig. 5. The general agreement between

all studies is quite satisfying.

Let us focus on the comparison with the benchmarking MHD analytical

study. Analytical, 2-D and 3-D numerical modellings all predict radically dif-

ferent topologies for the MHD �ows, depending on the relative values of Ha
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Figure 5. Analytical and numerical results for the annular MHD viscometer, either for purely
hydrodynamic creeping �ow (Ha = 0: a), curves --- [12], ∗, ⊗), or for Ha ≫ Re (no iner-
tia: other curves, analytical [17] or numerical modelling). The electric current densities are
normalized with respect to the maximum electric current Jmax reached in all cases, i.e. for
Ha = 50.

and BoηS . If Ha ≫ BoηS , a rigid-body motion, expressing the electromag-

netic blocking of the �ow, �rst observed by Lehnert [8], is caused by the well-

known two-dimensionality tendency of magnetic induction (see Fig. 5a), case

(Ha,BoηS) = (50,0.01)). Consequently, the interface is perfectly aligned with

the bulk, and the bulk viscous shear at the interface is no longer signi�cant.

Therefore, the electric current density is essentially con�ned to the Shercli�

layers, with two electric loops closing up near the side-walls [17].

Now, when Ha ≪ BoηS , the three modelings lead to a quite homogeneous

�motionless� con�guration (Fig. 5a), case (Ha,BoηS) = (30,1000)). This singu-

lar phenomenon is partially explained by the fact that, in this case, the surface

dynamics is governed by surface viscous shear, and behaves as a non-sliding

membrane. Thus, v⋆θ must match with the vanishing component v⋆θS along the

surface. However, this cannot solely account for the motionless layout across

the whole cross-section. Other reasons are found by focusing on the electric

current densities. Due to strong velocity gradients near the liquid/gas surface,

and to current continuity, electric current densities are now found to �ow within

the top and bottom Hartmann layers, which are therefore electrically active �

see Fig. 5b). The presence of a strong radial component of electric current den-

sity, combined with the imposed magnetic �eld B0e⃗z, leads to the emergence

of a Lorentz force −jrB0 along the azimuthal direction. This Lorentz force is

negative at the bottom, and positive at the top of the channel cross-section.

Consequently, this leads to an electromagnetic damping of the momentum in-

jected from the rotating �oor at the bottom, while it enhances momentum in

the top part of the channel. Both contributions lead to a homogenization of the
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�ow, which accounts for the overall �ow patterns.

To conclude, we con�rm that for the asymptotic case Ha≫ Re, the surface

shear Boussinesq number drives electrical activation of the Hartmann layers.

Thus, surface rheology can really monitor the magnitude of both velocity and

electric currents in the MHD core and the boundary layers, highlighting the

competitive e�ects between MHD tendency towards two-dimensionality, and

surface viscous shearing.

4.2 Inertia, MHD and surface rheology

3-D numerical modeling, the reliability of which is demonstrated from the

previous asymptotic case, can now be con�dently extrapolated to conditions

including MHD of an annular swirling �ow, coupled with surface rheology.

4.2.1 Surface viscous shear

In this section, the in�uence of surface viscous shearing only (through BoηS )

on main and secondary MHD bulk �ows is investigated, in order to complete

the analytical analysis [17]. For this purpose, the surface dilatation Boussinesq

number is set to be negligibly small: BoκS
= 10−4. In order to analyse the

surface viscous shear impact, the velocity �eld v⃗ and the Lorentz Force F⃗ with

respect to several (Re,Ha,BoηS) values are displayed in Fig. 6.

Concerning the main �ow, at a given relatively low Re value, the qualitative

e�ects of surface viscous shearing on the azimuthal velocity and Lorentz force

pro�les are essentially the same as in the previously detailed benchmarking

asymptotic case. For instance, when Re = 103 and Ha = 5, if BoηS ≪ Ha

(Figs. 6a) and b)), then the �uid �ow tends towards a rigid body motion (though

not really pronounced as Ha is not high enough) where the electric current

densities are con�ned within the (thick) Shercli� layers. If BoηS ≫ Ha (Figs. 6c)

and d)), an electromagnetic damping of the �ow is also observed (again not so

marked), and the Hartmann layers become electrically active, with a (damping)

negative Lorentz force at the bottom, and a (driving) positive Lorentz force at

the top. Finally, when the Reynolds number is increased (for instance Re = 104,

Figs. 6e) and f)), the azimuthal velocity pro�le evolution with respect to BoηS
shows an e�cient advection of the main �ow by the secondary �ow. Increasing

Ha does not provide any interesting new features.

Now, as far as the secondary �ow is concerned, it is clear from Figs. 6a)

and c) that increasing BoηS leads to �ow homogenization for (v⋆r , v
⋆

z ). When

BoηS = 10−4, i.e. when liquid surface acts similarly to a free surface, the main

vortex governing the overturning �ow is mainly located in the outer part of the

channel. When BoηS = 104, this vortex expands radially inwards throughout

the whole cross-section of the channel. This di�erence can be accounted for by
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Figure 6. BoηS impact on the velocity �eld v⃗⋆ (left part) and on the Lorentz force F⃗ ⋆ (right
part). (v⋆r , v

⋆

z) is log-scaled by the magnitude exp ((ln (∣∣(v⋆r , v
⋆

z)∣∣/∣∣(v
⋆

r , v
⋆

z)∣∣max)) / (1 + p));
p = 0.5 for a), c), e). F⃗ ⋆ is log-scaled by the magnitude exp ((ln (∣∣F⃗ ⋆∣∣/∣∣F⃗ ⋆∣∣max)) / (1 + p));
p = 1.5 for b), d), and f). For F⃗ ⋆, green arrows (when present) are essentially meridian, while
red and blue arrows correspond to signi�cantly (i.e. ∣F ⋆θ ∣ /∣∣F⃗

⋆
∣∣ ≥ 0.01) positive and negative

azimuthal components, respectively.

the nature of the boundary condition at the surface. When the latter is similar

to a free surface, the momentum injected from the rotating �oor is dissipated

in the bulk and along the sliding interface, with a signi�cant surface radial

velocity. When the liquid surface is rigid (vanishing surface velocity), it no

longer participates in viscous damping of the injected momentum. Bulk viscous

damping is therefore enhanced, leading to expansion of the main vortex inside

the sub-phase. Note that when Re varies at �xed (Ha,BoηS), overturning �ow

magnitude increases with Re, and the main vortex governing the secondary �ow

is enlarged. Momentum is then increasingly con�ned within the Ekman layers

(Fig. 6e)), resulting into a kind of well-developed helical pattern in the core �ow

for the Lorentz force (Fig. 6f)). This atypical �ow pattern is due to a signi�cant

Lorentz force radial component, in link with strong centrifugal e�ects. Finally,

note that for given (Re,BoηS) values, an increase in Ha a�ects both the meridian

velocities magnitude and the �ow topology. The main vortex governing the
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meridian �ow is increasingly diminished, due to MHD tendency towards two-

dimensionality. However, this does not change the qualitative in�uence of BoηS
on both main and swirling �ows.

4.2.2 Surface viscous dilatation

Following analysis of the impact of surface viscous shear on the overall MHD

bulk �ow, we shall now investigate the interactions between surface viscous

dilatation and the sub-phase �ow. As we focus only on the parameter BoκS
,

the surface shear Boussinesq number is set to be negligibly small in this section:

BoηS = 10−4. In order to analyse the surface viscous dilatation impact, the

velocity �eld v⃗ and the Lorentz Force F⃗ with respect to several (Re,Ha,BoκS
)

values are displayed in Fig. 7.

Figure 7. BoκS impact on the velocity �eld v⃗⋆ (left part) and on the Lorentz force F⃗ ⋆ (right
part). (v⋆r , v

⋆

z) is log-scaled by the magnitude exp ((ln (∣∣(v⋆r , v
⋆

z)∣∣/∣∣(v
⋆

r , v
⋆

z)∣∣max)) / (1 + p)); a),
c): p = 0.5, e): p = 1. F⃗ ⋆ is log-scaled by the magnitude exp ((ln (∣∣F⃗ ⋆∣∣/∣∣F⃗ ⋆∣∣max)) / (1 + p));
p = 1.5 for b), d), and f). For F⃗ ⋆, green arrows (when present) are essentially meridian, while
red and blue arrows correspond to signi�cantly (i.e. ∣F ⋆θ ∣ /∣∣F⃗

⋆
∣∣ ≥ 0.01) positive and negative

azimuthal components, respectively.

Figs. 6a) and 7a) for velocity (respectively 6b) and 7b) for Lorentz force)
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are compared to analyse surface dilatation impact on the main MHD �ow. An

increase in BoκS
does not seem to alter signi�cantly the main MHD �ow for

these (Re,Ha) values, the azimuthal components of both velocity and Lorentz

force remaining quite unchanged. It seems that the main �ow is less e�ciently

advected by the secondary �ow.

This observation is con�rmed by turning to analysis of the secondary �ow

for the same (Re,Ha) values. Contrary to what is observed for BoηS , in this

case the main vortex governing the secondary �ow slightly decreases when BoκS

increases (comparison between Figs. 6a) and 6a)). This phenomenon is quite

unexpected, because for the secondary �ow, the boundary condition at the liq-

uid surface along the radial direction is the same both in the case of an in�nite

value for BoηS and for BoκS
, i.e. a vanishing v⋆rS (where the interface is sim-

ilar to a non-sliding wall, see Eq. (12)). However, as BoηS also governs the

azimuthal boundary condition for the main �ow, when the surface viscous shear

is very high, the main azimuthal �ow must also match with a vanishing v⋆θS
(see Eq. (13)). Consequently, de�ection of momentum at the interface is com-

plete, favoring expansion of the main overturning vortex as mentioned above

(Fig. 6c)). For surface dilatation, even when BoκS
greatly increases, it has no

direct consequence on the boundary condition v⋆θS for the main �ow. Therefore,

for BoκS
= 104, the overturning �ow must match with a vanishing value of v⋆rS ,

whereas the main �ow remains unchanged at the vicinity of the interface (with

a �xed BoηS = 10−4). This favors slight damping of the main vortex governing

the secondary �ow near the interface.

Now, when the (Re,Ha) values are increased, some interesting new features

appear. Similarly to what is observed for the BoηS section, when Re increases at

�xed (Ha,BoκS
), overturning �ow magnitude increases with Re, and the main

vortex governing the secondary �ow is enlarged (Fig. 7c)), favoring main �ow

advection. The Hartmann layers remaining electrically inactive, the Lorentz

force is essentially electromotive, following the variations of v⋆r (Fig. 7d)).

However, contrary to the previous section, an increase in Ha really mod-

i�es the qualitative in�uence of BoκS
on the swirling �ow. Concerning the

azimuthal velocity, two distinct areas can be distinguished in Fig. 7d), as sum-

marised in Fig. 8. For the inner part of the cross section, where the velocity

magnitude is lower, the inertial e�ects are weak compared to the electromag-

netic e�ects. Consequently, the electromagnetic blocking observed previously in

the 2-D benchmarking case predominates. For the outer part, inertia becomes

signi�cant, and the advection of v⋆θ by the overturning �ow is strong. Concern-

ing the secondary �ow, the emergence of new �ow patterns is observed, and a

counter-rotating vortex appears. The mainly electromotive Lorentz force fol-

lows this �ow patterns, with a sudden change of sign along the radial direction

in the counter-rotating vortex area (Fig. 7f)).

The emergence of this new vortex seems to stem from a purely hydrodynamic
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Figure 8. The two separate �ow areas with distinct preponderant physical mechanisms, due
to surface viscous dilatation, for (Re,Ha,BoκS ) = (10

4,5,104). r⋆T corresponds to the transi-
tional radial position.

phenomenon. There are several hints endorsing this assumption. First, the

radial Lorentz force in this area is found to be always oriented in the opposite

direction to the velocity �eld, due to the Lenz principle. The purely electro-

motive radial component of Lorenz force only results in electromagnetic braking

of this counter-rotating �ow, and as such, cannot generate this new vortex.

Besides, the emergence of this new vortex seems to be directly related to

the pro�le of the curl of the centrifugal force, ∂v⋆2
θ /∂z⋆, in area II, as shown

in Fig. 9. When BoκS
= 10−4, this term is everywhere positive, giving rise to

the single main vortex ruling the swirling �ow. When BoκS
= 104, this term

is oscillating, and the changes of sign are strongly linked to the emergence of

counter-rotating vortices.

Figure 9. The curl of the centrifugal force in Area II. r⋆T corresponds to the transitional radial
position of Fig. 8.

Finally, a purely hydrodynamical (Ha = 0) calculation has been performed,

by keeping only Area II for the calculation domain. The inner wall bound-

ary condition is modi�ed as such: the velocity pro�le at r⋆ = r⋆T resulting from
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previous MHD calculations is imposed at this �uid boundary. Despite some

quantitative di�erences (due to the lack of Lorentz force for instance), the qual-

itative aspect of the �ow patterns observed in Fig. 8 is consistently found in this

hydrodynamical calculation.

Consequently, it is the coincidence of the values of the three parameters

(Re,Ha,BoκS
) that leads to this original �ow pattern: su�ciently high Ha and

BoκS
values enhance electromagnetic blocking of the �ow in the inner part of

the channel (by damping the main vortex governing the secondary �ow, thus

enhancing the rigid-body motion), whereas a high Re number allows inertial

e�ects to predominate in the outer part of the cross-section. The geometrical

con�guration of the �ow is therefore greatly modi�ed, with the centrifugal �ow

concentrated against the outer wall, leading to the hydrodynamic development

of the latter new counter-rotating vortex.

Conclusion

To complete the mathematical approach presented in a companion paper [17],

which focused only on the interaction between surface viscous shear and a sup-

porting annular MHD �ow with no inertia, the overall coupling mechanism

between the full viscous rheology of the liquid surface (including surface dilata-

tion) and a supporting annular MHD �ow (taking inertial e�ects into account)

is successfully investigated in this paper.

This paper shows how a change in the mechanical properties of a �uid inter-

face can greatly in�uence a MHD core �ow. Moreover, it is proved that shear

and dilatational viscosities of the surface do not generate the same changes. On

the one hand, viscous shearing of the interface actively modi�es the main annu-

lar �ow by means of the Hartmann layers, which become electrically active. A

damping is clearly demonstrated, as is also a 2-D MHD tendency. On the other

hand, the dilatational viscosity of the interface is only responsible for damping

the overturning �ow driven by centrifugation, with a new pattern if inertia and

electromagnetic blocking are both signi�cant.

From an experimental viewpoint, the use of a strong magnetic �eld would

allow selective measurement of the surface shear viscosity, ηS . Then, this paper

shows that depending on the values of Re and Ha, di�erent �ow patterns are

observed, allowing a possible measurement of surface viscous dilatation, κS .

The latter should be more easily determined at relatively high Re, for moderate

Ha values.
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