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Abstract 
Review on PYCARD, with data on DNA/RNA, on 
the protein encoded and where the gene is 
implicated. 

Identity 
Other names: ASC, CARD5, TMS, TMS-1, TMS1 

HGNC (Hugo): PYCARD 

Location: 16p11.2 

DNA/RNA 
Description 
3 exons spanning 1.4 kb, with a CpG island 
surrounding exon 1 (Conway et al., 2000; Gerhard 
et al., 2004; Ota et al., 2004). Exon 1 encodes a 
pyrin domain (PYD), exon 2 encodes a proline and 
glycine-rich (PGR) domain, and exon 3 encodes a 
caspase recruitment domain (CARD) (Masumoto et 
al., 1999; Matsushita et al., 2009). 

Protein 
Description 
PYCARD is composed of two protein-protein 
interaction domains: an N-terminal pyrin domain 
(PYD) and a C-terminal caspase-recruitment 
domain (CARD). The PYD and CARD domains are 
structurally independent six-helix bundle motifs 
connected by a 23-residue proline and glycine-rich 
(PGR) linker domain (Martinon et al., 2000; Bertin 
et al., 2001; de Alba, 2009; Matsushita et al., 2009).  
There are 4 transcripts (splice variants) including 
the canonical PYCARD (PYCARD1) (Matsushita 
et al., 2009; Bryan et al., 2010). Correlating to four 
transcript splice variants are four protein isoforms. 

In addition to the canonical PYCARD protein (also 
known as isoform 1, fASC), three additional 
isoforms display unique capabilities with respect to 
their function as part of the inflammasome, with 
one of the isoforms even showing an inhibitory 
effect. Isoforms 1 and 2 are the activating isoforms 
of ASC and co-localize with intracellular nucleotide 
oligomerization domain-like receptors (NLRs) and 
caspase-1. Isoform 2 (also known as ASC-b, vASC) 
lacks a PGR domain and may not be needed for 
caspase activation but is involved in direct 
regulation of IL-1β processing.  
The inhibitory isoform (isoform 3, ASC-c) co-
localizes only with caspase-1, but not with NLRP3. 
Isoform 4 (ASC-d) does not co-localize with 
NLRP3 or with caspase-1 and lacks the ability to 
function as an inflammasome adaptor.  
It may not be a functional protein product and its 
precise function and relation to PYCARD is 
unknown (Matsushita et al., 2009; Bryan et al., 
2010).  
PYD is also known as the domain in apoptosis and 
interferon response (DAPIN) or the pyrin, AIM, 
ASC death-domain-like (PAAD) domain. It is an 
80-100 residue domain with alpha-helical 
secondary structure located on the N-terminus of 
the protein. Like CARD, it is a member of the death 
domain-fold superfamily of proteins.  
Strong dipole moments in PYD suggest that 
electrostatic interactions play an important role for 
the binding between PYDs.  
The function of PYD is to bind other PYD-
containing proteins and is also associated with 
domains such as CARD, leucine-rich repeat (LRR), 
dual specificity spore lysis A (splA) protein kinase 
and ryanodine receptor (SPRY), caspase, or zinc-
finger B-box (Martinon et al., 2001; Pawlowski et 
al., 2001; Liepinsh et al., 2003).  
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CARD is a subclass of protein motif known as the 
death fold, which features an arrangement of six to 
seven antiparallel alpha helices with a hydrophobic 
core and an outer face composed of charged 
residues. The CARD structure of PYCARD reveals 
two distinctive characteristics; helix 1 is not 
fragmented as in all other known CARDs; and it 
demonstrates a uniform distribution of positive and 
negative charges, whereas these are commonly 
separated into two areas in other death domains (de 
Alba, 2009).  
CARD mediates the interaction between adaptor 
proteins participating in apoptosis by regulating 
caspases. CARD-containing proteins are also 
involved in inflammation through their regulation 
of nuclear factor kappa-light-chain-enhancer of 
activated B cells (NF-κB). The mechanisms by 
which CARDs activate caspases and NF-κB involve 
the assembly of multi-protein complexes, which 
can facilitate dimerization or serve as scaffolds on 
which proteases and kinases are assembled and 
activated. Domains associated with CARD include: 
PYD, Apoptotic protease activating factor-1 (Apaf-
1) domains [including LRR, Tryptophan-Aspartic 
acid (WD or beta-transducin) repeats, nucleotide 
binding and oligomerization (NB-ARC or NOD) 
domains and ATPase domains], sarcoma (Src) 
tyrosine kinase proto-oncogene homology domains, 
death domain (DD) and the proform of caspases 
(e.g., CASP-9) (Hofmann et al., 1997; Bouchier-
Hayes and Martin, 2002; Reed et al., 2004).  
The PGR linker adopts a residual structure in order 
to maintain a back-to-back orientation of the PYD 
and CARD domains, which avoids steric 
interference of one domain with the binding site of 
the other. NMR relaxation experiments show that 
the linker is flexible despite the residual structure 
(de Alba, 2009). 

Expression 
Silencing of PYCARD correlates with 
hypermethylation of the CpG island surrounding 
exon 1. Breast cancer cell lines exhibit complete 
methylation of PYCARD and do not express 
PYCARD mRNA, whereas overexpression of 
PYCARD inhibits the growth of breast cancer cells 
(Conway et al., 2000).  
In normal fibroblasts, the CpG island of the 
PYCARD gene is composed of an unmethylated 
domain with distinct 5-prime and 3-prime 
boundaries. De novo or aberrant methylation of the 
PYCARD CpG island in cells is accompanied by 
localized hypoacetylation of histone H3 and H4 and 
gene silencing (Stimson and Vertino, 2002). 

Localisation 
Cytoplasm, endoplasmic reticulum, mitochondrion, 
nucleus.  

PYCARD forms hollow spherical aggregates near 
the perinuclear space of apoptotic cells (McConnell 
and Vertino, 2000). PYCARD also tends to self-
aggregate during in vitro apoptosis induced by 
retinoids, etoposide and other anti-tumor drugs 
(Masumoto et al., 1999).  
PYCARD is localized primarily in the nucleus in 
resting monocytes/macrophages but rapidly 
redistributes to the cytoplasm, perinuclear space, 
endoplasmic reticulum and mitochondria upon 
pathogen infection and subsequent inflammasome 
activation (Bryan et al., 2009; Zhou et al., 2011). 

Function 
PYCARD is known to interact with a variety of 
inflammatory and cell death-related genes including 
NLRs (NLRP1-14, NLRC4 [IL-1β converting 
enzyme protease-activating factor (IPAF)], Absent 
in Melanoma 2 (AIM2); caspase-1, caspase-2, 
caspase-3, caspase-5, caspase-8, caspase-9, 
caspase-12; pyrin; pyrin-only protein (POP) 1 and 
pyrin-only protein (POP) 2; cAMP-dependent 
protein kinase type I-alpha regulatory subunit 
(PRKAR1A); AP-1; serum response factor. There 
are 75 genes known to be induced by PYCARD. A 
large proportion of them are related to transcription 
(23%), inflammation (21%), or cell death (16%) 
(Hasegawa et al., 2009). 
Inflammation  
PYCARD is an adaptor protein involved in the 
structure and function of inflammasomes. 
Inflammasomes are pattern recognition receptors 
characteristically composed of an NLR, ASC and 
caspase-1 and are responsible for production of pro-
inflammatory cytokines, in particular IL-1β and IL-
18. There are several subtypes of inflammasomes 
that recognize a diverse array of microbial, 
endogenous, and environmental danger signals 
(Agostini et al., 2004; Mariathasan et al., 2004; 
Muruve et al., 2008; Fernandes-Alnemri et al., 
2009; Hornung et al., 2009; Zhou et al., 2011; Dunn 
et al., 2012).  
Mounting evidence indicates that inflammasomes 
and PYCARD also elicit non-overlapping 
inflammatory functions. PYCARD interaction with 
NLRC4 regulates both apoptosis via caspase-8 and 
NF-κB activation via PYD. PYCARD can inhibit or 
activate NF-κB through PYD interactions with the 
NF-κB IKK complex (Stehlik et al., 2002; 
Masumoto et al., 2003; Sarkar et al., 2006; 
Fernandes-Alnemri et al., 2007; Hasegawa et al., 
2009; Hornung et al., 2009; Taxman et al., 2011).  
PYCARD is also associated with inflammasome-
independent transcriptional activation of cytokines 
and chemokines via activator protein-1 (AP-1), NF-
κB, mitogen activated protein kinase (MAPK) and 
caspase-8 (Taxman et al., 2006). In pathogen-
infected cells, PYCARD regulates MAPK  
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phosphorylation by pathogens and Toll-like 
receptor (TLR) agonists via suppression of the 
dual-specificity phosphatase (DUSP10/MKP5), and 
independent of caspase-1 and IL-1β; thus 
demonstrating a function for ASC that is distinct 
from the inflammasome in modulating MAPK 
activity and chemokine expression (Taxman et al., 
2011). 
Adaptive immunity  
PYCARD may play an inflammasome-independent 
role in driving dendritic cells to stimulate T-cell 
priming for the induction of antigen-specific 
cellular and humoral immunity. Dendritic cell 
maturation stimuli activate caspase-1 in human 
dendritic cells. Inhibition of PYCARD and 
cathepsin B markedly diminishes the capacity of 
mature dendritic cells to stimulate antigen-specific 
T cells. The defective ability of PYCARD or 
cathepsin B-deficient dendritic cells to stimulate T 
cells is independent of inflammasome-mediated 
processing of inflammatory cytokines or priming of 
dendritic cells with pre-processed 
lipopolysaccharide (Guo and Dhodapkar, 2012). 
On the other hand, PYCARD may also play an 
inflammasome-independent role in antigen-specific 
inflammatory disease. Mice genetically modified to 
lack both PYCARD alleles [ASC (-/-)] are 
protected from collagen-induced arthritis, whereas 
mice lacking Nlrp3 and caspase-1 are susceptible to 
collagen-induced arthritis. This may result from an 
inability of dendritic cells to facilitate antigen-
specific activation of lymphocytes in mice lacking 
PYCARD. Furthermore, antigen-induced 
proliferation of purified T cells lacking PYCARD 
[ASC (-/-)] is restored upon incubation with wild 
type dendritic cells, but not when cultured with 
ASC (-/-) dendritic cells (Ippagunta et al., 2010). 
Cell death (apoptosis, pyroptosis, necrosis)  
PYCARD promotes caspase-mediated inhibition of 
cellular proliferation, DNA fragmentation and 
apoptosis via caspases including caspase-2/3/8 and 
9 to activate the mitochondrial apoptotic pathway. 
The mechanism likely involves mitochondrial 
translocation of BAX, proteolytic maturation of 
BID and upregulation of the p53 response to cell 
stress or genotoxic insult (McConnell and Vertino, 
2000; Ohtsuka et al., 2004; Hasegawa et al., 2007). 
PYCARD may also increase the susceptibility of 
leukemia cell lines to apoptotic stimuli by 
anticancer drugs (Masumoto et al., 1999).  
PYCARD is involved in macrophage pyropoptosis 
(inflammatory cell death) which is characterized by 
potassium efflux and/or decreased intracellular 
potassium. The interaction of AIM2 with PYCARD 
leads to the formation of the pyroptosome, which 
induces pyroptotic cell death in response to 
cytoplasmic DNA in cells containing caspase-1 
(Fernandes-Alnemri et al., 2007; Fernandes-
Alnemri et al., 2009).  

PYCARD also mediates cellular necrosis 
(pyronecrosis) in concert with NLRP3 and 
cathespin to cause programmed necrotic cell death 
that is independent from pyroptosis and does not 
require caspase-1 (Willingham et al., 2007; Satoh et 
al., 2013). 

Implicated in 
Cancer 
Anti-cancer immunity 
Note 
ATP released by dying tumor cells activates P2RX7 
receptors on dendritic cells, which triggers 
NLRP3/ASC (PYCARD)/ caspase-1 
inflammasome-dependent IL-1β production and 
subsequent dendritic cell-mediated priming of 
tumor antigen-specific CD8+ T-cell production of 
IFN-γ (Aymeric et al., 2010). 

Melanoma 
Note 
ASC has a dual role in melanoma progression via 
differential regulation of NF-κB activity and IL-1β 
processing. In primary melanoma, relatively high 
levels of ASC expression inhibit NF-κB activity 
and IL-1β transcription, with net inhibition of 
tumorigenesis. In metastatic melanoma, however, 
aberrant methylation results in decreased levels of 
ASC. The relative paucity of ASC protein in these 
cells, as well as assembly of a constitutionally 
active ASC-dependent inflammasome, may result 
competition among various pathways for a limited 
supply of ASC, with a net result of decreased 
inhibition of NF-κB, a positive feedback loop of IL-
1 signalling and a pro-tumorigenic effect (Guan et 
al., 2003; Okamoto et al., 2010; Liu et al., 2013). 

Skin squamous cell carcinoma 
Note 
ASC expression is reduced in squamous cell 
carcinoma. Tissue-specific analysis of a murine 
model of squamous cell carcinoma reveals that 
ASC has opposing functions: ASC acts as an 
inflammasome-independent p53-dependent tumor 
suppressor in keratinocytes while functioning as an 
inflammasome-dependent tumor promoter in 
dendritic cells (Drexler et al., 2012). 

Colorectal cancer 
Note 
ASC expression sensitizes colorectal cancer cells to 
chemotherapeutic agents, resulting in 
inflammasome-independent cell death via 
mitochondrial reactive oxygen species and janus-
kinase signalling. Methylation and silencing of 
ASC in colorectal cancer cells confers resistence to 
cell death by DNA-damaging chermotherapeutics 
(Riojas et al., 2007; Hong et al., 2013). 
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NLRP3/ASC-dependent caspase-1 activity is 
critical for IL-18-mediated IFN-γ-dependent 
STAT1 tumor suppression of colorectal cancer 
triggered by chronic inflammation (Allen et al., 
2010; Dupaul-Chicoine et al., 2010; Zaki et al., 
2010).  
On the other hand ASC-dependent caspase-1 
activity has a tumorigenic effect via IL-6 and 
STAT3 in response to microbial induction of aryl 
hydrocarbon receptors in the cecum (Ikuta et al., 
2013). 

Breast cancer 
Note 
Epigenetic silencing of TMS1 (PYCARD, ASC) 
results in failure of breast cancer cells to undergo 
BIM- and caspase-8-dependent apoptosis (anoikis) 
after detachment from the extra-cellular matrix 
(Parsons and Vertino, 2006; Parsons et al., 2009). 

Prostate cancer 
Note 
Interferons induce expression of the cytosolic 
DNA-sensing AIM2/ASC inflammasome in normal 
human prostate cells. AIM2 mRNA levels are 
higher in benign prostate hyperplasia (BPH) cells 
than in normal prostate tissue. AIM2 mRNA levels 
are lower, however, in prostate cancer cells relative 
to BPH cells (Ponomareva et al., 2013).  
Aberrant methylation and reduced expression of 
ASC occurs in prostate cancer cell lines and is 
associated with more aggressive disease (Collard et 
al., 2006; Das et al., 2006). 

Glioblastoma 
Note 
Glioblastoma astrocytes aberrantly methylate ASC 
resulting in decreased ASC expression relative to 
normal human brain tissue. Decreased ASC 
expression may be associated with decreased 
patient survival and progression from grade III to 
grade IV glioma (Stone et al., 2004). 

Lung cancer 
Note 
Hypermethylation of the ASC promoter with 
reduced ASC expression occurs in primary lung 
cancer and is correlated with progression and 
metastasis of human lung adenocarcinoma. ASC 
hypermethylation in sputum DNA correlates with a 
high risk of lung cancer (Machida et al., 2006). 

Promyelocytic leukemia 
Note 
Promyelocytic leukemia protein (PML) limits ASC 
function and relegates ASC to the nucleus, limiting 
inflammasome activation and IL-1β production in 
bone marrow macrophages (Dowling et al., 2014). 
Another study, using a genetically distinct murine  

model, found that PML enhances NLRP3 
inflammasome assembly and production of IL-1β, 
but did not specifically examine interactions 
between PML and ASC (Lo et al., 2013). 

Inflammatory diseases 
Atopic dermatitis 
Note 
Downregulation of NLRP3/ASC inflammasome 
function in atopic dermatitis may predispose 
patients to Staphylococcus aureus superinfection 
(Niebuhr et al., 2014). 

Psoriasis 
Note 
AIM2, ASC, caspase-1, and caspase-5 expression is 
upregulated in psoriatic skin lesions (Dombrowski 
et al., 2011; Kopfnagel et al., 2011; Salskov-Iversen 
et al., 2011). 

Contact dermatitis 
Note 
Ultraviolet (UV) light triggers cutaneous 
production of uric acid with demonstrated effects 
on the NLRP3/ASC/caspase-1 inflammasome and 
varying impact on immunity and carcinogenesis. 
The NLRP3/ASC inflammasome contributes to a 
caspase-dependent IL-1β hypersensitivity response 
(Watanabe et al., 2007).  
Allopurinol (a xanthine oxidase inhibitor of uric 
acid production) prevents UV-induced NLRP3 
upregulation but not UV-induced ASC 
downregulation (Leighton et al., 2013). 

Pyogenic arthritis, pyoderma 
gangrenosum, and acne (PAPA) 
syndrome 
Note 
Alterations in ASC as well as upstream and 
downstream components of the inflammasome 
pathway are involved in a variety of inflammatory 
skin diseases.  
Hereditary mutations in proline serine threonine 
phosphatase-interacting protein [PSTPIP1, or CD2-
binding protein 1 (CD2BP1)], which regulates 
pyrin and is involved in filament organization, may 
activate NLRP3-independent ASC/caspase-1 
activity, resulting in the persistent IL-1β secretion 
implicated in PAPA syndrome (Shoham et al., 
2003; Waite et al., 2009). 

Familial mediterranean fever 
Note 
Similar to the PAPA syndrome, gain of function 
mutations in the pyrin-encoding MEFV gene result 
in ASC-dependent, NLRP3-independent, caspase-
1-mediated activation of IL-1β (Waite et al., 2009; 
Chae et al., 2011; Franchi and Núñez, 2011). 
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Inflammatory bowel disease 
Note 
ASC triggers caspase-driven enteric neuronal cell 
death in response to inflammatory driven ATP 
activation of P2X7R and pannexin channels 
(Gulbransen et al., 2012).  
Alterations in the NLRP6 inflammasome pathway 
including ASC, caspase-1 and IL-18 may contribute 
to the etiology of human inflammatory bowel 
disease (Elinav et al., 2011). 

Metabolic diseases including: gout, 
rheumatoid arthritis, diabetes 
mellitus and atherosclerosis 
Note 
Macrophages, TLRs, NLRs and other components 
of the innate immune system play a role in the 
etiology of a variety of metabolic inflammatory 
diseases.  
Dysregulated ATP, lipid, urate and glucose 
metabolism disrupts microtubule polymerization, 
inflammasome assembly and proinflammatory 
cytokine production. Tubulin polymerization is 
critical for mitochondrial transport and 
inflammasome assembly by allowing for 
juxtaposition of ASC with NLRP3 in the cytosol 
(Martinon et al., 2006; Griffith et al., 2009; 
Ippagunta et al., 2010; Wen et al., 2011; Lu et al., 
2012; Wen et al., 2012; Akira et al., 2013; Benetti 
et al., 2013; Grant and Dixit, 2013; Jourdan et al., 
2013; Lee et al., 2013). 

Infectious diseases 
Anthrax 
Note 
Anthrax lethal toxin triggers the formation of ASC-
dependent NLRC4, NLRP3 and AIM2, but not 
NLRP1-dependent processing of caspase-1 with 
subsequent autoproteolysis and IL-1β secretion in 
murine macrophages (Nour et al., 2009; Lu et al., 
2012; Van Opdenbosch et al., 2014). The 7-
desacetoxy-6,7-dehydrogedunin (7DG) small 
molecule has been shown to protect macrophages 
from anthrax lethal toxin. 7DG inhibits protein 
kinase R, which is has a role in ASC assembly, 
caspase-1 activation and macrophage pyroptosis 
(Hett et al., 2013). 

Chlamydia trachomatis 
Note 
Chlamydia trachomatis, an obligate intracellular 
bacteria, triggers secretion of IL-1β secretion in 
human trophoblasts via Nod1 but independent of 
Nalp3 (NLRP3) inflammasomes (Kavathas et al., 
2013). Murine macrophages lacking ASC display 
prolonged courses of infection with Chlamydia 
muridarum, associated with reduced IL-18 
production as well as T cell recruitment and 

proliferation but exhibit normal levels of IL-1β 
secretion and no change oviduct pathology, 
suggesting ASC has an IL-1-independent role in 
adaptive immunity during genital chlamydial 
infection (Nagarajan et al., 2012).  
Cervical epithelial cells, however, are the preferred 
host medium for Chlamydia trachomatis and these 
cells do not normally produce IL-1β.  
Infection by Chlamydia trachomatis activates 
NLRP3/ASC/caspase-1 which instead alters lipid 
metabolism by caspase mediated fragmentation of 
the Golgi apparatus diversion of Golgi lipids to the 
Chlamydia intracellular inclusion.  
This provides an optimal growth environment for 
intracellular chlamydia and blocking casapase-1 in 
these cells can inhibit chlamydial infection by 
~60% (Abdul-Sater et al., 2009). 

Chlamydia pneumonia 
Note 
Chlamydia pneumonia is a significant cause of 
atypical pneumonia and inflammatory diseases 
including asthma and COPD, infects alveolar 
macrophages. IL-1β secretion depends on 
Chlamydia pneumonia entry into murine 
macrophages with subsequent protein synthesis 
resulting in mitochondrial dysfunction, 
NLRP3/ASC/Caspase-1 activation, and IL-1β 
secretion.  
This suggests an important role for ASC in clearing 
Chlamydia pneumonia infection as well as chronic 
inflammatory diseases affecting the airway (He et 
al., 2010; Shimada et al., 2011). 

Escherichia coli 
Note 
Enterohemorrhagic E. coli (EHEC) O157:H7 
enterohemolysin (Ehx) triggers 
NLRP3/ASC/caspase-1-dependent production of 
IL-1 in THP-1 macrophages (Zhang et al., 2012). 
As with salmonella, double-stranded RNA-
dependent protein kinase (PKR, EIF2AK2) 
interacts with ASC and other inflammasome 
components including NLRP3, NLRP1, NLRC4 
and AIM2 to trigger caspase-1-dependent IL-1β 
production and pryopoptosis in E. coli-infected 
macrophages IL-1β (Lu et al., 2012).  
Extracellular infection, however, requires ATP co-
stimulation of the P2X7 receptor and potassium 
efflux for NLRC4/ASC-driven caspase-1 activation 
in macrophages (Franchi et al., 2007a). 

HSV 
Note 
The nuclear promyelocytic leukemia (PML) protein 
limits formation of cytosolic ASC dimers in HSV-
infected bone marrow macrophages with 
subsequent decreases in IL-1β secretion (Dowling 
et al., 2014). 
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Legionella 
Note 
Legionella avoids caspase-1 activation through 
downregulation of NLRC4 and ASC expression 
through an unknown mechanism (Abdelaziz et al., 
2011; Pereira et al., 2011). 

Listeria 
Note 
The AIM2/ASC inflammasome senses cytosolic 
double strand DNA from intracellular viruses and 
bacteria including Listeria and triggers caspase-1-
dependent maturation of IL-1β and IL-18 (Franchi 
et al., 2007a; Jin et al., 2013). 

Malaria 
Note 
Malaria is characterized by cyclical fevers and 
associated with high levels of IL-1β and other 
cytokines. Mice infected with plasmodium 
demonstrate caspase-1 activation dependent on 
ASC, NLRP3 and other inflammasome 
components. Pro-IL-1β production depends on 
secondary stimulation with LPS, IFN-γ or TNF-R1. 
Uric acid release during malaria infection may 
further augment host response via NLRP3 
inflammasome activation. As a result of caspase-1 
activation in plasmodium-infected mice, microbial 
stimulus results in extremely high levels of IL-1β 
and sensitivity to septic shock. IL-1R antagonist 
prevents bacterial-induced lethality in rodents. 
Peripheral blood monocytes in febrile malaria 
patients display activated caspase-1 and produce 
large amounts of IL-1β after stimulation with LPS, 
suggesting that NLRP3/ASC-dependent activation 
of caspase-1 is crucial to production of systemic IL-
1β and hypersensitivity to sepsis during malaria 
infection (Ataide et al., 2014). 

Pseudomonas 
Note 
Pseudomonas aeruginosa increases expression of 
human pattern recognition receptors including 
TLR2 and TLR4, proinflammatory cytokines 
including IL-1 and IFN-γ, and inflammasome 
components NLRP3, NLRC4 and ASC compared 
with control donor corneas. Putative molecules 
triggering this response are the bacterial pilus 
protein type IV pilin, as well as several type III 
secretion apparatus proteins (Franchi et al., 2007b; 
Arlehamn and Evans, 2011; Karthikeyan et al., 
2013). 

Salmonella 
Note 
ASC forms a complex with NLRP3, NLRC4, 
caspase-1, caspase-8 and pro-IL-1 in S. 
typhimurium-infected THP-1 macrophages (Broz et 
al., 2010; Man et al., 2013; Man et al., 2014). The 

nuclear promyelocytic leukemia (PML) protein 
limits formation of cytosolic ASC dimers in S. 
typhimurium-infected bone marrow macrophages 
with subsequent decreases in IL-1β and IL-18 
secretion but no effect on pyroptotic cell death 
(Dowling et al., 2014). Double-stranded RNA-
dependent protein kinase (PKR, EIF2AK2) 
interacts with ASC and other inflammasome 
components including NLRP3, NLRP1, NLRC4 
and AIM2 to trigger caspase-1-dependent IL-1β 
production and pryopoptosis in S. typhimurium-
infected macrophages (Lu et al., 2012). Salmonella 
flagellin and type III secretion proteins promotes 
potassium-efflux independent ASC oligomerization 
and NLRC4 inflammasome-dependent caspase-1 
activation (Franchi et al., 2007a; Hwang et al., 
2012). 

Schistosoma mansoni 
Note 
Schistosoma infection activates the Dectin-2 
receptor, which triggers NLRP3/ASC-dependent 
IL-1β secretion as well with subsequent alteration 
of the adaptive immune reponse, increased 
granuloma formation and liver disease (Ritter et al., 
2010). 

Shigella 
Note 
Shigella type III secretion proteins induce 
NLRC4/ASC/caspase-1-dependent processing of 
IL-1β and pyroptosome formation in macrophages 
(Suzuki et al., 2007; Willingham et al., 2007; 
Suzuki et al., 2014). 

Streptococcus pneumonia 
Note 
ASC is involved in controlling pneumococcus 
infection via several putative downstream 
intermediates including IL-17, GM-CSF and 
adaptive immune regulatory genes (van Lieshout et 
al., 2014). ASC regulates systemic inflammatory 
responses to pneumococcal meningitis infection via 
caspase-1, IL-1, IL-18 and IFN-γ (Fang et al., 2011; 
Geldhoff et al., 2013). Bacterial keratitis caused by 
S. pneumonia pneumolysin triggers increased 
expression of inflammasome components NLRP3, 
NLRC4 and ASC compared with control donor 
corneas (Karthikeyan et al., 2013). 

Streptococcus pyogenes 
Note 
ASC and NLP3 is necessary for caspase-1-
dependent IL-1β secretion (but not pro-IL-1β 
expression) in response to S. Pyogenes infection. 
Caspase-1 activation activation in response to 
streptolysin O pore-forming toxin also depdends on 
NF-κB but not on P2X7R or TLR signaling (Harder 
et al., 2009). 
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Tuberculosis 
Note 
Mycobacterium tuberculosis infection induces 
NLRP3/ASC-dependent IL-1β secretion and 
apoptosis in bone marrow derived dendritic cells 
(Abdalla et al., 2012). 

West Nile virus 
Note 
ASC is critical for clearance of west nile virus 
infection via secretion of IL-1β, IL-6, IFN-γ, and 
IFN-α as well as increased levels of IgM, 
suggesting a role for ASC in coordinating innate as 
well as adaptive immune reponses to west nile virus 
infection (Kumar et al., 2013). 

Vaccine adjuvent 
Note 
ASC has an NLRP3/caspase-1-independent role in 
mediating antigen-specific immunity to oil-in-water 
adjuvent H5N1 influenza vaccine via B-cell 
antigen-specific antibody production and dendritic 
cell inflammatory cytokine release (Ellebedy et al., 
2011). 
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