
PARAMETRIC ANALYSIS OF THE NONLINEAR BEHAVIOR OF ROTATING
STRUCTURES

L. Xie1,2,3, S. Baguet1, B. Prabel2,3 and R. Dufour1

1 Université de Lyon, CNRS, INSA-Lyon, LaMCoS, UMR5259, 69621 Villeurbanne, France

E-mail: sebastien.baguet@insa-lyon.fr, regis.dufour@insa-lyon.fr
2 CEA-Saclay, DEN,DANS,DM2S,SEMT,DYN, 91191 Gif-sur-Yvette, France

E-mail: lihan.xie@insa-lyon.fr, benoit.prabel@cea.fr
3 IMSIA, UMR 9219 CNRS-EDF-CEA-ENSTA, Université Paris Saclay, 91762 Palaiseau Cedex, France

Abstract: An efficient frequency-domain method is presented for the rapid parametric analysis of stability changes in nonlinear

rotating systems which are modeled by three-dimensional finite elements. This method provides directly the stability bound-

ary with respect to parameters such as the system nonlinearity or excitation level. Firstly, the response curve is calculated by

combining Harmonic Balance Method and continuation. Then stability of equilibrium solutions is determined thanks to Lya-

punov exponents. The singular points where a stability change often arises are detected with the sign change of the Jacobian

determinant and then located through a penalty method that increases the solving equation system by a completing constraint.

Tracking these points, which provides an efficient way to analyze parametrically the nonlinear behavior of a system, can be

fulfilled, once again, by the continuation technique.
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1 Numerical methods

Basic rotordynamics modeling is a classical and efficient way to design and predictive maintenance in most

industrial applications. However, when we have to take into consideration of non-linearity, such as a crack, rotor-

stator contact, hydrodynamic bearing, etc, a three-dimensional finite element model will define more precisely the

geometry and the interaction of system. Due to the large number of DOFs and the broad range of study frequency,

the computation time can be quite prohibitive. The Harmonic Balance Method (HBM) is thus employed due to its

efficiency in predicting steady state behavior. The nonlinear differential equation is transformed into a nonlinear

algebraic equation system :

R(X, ω) = Z(ω)X + FNL(X)− P(ω) = 0 (1)

where Z = diag(K,Z1, ..Zk, ..ZN ) with Zk =

[

K − k2ω2M ωC

−ωC K − k2ω2M

]

,M,C,K are generalized mass,

damping and gyroscopic, and stiffness matrices of finite element model, ω is the excitation frequency, FNL and

P are vectors of harmonic coefficients for nonlinear forces and excitation forces. With the help of continuation

method, all dynamic equilibrium solutions of nonlinear systems are determined.

Then, determining the local stability of a periodic solution is particularly interesting in an engineering context

since only stable solutions are experimentally encountered. Moreover, a change in the stability can lead to signifi-

cant, qualitative, and possibly dramatic changes in the system response. Therefore, Lyapunov exponents which are

eigenvalues of Jacobian are sought for stability analysis of periodic solutions.

In order to assess the influence of parameters on the dynamic behavior in a more economic way, the direct

parametric analysis is necessary for numerical investigation of nonlinear systems. Singular points which include

the limit (turning) points (LP), branch points (BP), Neimark-Sacker bifurcation points(NS), are often accompanied

by a change of stability. Here, the Neimar-Sacker bifurcation points are Hopf bifurcation points for the algebraic

system (1).

By definition, a limit point appears when the Jacobian possesses a zero eigenvalue. The determinant of the

Jacobian matrix is thus monitored since its sign change indicates whether a limit point or a bifurcation point has

emerged. Then, if the determinant of augmented Jacobian (includes continuation) is nil, a branch point (BP) has

appeared, otherwise, it is a limit point (LP). In the mean time, a Neimark-Sacker bifurcation point occurs when a

pair of complex conjugate eigenvalues crosses the imaginary axis of the complex plane. The singular points can

be located by adding a new constraint equation which characterizes the points to the solving system.

Next, applying once again the continuation method to the augmented system brings about direct tracking

of singular points as a function of nonlinear parameters or excitation level. Thus, parametric analysis of the

nonlinear behavior of a dynamical system is achieved, the stability boundary or regime change boundary is directly

determined.
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2 Numerical applications - Nonlinear Jeffcott rotor

The first test case is a modified Jeffcott rotor which can come into contact with a stator that is modeled as an

added stiffness [Jiang (2009)]. The equations of motion are the following

mẍ+ cẋ+ kx+ kc(1 −
h

r
)(x − µysign(vrel)) = pbω

2cosωt

mÿ + cẏ + ky + kc(1 −
h

r
)(µxsign(vrel) + y) = pbω

2cosωt

(2)

where kc is the stiffness of contact surface, h is the clearance between the rotor and the stator, r =
√

x2 + y2 is

the radial displacement, pb is the unbalance amplitude and vrel is the relative velocity between the rotor and the

stator at the contact point. When r < 0, there is no rub between the rotor and the stator, kc = 0.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.2  0.4  0.6  0.8  1  1.2

A
m

pl
itu

de
 / 

ga
p

Excitation frequency ω / ω0

Stable periodic
Unstable periodic

Stable quasi−periodic
Limit point

Neimark−Sacker

0.
15

4

0.
85

0.
28

9

no
 ru

b

full annular

rub motion

pa
rti

al 
ru

b 
m

ot
ion

no rub

Figure 1: Forced response curve of Jeffcott rotor for µ =
0.2

Assessments are carried out with the friction co-

efficient µ as the varied parameter. The eigenvalues

of Jacobian help to locate the singular points by their

characteristic (limit point and Neimark-Sacker point as

shown in Fig.1) while the stability assessment gives in-

formation for stable and unstable solutions (solid line

and dotted line). The calculation in Fig.1 is carried out

with a friction coefficient µ = 0.2. Before the dimen-

sionless excitation frequency reaches 0.154, there is no

contact between the rotor and the stator. Then syn-

chronous full annular rub occurs when the vibration

exceeds the rotor-stator initial clearance. Next, when

the frequency is beyond 0.289, quasi-periodic partial

rub is the only stable motion of the rotor. The intersec-

tion point is a Neimark-Sacker bifurcation point. Sev-

eral forced response curves for different friction coefficient values are calculated and plotted in 3D as shown in

Fig.2. As observed, the Neimark-Sacker points have marked the motion change (from periodic to quasi-periodic

motion), while the limit points distinguishes the stability change (on the range of µ < 0.11).
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Figure 2: Forced response curve of Jeffcott rotor for

several friction coefficient values
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Figure 3: Limit point tracking and Neimark-Sacker

point tracking of Jeffcott rotor as a function of friction

coefficient µ

The method presented here calculates at first the forced response for a fixed µ, once a singular point is detected

and located, the continuation technique with the varying parameter µ is added to the solving system so that all

the limit points (or the Neimark-Sacker points) are determined directly. The tracking costs as little as one forced

response calculation. The example here has demonstrated the efficiency of the presented method for behavior

analysis of nonlinear rotating system.

Numerical developments are fulfilled in both Matlab and Cast3m [CAST3M (2014)], paving the way for ap-

plication of the method to the nonlinear dynamics of rotors modelized with 3D finite elements.
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