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RÉSUMÉ.— Changements saisonniers et altitudinaux des concentrations foliaires en nutriments de Hedera 

helix L. (Araliaceae).— La résorption est l’une des plus importantes stratégies d’utilisation des nutriments 

développées par les plantes. Le ratio de la surface foliaire à la masse sèche (SLA) est lié aux nutriments foliaires. 
Dans la présente étude, les changements de concentration en SLA, N et P, le rapport N/P et la teneur en C des 

feuilles de lumière et d’ombre de la liane sempervirente Hedera helix L. ont été étudiés au long de l’année sur un 

gradient altitudinal. L’efficience (RE) et l’efficacité (RP) de la résorption foliaire ont également été calculées dans 
les feuilles de lumière et celles d’ombre. Les traits foliaires ont montré des changements significatifs entre les 

localités et au cours de l’année. Des différences significatives sont apparues entre les feuilles de lumière et celles 

d’ombre pour ce qui concerne le SLA, la concentration en N et la teneur en C, mais se sont avérées dépendantes 
des différences d’altitude. Toutefois, aucune différence significative de concentration en P n’a été trouvée entre les 

feuilles de lumière et celles d’ombre. Dans les feuilles, tant de lumière que d’ombre, le SLA augmentait à la fin du 

printemps et baissait après l’automne. D’une manière générale, la teneur en C augmentait en janvier. La 
concentration en N des feuilles, tant de lumière que d’ombre, était habituellement la plus faible en début d’été et 

croissait en octobre. Les plus fortes teneurs en P ont été observées entre décembre et janvier dans toutes les 

localités. N/P différait significativement selon les localités. L’interaction localité x temps était aussi significative 
sauf pour les concentrations en P foliaire et N/P. Des corrélations positives ont été notées entre les traits foliaires et 

ceux du sol comme le SLA, les N, P et C foliaires, l’humidité du sol, et les teneurs en N, P et C. La PRE 
(efficience de la résorption du phosphore) et la NRP (efficacité de la résorption de l’azote) différaient de manère 

significative entre les localités mais pas entre les feuilles de lumière ou d’ombre. Cependant, la NRE (efficience de 

la résorption de l’azote) et la PRP (efficacité de la résorption du phosphore) n’étaient pas significativement 

différentes. Les feuilles de lumière et celles d’ombre ont montré une resorption incomplète car, dans toutes les 

localités, les valeurs de NRP et de PRP étaient supérieures aux niveaux de référence. 

SUMMARY.— Nutrient resorption is one of the most important nutrient use strategies developed by plants. 

The ratio of leaf area to dry mass (SLA) is related to leaf nutrients. In this study, the changes in SLA, N, P 

concentrations, N/P ratio and C content of sun and shade leaves of the evergreen liana Hedera helix L. were 
investigated over the year in an altitudinal gradient. Foliar resorption efficiency (RE) and proficiency (RP) were 

also calculated in sun and shade leaves. Leaf traits significantly changed among studied localities and over the 

year. There were statistically significant differences between sun and shade leaves regarding SLA, N concentration 
and C content, but these were dependent on the differences of altitude. However, no significant differences were 

found for P concentrations between sun and shade leaves. SLA increased in sun and shade leaves at the end of the 

spring and decreased after the fall. Leaf C content generally increased in January. Leaf N concentration in sun and 
shade leaves was usually lowest in early summer and increased in October. The highest leaf P content was found 

between December and January in all localities. N/P significantly differed between localities. Locality × time 

interaction was also significant except leaf P concentrations and N/P. Positive correlations were seen between leaf 
and soil traits such as SLA, leaf N, P and C, soil moisture, N, P and C. PRE (Phosphorus resorption efficiency) 

and NRP (Nitrogen resorption proficiency) were significantly different among the localities, but not among sun 

and shade leaves. However, NRE (Nitrogen resorption efficiency) and PRP (Phosphorus resorption proficiency) 

were not significantly different. Sun and shade leaves of H. helix showed incomplete resorption, because, in all 

localities, NRP and PRP values were above the benchmark levels. 

__________________________________________________ 

Nutrient resorption is one of the most important strategies developed by plants to save 

nutrients (Killingbeck, 1986). In particular, N and P are withdrawn from the leaves before 

abscission, and used for the formation of new tissues (Aerts, 1996). 
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Nutrient resorption efficiency is known as the percentage of a nutrient withdrawn from 

mature leaves before abscission (Aerts 1996; Aerts & Chapin 2000). Resorption proficiency is 

described by Killingbeck (1996) as the minimum level to which a nutrient is reduced during 

senescence, and has also been used to quantify nutrient resorption. Resorption proficiency seems 

to be more responsive than resorption efficiency to nutrient availability (Renteria et al., 2005).  

Soil fertility is often considered as one of the most significant factors in controlling leaf 

nutrient resorption (Chapin, 1980). Some studies have shown that resorption may increase 

depending on soil nutrient availability (Sabaté et al., 1995), while others found a negative 

relationship between foliar resorption and soil nutrient content (Boerner, 1984; Rejmánková, 

2005). Other parameters such as the amplitude of the abscission period (Del Arco et al., 1991), 

leaf mass and nutrients (Ralhan & Singh, 1987), higher-level taxonomic/phylogenetic variation 

(Killingbeck, 1996; Watanabe et al., 2007) may influence foliar nutrient interactions and 

resorption (Trémolières et al., 1999). Hoch et al. (2001) reported that shading of senescing leaves 

substantially reduced resorption efficiency and a relationship exists between the amount of 

available photosynthetic energy and resorption activity (Niinemets, 1997). 

Understanding nutrient resorption efficiency requires previous knowledge about natural levels 

of nutrient content in functional leaves. Internal and external factors affecting the nutrient content 

of leaves vary in time and space (Craine et al., 2009). Leaf nutrient concentration may be different 

depending on altitude, leaf age, phenology and soil formation phases (Vitousek et al., 1995; 

Oleksyn et al., 2002; Wright et al., 2002; Kutbay et al., 2005). There are fundamental 

physiological and ecological differences for obtaining and using nutrients and light energy 

between sun and shade leaves in the plants (Givnish, 1988). Sun leaves generally contain higher 

amounts of proteins and lower amounts of soluble nitrogen when compared with shade leaves 

(Meletiou-Christou et al., 1994). Nitrogen resorption per leaf area unit is slightly lower in shade 

leaves than in sun leaves of Liquidambar styraciflua L. (Herrick & Thomas, 2003). 

Ivy, Hedera helix L., has two different types of leaves. Some of the leaves grow on the 

ground surface, while the other leaves climb on the supporting structures (i.e. tree stems or walls 

and fences). Therefore, it can be considered that H. helix has got both sun and shade leaves 

(Roderick & Cochrane, 2002). H. helix, the most abundant liana in temperate forests of Europe and 

Asia minor, is an evergreen and also a good colonizer. Evergreen species mitigate nutrient 

circulation in forests because they immobilize nutrients in leaves for longer periods of time than do 

deciduous species (Thomas & Grigal, 1976). Since evergreenness prolonges the use of nutrients in 

leaf biomass, it has been interpreted as an adaptation contributing to improved nutrient use 

efficiency (Escudero & Mediavilla, 2003). N resorption tends to be higher in deciduous species 

than in evergreen ones, and higher in trees than in shrubs, while P resorption is generally higher in 

evergreen than deciduous species (Yuan & Chen 2009). In temperate regions, where plants are 

exposed to dynamic seasonal changes in climate, plants exhibit significant seasonal changes in 

their activity (Ueda et al., 2011). Seasonal variations are particularly effective on evergreen 

species, because leaf nutrients may vary in response to the different growth phases, the life cycle, 

the age of leaf and development, and a continuously changing environment throughout the year 

(Núñez et al., 1996). 

There is little information about the nutrient resorption efficiency and proficiency of sun and 

shade leaves of H. helix (Özbucak et al., 2008). Besides, there are very few studies which examine 

the nutrient resorption efficiency and proficiency according to the elevation gradient in temperate 

regions. For these reasons, the objectives of this study are (1) to determine the seasonal change of 

foliar N, P, C concentrations, SLA and leaf N/P in sun and shade leaves of H. helix, (2) to assess 

the differences between nutrient resorption efficiency and proficiency of sun and shade leaves, and 

(3) to examine whether or not there are relationships between soil moisture, soil and leaf N, P, C 

concentrations, leaf N/P ratio concentrations, SLA and N, P resorption proficiency (NPR, PRP) 

and efficiency (NRE, PRE) in sun and shade leaves in an elevation gradient in a temperate region. 
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MATERIALS AND METHODS 

SITE DESCRIPTION 

Three localities along an elevation gradient were selected in Samsun province in the north of Turkey. The first locality 

(41o 15' 01.15'' N, 36o 31' 28.47'' E) is 10 m, the second (41o 14' 33.59'' N, 36o 23' 25.68'' E) is 200 m, and the third (41o 14' 

04.97'' N, 36o 23' 10.74"E) is 400 m above sea level. 

The first locality is a Fraxinus angustifolia subsp. oxycarpa M.Bieb. ex Wield. swamp forest. The second and third 

localities were characterized by Quercus cerris L. var. cerris forests. In all three localities, H. helix L. shows a wide 
distribution in the forest surface, on the trees and shrubs. 

Annual rainfall of the first locality is 895.10 mm and annual mean temperature is 13.73oC (Anonymous, 2010). 

Annual rainfall of the second locality is 904.10 mm and annual average temperature is 13.60oC. Annual rainfall in the third 
locality is 913.10 mm and average temperature is 12.60oC. Temperature and precipitation values of the second and third 

locality were calculated by interpolation from data of Samsun State Meteorological Station (Erinç, 1965; Doğan, 1977; 

Kılınç et al., 2006). 

LEAF AND SOIL SAMPLING 

Leaf samples were collected from mid April 2010 to mid April 2011 for morphological and chemical analyses. At 

each locality, five individuals were selected at least 2.5 m from the stems of neighbouring canopy trees to avoid potential 
microsite variation (Boerner & Koslowsky, 1989). Monthly, three pairs of sun and shade leaves per individual were 

harvested, choosing leaves as similar in size, shape and location as possible. Undamaged mature and senesced leaves were 

sampled. Chemical analyses, SLA and resorption calculations were made separately for each individual. 
After harvesting, petiols were removed, leaves were scanned by using a BenQ 7650T scanner and the leaf area was 

determined by a software developed by University of Sheffield (Kilinç et al., 2010). After that, leaves were dried in an 

oven at 70°C to a constant weight; and dry weight was measured. Later, they were grinded and stored in polyethylene bags 
until chemical analysis. 

On each sampling date, plant and soil samples were obtained simultaneously. Since nutrients are concentrated mainly 

on the topsoil (Trémolières et al., 1999), we sampled only the upper 20 cm of the A1 horizon. Throughout the study, a total 
of 180 soil samples (five samples per month) were taken at each locality, as close to the H. helix individuals as possible. 

The soil samples were air dried for 48-72 h and sieved through a 2 mm sieve before the chemical analyses (Allen et al., 

1986; Kacar & Inal, 2008). 

CHEMICAL ANALYSES 

In the leaf and soil samples, N and C analyses were done with Thermo Scientific FLASH 2000 Series - CHNS/O 

Analyzers instrument following Dumas (1831) method (Allen et al., 1986). P determination was carried out by the 
vanadomolibdophosphoric yellow color method in leaf samples (Kacar & Inal, 2008). 

Moisture content (%), total N (%), C (%) and extractable P (%) concentrations of soil samples were also determined. 

For the determination of soil moisture, fresh weight of soil samples belonging to the upper 20 cm of the A1 horizon were 
collected, and a subsample was dried for 48 h at 105°C to calculate wet to dry mass ratios. These values were used to 

calculate soil moisture (gravimetric method). In order to determine soil extractable P, the following protocol was followed. 

Firstly, soil pH was measured for a soil / pure water (1:1) mixture using a pH meter. After that, soil extractable P was 
assessed according to Olsen et al. (1954) for basic soils (soils in the second and third localities), while soil extractable P 

was determined according to Bray & Kurtz (1945) for acidic soils (the first locality). 

DATA PROCESSING 

Specific leaf area (SLA) was calculated (dm² g-¹) by using the equation: 
SLA (dm2 g-1) = Leaf area / Dry leaf weight                                                     (1). 

Leaf nitrogen, phosphorus and carbon contents on an area basis (Narea, Parea and Carea) were calculated as mean leaf N, 

P, Cwght / mean SLA (Cornelissen et al. 1997).  
Area-based nutrient resorption efficiency was calculated as: 

Nureff (%) = (Numax - Nusen) / Numax × 100                                                        (2), 

where Numax is the maximum leaf nutrient content (on a per area basis, g.dm-2), and Nusen (g.dm-2) is the nutrient content of 
fully senesced leaves. The maximum leaf nutrient content (Numax) and the nutrient content of fully senesced leaves (Nusen) 

were considered in December and May for nitrogen and phosphorus in all localities, respectively. Henceforth, NRE and 

PRE will be referred to as nitrogen and phosphorus resorption efficiency, respectively. 
N and P resorption proficiency were calculated as the lowest nutrient concentrations in the senesced leaves. 

Hereinafter, NRP and PRP will be referred to as nitrogen and phosphorus resorption proficiency, respectively. In other 
words, terminal N and P contents (μg.cm-2 of leaf surface) in senesced leaves were used directly as an indicator of the NRP 

and PRP. The nutrient content (μg cm-2) was calculated as the amount per unit area in senesced leaves as the NRP and PRP 

(Killingbeck, 1996). 
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TABLE I 

The comparison of SLA (dm².g-1), N (g.dm-²), C (g.dm-²), P (g.dm-²) and N/P values using three-way ANOVA between the 
shade and sun leaves, the localities and time. (n = 5 individuals) 

 

Dependent Variable Source Sum of Squares df Mean Square F Sig. 

SLA 

Locality 4.26 2 2.13 64.35 <0.01* 

Time (Month) 8.09 11 0.73 22.19 <0.01* 

Leaf type (Sun and Shade) 2.86 1 2.86 86.26 <0.01* 

Locality*Time 1.73 22 0.07 2.38 <0.01* 

Locality*Leaf type  1.17 2 0.58 17.65 <0.01* 

Time*Leaf type 0.24 11 0.02 0.67 0.76 

Locality*Time*Leaf type  0.27 22 0.01 0.37 0.99 

Error 9.48 286 0.03   

Total 971.48 358    

C 

Locality 0.20 2 0.10 78.91 <0.01* 

Time (Month) 0.46 11 0.04 31.85 <0.01* 

Leaf type (Sun and Shade) 0.11 1 0.11 87.51 <0.01* 

Locality*Time 0.09 22 0.00 3.19 <0.01* 

Locality*Leaf type  0.05 2 0.02 19.08 <0.01* 

Time*Leaf type 0.01 11 0.00 0.86 0.57 

Locality*Time*Leaf type  0.01 22 0.00 0.66 0.87 

Error 0.37 286 0.00   

Total 32.96 358    

N 

Locality 0.00 2 0.00 160.90 <0.01* 

Time (Month) 0.00 11 8.372E-005 33.85 <0.01* 

Leaf type (Sun and Shade) 4.316E-005 1 4.316E-005 17.45 <0.01* 

Locality*Time 0.00 22 5.791E-006 2.34 <0.01* 

Locality*Leaf type  3.495E-005 2 1.747E-005 7.06 <0.01* 

Time*Leaf type 3.342E-005 11 3.038E-006 1.22 0.26 

Locality*Time*Leaf type  4.237E-005 22 1.926E-006 0.77 0.75 

Error 0.00 286 2.473E-006   

Total 0.04 358    

P 

Locality 1.034E-005 2 5.168E 16.65 <0.01* 

Time (Month) 1.171E-005 11 1.065E 3.43 <0.01* 

Leaf type (Sun and Shade) 5.368E-007 1 5.368E 1.73 0.18 

Locality*Time 4.616E-006 22 2.098E 0.67 0.86 

Locality*Leaf type  4.087E-006 2 2.043E 6.58 <0.01* 

Time*Leaf type 1.408E-006 11 1.280E 0.41 0.95 

Locality*Time*Leaf type  1.885E-006 22 8.569E 0.27 1.00 

Error 8.875E-005 286 3.103E   

Total 0.00 358    

N/P 

Locality 2455.38 2 1227.69 4.18 0.01** 

Time (Month) 4192.08 11 381.09 1.29 0.22 

Leaf type (Sun and Shade) 463.59 1 463.59 1.57 0.21 

Locality*Time 4802.72 22 218.30 0.74 0.79 

Locality*Leaf type  395.48 2 197.74 0.67 0.51 

Time*Leaf type 2706.05 11 231.02 0.78 0.65 

Locality*Time*Leaf type  83971.75 22 123.00 0.41 0.99 

Error 2455.38 286 293.60   

Total 182299.66 358    

*P < 0.01, **P < 0.05 
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Statistical analysis was performed using a SPSS (21.0 version) software (Anonymous, 2012). Data were analysed for 

normality by using Kolmogorov-Smirnov test, and square root transformation of the data was used for normal distribution 

before performing the ANOVA tests. 
In the leaf samples, SLA (dm2 g-1), N (g dm-2), C (g dm-2), P (g dm-2) and N/P values were subjected to three-way 

ANOVA. Meanwhile, we assigned those SLA, N, C, P and N/P as dependent variables; locality, time and type of leaf were 

assigned as fixed factors. 
NRE, PRE, NRP and PRP values of sun and shade leaves and studied localities were also compared by two-way 

ANOVA. In this case, NRE, PRE, NRP and PRP were dependent variables; locality and type of leaf were assigned as fixed 

factors. 
One-way ANOVA was also performed to show the difference among localities in terms of soil moisture and nutrient 

availability. Soil traits and localities were assigned as the dependent and independent variables, respectively. 

Tukey’s significant difference (HSD) test was used to rank means following the analysis of variance. Probable 
relationships between leaf and soil variables, and leaf traits and nutrient resorption efficiency and proficiency were assessed 

by using Pearson correlation. 

RESULTS 

DIFFERENCES IN LEAF TRAITS ACROSS ELEVATIONS, MONTHS AND LEAF TYPES 

All leaf traits significantly differed between the studied localities and between months 

excepting N/P where there was significant differences between localities only (Tab. I). Sun and 

shade leaves were significantly different with respect to SLA, N and C content (Tab. I). Locality × 

time interaction was significant except for leaf P concentrations and N/P. Locality × leaf type 

interaction was significant for all leaf traits except N/P. There was no significant time × leaf type 

and locality × time × leaf type interactions (Tab. I). 

We generally found higher SLA values in shade than in sun leaves. SLA was significantly 

lower in the third locality for sun and shade leaves. SLA (dm
2
 g

-1
) in sun and shade leaves peaked 

in June in the first and third localities and was lowest in April. No significant temporal differences 

in SLA were found in the second locality (Fig 1). 

The highest leaf C content (g dm
-2

) was generally found between March and April except for 

sun leaves in the second locality. After that time, leaf C content gradually decreased at the end of 

the summer, then remained relatively constant during the fall and generally increased again in 

January. Mean C content was generally higher in sun leaves than in shade leaves (Fig 2). 

Leaf N concentration (g dm
-2

) in sun and shade leaves significantly changed over the year and 

it was usually lowest in late spring (May) or early summer (June) and increased in October. We 

have found slightly higher N concentrations in sun leaves than in shade leaves in the same locality 

(Fig 3). 

Leaf P concentration (g dm
-2

) significantly changed for shade leaves in the third locality over 

the year. The highest leaf P content was found between December and January, and after January 

it decreased toward June for sun shade leaves in all localities. Mean P contents were slightly 

higher in shade and sun leaves in the third locality, compared to the first and second locality (Fig 

4). There was generally the same pattern of leaf C, N and P content in relation to localities and leaf 

types. This interaction was due to differences among localities in the existence of significant 

differences between leaf types for C, N and P content. 

Leaf N/P significantly differed only between localities (Table I). Mean N/P decreased from 

18.69 ± 1.78 through 14.19 ± 1.33 to 12.25 ± 1.41 from the first to third locality. 

SOIL VARIABLES AND THEIR RELATIONSHIP WITH LEAF TRAITS 

All soil traits determined were statistically different between the three localities: soil moisture 

was highest and significantly decreased with elevation in the first, soil C content was lowest in the 

second, soil N and P concentrations were highest in the third (Tab. II). 
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Figure 1.— Seasonal variation of specific leaf area (SLA) between type of leaves and localities. Data are mean and ± 1 SE. 

The difference in letters above bars indicates the significant difference (P < 0.05) between means according to Tukey’s 
(HSD) test among months for each locality. 

 

 

 
 

Figure 2.— Seasonal variation of leaf carbon concentration between type of leaves and localities. Data are mean and ± 1 

SE. The difference in letters above bars indicates the significant difference (P < 0.05) between means according to Tukey’s 

(HSD) test among months for each locality. 
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Figure 3.— Seasonal variation of leaf nitrogen concentration between type of leaves and localities. Data are mean and ± 1 

SE. The difference in letters above bars indicates the significant difference (P < 0.05) between means according to Tukey’s 
(HSD) test among months for each locality. 

 

 

 

 

 
 

Figure 4.— Seasonal variation of leaf phosphorus concentration between type of leaves and localities. Data are mean and ± 

1 SE. The difference in letters above bars indicates the significant difference (P < 0.05) between means according to 
Tukey’s (HSD) test among months for each locality. 
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TABLE II 

The mean values of the soil traits in the localities and their comparison with ANOVA test. BG: Between Groups; WG: 
Within Groups; E: Error 

 

Traits Localities N Mean Std. Dev. Sum of Squares df Mean Square F Sig. 

Moisture 
(%) 

First 60 28.25 a 16.45 2122.11 (BG) 2 (BG) 1061.05 (BG) 7.85  <0.01* 

Second 60 23.90 b 7.90 23911.61 (WG) 177 (WG) 135.09 (WG)   

Third 60 19.84 c 8.48 26033.73 (E) 179    

N (%) 

First 60 0.26 b 0.15 5.13 (BG) 2 (BG) 2.56 (BG) 3.68  0.02** 

Second 60 0.19 c 0.51 123.54 (WG) 177 (WG) 0.69 (WG)   

Third 60 0.58 a 1.34 128.68 (E) 179    

C (%) 

First 60 3.85 a 1.96 115.83 (BG) 2 (BG) 57.91 (BG) 11.32 <0.01* 

Second 60 2.10 b 1.82 905.25 (WG) 177 (WG) 5.11 (WG)   

Third 60 3.76 a 2.85 1021.08 (E) 179    

P (%) 

First 60 0.08 b 0.12 15.65 (BG) 2 (BG) 7.82 (BG) 100.84 <0.01* 

Second 60 0.13 b 0.15 13.74 (WG) 177 (WG) 0.07 (WG)   

Third 60 0.73 a 0.44 29.40 (E) 179    

*P ˂ 0.01, **P ˂ 0.05; the difference in letters indicates significant difference (P < 0.05) between means according to 

Tukey’s (HSD) test among localities. 
 

 

TABLE III 

The comparison of nitrogen and phosphorus resorption efficiency (%) and proficiency (µg cm-2) using Two-Way ANOVA 

between leaf type and localities (n = 5 individuals) 

 

Dependent 

Variable 
Source 

Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

NRE 

Locality 765.80 2 382.90 1.89 0.17 

Leaf type (Sun and Shade) 104.53 1 104.53 0.51 0.47 

Locality*Leaf type  764.06 2 382.03 1.89 0.17 

Error 4846.40 24 201.93   

Total 80882.00 30    

PRE 

Locality 1907.26 2 953.63 11.73 <0.01* 

Leaf type (Sun and Shade) 0.03 1 0.03 0.00 0.98 

Locality*Leaf type  120.86 2 60.43 0.74 0.48 

Error 1950.80 24 81.28   

Total 114271.00 30    

NRP 

Locality 5083.02 2 2541.51 13.54 <0.01* 

Leaf type (Sun and Shade) 11.00 1 11.00 0.05 0.81 

Locality*Leaf type  64.78 2 32.39 0.17 0.84 

Error 4501.75 24 187.57   

Total 192238.28 30    

PRP 

Locality 0.68 2 0.34 0.13 0.87 

Leaf type (Sun and Shade) 0.39 1 0.39 0.15 0.69 

Locality*Leaf type  12.16 2 6.08 2.48 0.10 

Error 58.81 24 2.45   

Total 1465.23 30    

*P ˂ 0.01 

 

For shade leaves, significant relationships between soil and leaf traits were found (P < 0.05) 

only for the second site. SLA was positively related to soil moisture (0.97) and negatively related 

to soil P (-0.99). Leaf C content was positively related to soil C (0.94) and P (0.98), and negatively 

related to soil N content (-0.95). For sun leaves (P < 0.05), a positive correlation was found 

between leaf N/P and soil P in the second locality (0.89), a negative relationship between soil P 

and leaf C (-0.96) and a positive relationship between soil P and SLA in the third locality (0.96). 
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DIFFERENCES IN LEAF NUTRIENT RESORPTION EFFICIENCY AND PROFICIENCY ACROSS 

ELEVATIONS AND LEAF TYPES 

There were significant differences among the studied localities in PRE and NRP (Tab. III). 

PRE was highest in the third locality (Tab. IV), NRP was highest in the first locality and lowest in 

the second locality (Tab. IV). 

 

TABLE IV 

The mean resorption efficiency (%) and proficiency (µg cm-2) of N and P for sun and shade leaves among 

localities. A difference in letters indicates significant difference (P < 0.05) between means according to 

Tukey’s (HSD) test. 
 

 Locality Leaf type Mean Std. Deviation N 

PRE 

First 
Sun 55.60 b 7.46 5 

Shade 55.20 b 14.13 5 

Second 
Sun 52.00 b 4.79 5 

Shade 57.20 b 3.03 5 

Third 
Sun 74.20 a 12.69 5 

Shade 69.60 a 6.22 5 

NRP 

First 
Sun 93.19 a 14.40 5 

Shade 94.64 a 24.73 5 

Second 
Sun 63.28 c 5.01 5 

Shade 60.78 c 14.36 5 

Third 
Sun 75.73 b 8.33 5 

Shade 80.42 b 2.32 5 

 

RESORPTION EFFICIENCY AND PROFICIENCY OF N AND P, AND THEIR RELATIONSHIP WITH LEAF 

TRAITS AND SOIL VARIABLES 

For shade leaves (P < 0.05), PRP was positively correlated with leaf P content (0.90), while 

negatively correlated with leaf N/P ratios (-0.89) in the second locality. Negative correlations were 

seen between PRE and soil moisture (-0.93), N (-0.94), C (-0.95) content in the first locality, while 

PRE negatively correlated to soil N content (-0.91) only in the third locality. 

For the sun leaves, PRP (P < 0.05) and NRP (P < 0.01) negatively correlated with leaf N 

content in first (-0.91) and third (-0.98) locality, respectively. A positive correlation (P < 0.05) was 

only seen between PRE and soil C content (0.90) in the first locality. In the first locality, PRE 

showed a positive correlation with soil C content (0.90). 

DISCUSSION 

DIFFERENCES IN LEAF TRAITS ACROSS ELEVATIONS, MONTHS AND LEAF TYPES 

In this study, there were significant differences in locality, time and locality × leaf type 

interactions for all leaf traits except N/P. The sun and shade leaves in H. helix have different 

physiological and ecological features in obtaining nutrients and light energy and using them 

(Givnish, 1988; Evans & Poorter, 2001). Besides, there were significant differences with regard to 

soil nutrients and moisture, altitude and forest type, among the three localities.  

Specific leaf area (SLA) has a major role on growing and development of the plant and is also 

important in capturing the light (Valladares et al., 2011). In this study, we found that SLA values 

of H. helix individuals differed over the year and the highest SLA values were found during 

summer when the canopy was rather closed. Shipley & Almeida-Cortez (2003) stated that low 

light levels cause a remarkable rise in SLA. In the deciduous forests, the evergreen plants which 
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cover the forest ground are exposed to high light levels during the fall. However, photosynthetic 

capacities of evergreen plants decrease gradually during the winter due to low temperatures 

(Oberhuber & Bauer, 1991). During the spring photosynthetic activity increases again owing to the 

increase in light levels and temperatures (Fischer & Feller, 1994). In the present study, leaf dry 

weight increased and SLA decreased during the spring.  

When compared to sun leaves, higher SLA values of shade leaves were found in the second 

and third localities. This can be due to tolerance to deep shade in shade leaves (Sack & Grubb, 

2002). The leaf traits that have the greatest plastic response could be more important for leaf 

functioning in different light environments (Rozendaal et al., 2006). Markesteijn et al. (2007) 

observed that the correlation between SLA and leaf traits occur at different light levels, this might 

have led to a different detected plasticity among habitat types. The differences in SLA may have 

originated through habitat differences among the studied localities (Koike, 1988). The first locality 

(swamp forest) particularly is wetter than the other localities which are semiarid. We found that 

SLA gradually decreased along the elevational gradient and this is a morphological and 

physiological adaptation of H. helix individuals in the second and third localities (Körner et al., 

1989). Soil water content and nutrients are two important elements affecting plant development 

and morphology (Lower & Orians, 2003). Statistically positive correlation was found between soil 

moisture and SLA in this study.  

The highest leaf C value was usually observed during spring in this study, as usual in 

evergreen plants for non-structural carbohydrate concentration (Zotz et al., 2006; Muller et al., 

2011). In this study, the lowest leaf content was found during the summer because of higher 

canopy closure. 

The highest C content was also found in sun and shade leaves of H. helix individuals in the 

third locality where canopy closure was lower than the other localities. The sun leaves H. helix had 

higher C content than shade leaves because they receive higher amount of light (Frank et al., 2001; 

Taguchi & Wada, 2001; Schnitzler & Heuze, 2006). The evergreen or semievergreen leaf lifespan 

provides the possibility for significant C gain during parts of the winter in which temperatures are 

suitable for gas exchange and enzyme activity (Minoletti & Boerner, 1993). We also found 

significant correlations among soil N content and leaf C concentrations, soil C content and leaf C 

concentrations and, soil P content and leaf C contents, SLA and N/P ratios. Similar results were 

also reported by Özbucak et al. (2008). The feedback among soil and plant nutrient contents may 

change plant growing phases and productivity of ecosystem (Bassirirad, 2000). 

Nitrogen is defined as a structural element, and plays an important role in all enzymatic 

activities (Aerts & Chapin, 2000). The nitrogen content of sclerophyll leaves of evergreen plants in 

temperate zones is subjected to seasonal fluctutations (Núñez et al., 1996). During the winter, 

higher amount of light due to lower canopy closure, together with milder air temperature, stimulate 

the synthesis of nitrogen compounds in leaves (Hikosaka, 2005). For that reason, the highest leaf 

N concentrations were found in all localities during winter. Parker (1962) also found the same 

pattern and suggested that this increase depending on time was closely related to a sharp increase 

in total sugar as well as in anthocyanins. More than half of the leaf nitrogen is being invested into 

photosynthetic elements (Hikosaka, 2004). RUBISCO content mediates leaf N budgets during 

shade-sun acclimation (Seemann et al., 1987). On the contrary, during the summer the forest 

ground receives minimum light due to high canopy closure (Muller et al., 2011) and, thus, the 

lowest leaf N concentrations were found during the summer. 

We found generally higher N concentrations in sun than shade leaves in the same locality. 

Leaf nitrogen shows a positive correlation to photosynthetic activity (Schnitzler & Heuze, 2006; 

Gratani et al., 2006). Sun leaves of H. helix individuals had high N concentrations as compared to 

shade leaves because the leaves on a plant receive maximum amount of light, and as a result of this 

they have high photosynthetic capacity. Higher N concentrations in sun leaves of H. helix 

individuals as altitude increases agree with previous findings (Taguchi & Wada, 2001), as a result 
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of the increase in leaf dry weight (Körner, 1989). But, increasing leaf dry weight decreased SLA in 

sun leaves in this study. However, some studies showed that high foliar N concentrations were 

found in more fertile sites and lower foliar N in nutrient poor sites (Killingbeck & Costigan, 1988; 

Luken, 1988; Côte et al., 2002); our results did not support this hypothesis, because, the 

percentage of soil nitrogen was highest in the highest locality. Furthermore, factors such as 

vegetation structure, topography and disturbance level also influence leaf nutrient concentrations 

(Oleksyn et al., 2002). In temperate forests, the availability of P typically declines in old highly 

weathered soils, thus P may limit biological processes and regulate N cycling (Vergutz et al., 

2012).  

In this study we found that P concentrations of shade leaves showed seasonal variability in 

the third locality. Leaves of H. helix senesced in May and P concentration rapidly decreased 

(Özbucak et al., 2008; Aerts & Chapin, 2000). The lowest P concentrations in both sun and shade 

leaves were found during the summer because canopy closure was rather high and photosynthetic 

activity was rather low. Evergreen species tend to have lower P nutrient concentrations in both 

senesced and green leaves (Ares & Gleason, 2007). However, the highest leaf P concentrations 

were found during the winter. Milla et al. (2004) stated that evergreen leaves have more capacity 

of using nutrients than deciduous ones. 

The highest leaf P concentrations were found in the third locality. P content per unit leaf area 

has increased along the elevational gradient (Körner, 1989). There was only N-limitation in the 

third locality. High foliar P concentrations reflected soil P availability (Del Arco et al., 1991), but 

sometimes no correlations were obtained (Minoletti & Boerner, 1994). 

Koerselman & Meuleman (1996) proposed the use of the N/P mass ratio in plant tissues as an 

indicator of the type of nutrient limitation. They suggested that at N/P ratios > 16, there was P-

limitation; at N/P ratios < 14, plant growth was N-limited, and at N/P ratios between 14 and 16, 

co-limitation by N and P occurred. In this study, P-limitation was found in the first locality, 

whereas N-limitation was found in the third locality. N and P co-limitation is found in the second 

locality. All traits determined in the soil were statistically different, which can affect the levels of 

nutrient dynamics and resorption in the leaves at the three localities. 

DIFFERENCES IN LEAF NUTRIENT RESORPTION EFFICIENCY AND PROFICIENCY ACROSS 

ELEVATIONS AND LEAF TYPES 

NRE and PRE values were almost consistent with the literature survey by Aerts (1996). 

However, for sun and shade leaves of H. helix, NRE was lower and PRE was higher than in 

Özbucak et al. (2008) that reported 62 % (N) and 39 % (P) for leaves of H. helix in a temperate 

deciduous gallery forest in the north of Turkey, respectively. In this study, PRE values were found 

to be higher than in previous studies (Mayor & Roda, 1992; Aerts, 1996; Hevia et al., 1999; Cai & 

Bongers, 2007). Furthermore, PRE values were also higher than NRE values. It has been reported 

that PRE contributes more to nutrient use efficiency than NRE (Aerts & Chapin, 2000), because 

phosphorus compounds are more readily resorbed than nitrogen compounds (Covelo et al., 2008; 

Salazar et al., 2011; Yilmaz et al., 2014). Phosphorus is a critical element in the production of 

ribosomes (Ågren, 2008). Although there were significant differences in the leaf N content and 

soil traits between localities and leaf type, we found neither significant differences between 

localities, leaf type (sun and shade) and their interaction for NRE, nor significant correlation with 

soil traits. Our NRE results do not support previous hypotheses about the effects of soil traits on 

the resorption efficiency and proficiency (Chapin, 1980; Boerner, 1984; Sabaté et al., 1995). 

Several authors suggested that high PRE usually indicates less soil P availability (Martinez-

Sánchez, 2005; Yilmaz et al., 2014). The interaction between low soil P availability and PRE may 

be controversial according to our results for sun leaves in the third locality. However, PRE shows 

negative significant correlation with some soil traits such as moisture, N and P for shade leaves in 

the first and third localities. P-limitation was found at the first locality and N and P co-limitation 
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was found at the second locality; our results for shade leaves mostly supported the hypothesis that 

P resorption efficiency was greater with lower soil P availability in temperate forest ecosystems 

(Killingbeck & Costigan, 1988; Minoletti & Boerner, 1994; Renteria et al., 2005). PRE was 

positively correlated with soil C content for sun leaves in the first locality. High organic matter 

accumulation, and consequently organic nutrient accumulation, may be important in controlling 

total soil nutrient concentrations in swamps (Verhoeven, 1986). Our finding is supported by the 

fact that nutrient efficiency in swamps was partially controlled by organic matter content in the 

soil and soil nutrient availability (Bedford et al., 1999) and high nutrient-use efficiency was 

observed in highly organic seasonally flooded forest (Gann et al., 2005). It has been stated that soil 

water content is inversely proportional to resorption efficiency (Özbucak et al., 2008). PRE values 

of H. helix individuals were lower in the first locality that had high soil water content (%); but, 

there were negative correlations between PRE and soil moisture, as compared to the other 

localities.  

Resorption leaf N and P proficiency in H. helix was high in this study. NRP was higher than 

PRP for sun and shade leaves. These results supported the generalization that evergreens are more 

proficient at reducing P than N in their senescing leaves (Killingbeck, 1996; Lal et al., 2001, 

Richardson et al., 2005). 

It has been stated that resorption is complete if N and P concentrations of senesced leaves are 

below 50 µg cm
-2 

and 3.0 µg cm
-2

, respectively (Killingbeck, 1996). According to these 

benchmark levels, sun and shade leaves of H. helix individuals showed incomplete resorption 

because NRP and PRP values were calculated above the benchmark levels in all localities. 

Incomplete resorption was also documented by Özbucak et al. (2008) in a temperate deciduous 

gallery forest in the north of Turkey. These values were higher than those obtained by Killingbeck 

(1996) in Cyrilla racemiflora L. and Lyonia lucida (Lam.) K. Koch in temperate ecosystems. 

Boerner (1986) hypothesized that the inverse relationship between nutrient uptake efficiency (via 

mycorrhizae) and nutrient use efficiency (resorption) exhibited by the forest understory plants, 

may be related to low-light limitation of energy reserves in the forest understory. H. helix has got 

vesicular-arbuscular mycorrhizal relationships (Maremmani et al., 2003; Songachan et al., 2011) 

which may be one of the reasons for incomplete resorption in sun and shade leaves. However, 

Takashima et al. (2004) found that evergreen species allocated two-fold more nitrogen to SDS-

insoluble proteins (SDS; sodium dodecyl sulfate) than deciduous species. SDS-insoluble proteins 

are tightly bound to cell walls (Reiter, 1998) and are thus a recalcitrant N fraction that cannot be 

largely broken down and resorbed from senescing leaves (Yasumura et al., 2005). So, in this 

study, we may not have seen the completed N-resorption proficiency in the sun and shade leaves 

of H. helix. 

NRP significantly differed between localities, but PRP did not. NRP and PRP did not have 

significant difference between sun and shade leaves, and with regard to locality × leaf type 

interactions. Sardans & Peñuelas (2013) suggested that the strategy of allocation in response to 

different availability of resources can be different from the strategy in response to different 

ecological roles. Because there were significant differences on account of soil traits, forest type 

and elevation between localities, different nutrient resorption patterns may have happened in this 

study. NRP showed negative correlation with soil N content for sun leaves in the third locality. 

This result is consistent with N resorption proficiency reflecting relative soil N availability 

(Hobbie & Gough, 2002; Renteria et al., 2005). Our results did not indicate P resorption 

proficiency reflecting relative soil nutrient availability. This consequence complies with previous 

studies (Lal et al., 2001; Renteria et al., 2005). Such inconsistent results have been reported 

previously and attributed to differences in sampling, large annual variations and the response to 

soil nutrient availability over a narrow range (Côte et al., 2002; Salazar et al., 2011). 

To conclude, our study showed that the sun and shade leaf nutrients of H. helix, a 

conspicuous climbing evergreen plant in temperate decidous forests, vary temporally in different 

http://en.wikipedia.org/wiki/Lam.
http://en.wikipedia.org/wiki/K.Koch
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localities. There were differences in terms of altitude, forest type, and consequently canopy 

openness between localities. There were significant differences in leaf traits, soil nutrients and 

moisture between localities. We found significant correlations between soil and leaf traits among 

localities. In accordance with existing literature (Killingbeck, 1996; Lal et al., 2001, Richardson et 

al., 2005), PRE was higher than NRE, while NRP was higher than PRP for sun and shade leaves. 

N and P resorption in the sun and shade leaves of H. helix were incomplete. Several reasons could 

explain incomplete resorption in the sun and shade leaves but we have not found significant 

differences in terms of resorption efficiency and proficiency between sun and shade leaves. These 

results could partly support that H. helix was a successful competitor in the different temperate 

forest ecosystems. 
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