Memorandum M-2197

Page 1 of 6

Digital Computer Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts

SUBJECT: READOUT AND DIGIT-PLANE DRIVING SYSTEMS - P.B. No. 62

To: Norman H. Taylor

From: W. Canty and S. Fine

Date: May 28, 1953

Abstract: This note contains a survey of the existing readout and digit-plane driving systems as well as a survey of some of the more promising new systems that are proposed. Preliminary block diagrams with weak and strong points of each system are also included.

Introduction

In order to make an evaluation of readout and digit-plane driving systems, certain basic assumptions have been made to establish a starting point of this investigation. They are:

1. Storage Medium - it is assumed that small ferrite rings <u>approximately</u> 0.090 inches 0.D., 0.060 inches I.D., and 0.030 inches thick will be used as the storage medium.

2. Selection System - it is assumed that the memory will be of the coincident-current single-turn type using digit-plane winding currents for inhibition of write-current pulses, and using 2:1 current ratios.

3. Readout System - it is assumed that the readout system will be destructive. Cores holding a ONE will induce a voltage pulse in a sense winding, threaded through cores in each memory plane, when interrogated by a read current pulse of essentially the same shape and amplitude as the write pulses.

READOUT SYSTEMS

Proposed Readout Schemes

1. Single Sensing Winding (Fig. 1-A)

This scheme is the present system of read-write using one consing winding and one sensing amplifier per plane. The output of the sensing amplifier is to be a positive-going pulse applied to the negatively-biased suppressor grid of a gate tube. A strobing pulse will determine the point of sampling.

Memorandum M-2197

Page 2

The present MTC sensing amplifier consists of 5 tubes: 3 stages of amplification, a phase inverter, and a cathode follower. The amplifier gain is from 250 to 1000. Rise time is approximately 0.3 $\mu second$ and bandwidth is 2 mcps.

If specially-designed pulse transformers were available, the sensing amplifier design might be reduced to two stages of amplification and a cathode follower.

2. Multiple Sensing Windings (Fig. 1-B)

This is the same scheme as (1) except that the sensing winding is divided into N number of sections with one sensing amplifier for each section. This requires N times as many sensing amplifiers and tubes as scheme 1. Considering equal size planes, the delta noise per sensing amplifier would be reduced over that in scheme 1 by a factor of 1 over the square root of the number of sections.

3. Post-Write Disturb (Fig. 2-A)

This consists of scheme 1 or 2 with an added post-write disturb pulse. The post-write pulse can be generated by the digit-plane driver or by a separate driver. The duration of the post-write pulse is from 1/2 to 2/3 of the switching time. This results in a much-improved signal ratio.

If the digit-plane driver is used for post-writing, no added tubes or components in the memory system are required. The addition of the extra pulse, of course, increases the overall memory cycle time by that amount.

4. Staggered Read (Fig. 2-B)

The start of the read pulse is staggered, i.e., the read pulse on one coordinate line is delayed. This will result in having the half-selected core outputs along one coordinate line reach a maximum and decay to a small magnitude well before the point of sensing. Effectively, this reduces the delta noise to one-half that of scheme 1.

A negligible amount of additional tubes or components are required in the memory system. The memory cycle time will be increased by approximately onehalf the switching time of the core and the information readout time will be increased by a factor of 2.

5. Same-Polarity Double-Read and Compare (Fig. 3-A)

This method requires a double read pulse. The first readout is delayed and then compared with a second readout in a difference amplifier. If the same noise is read out both times, they should cancel, leaving only a ONE for a core holding ONE or nothing for a core holding ZERO. A post-write disturb pulse is necessary to assure that each core produces the same halfselected output during both readouts. This results in an increased memory cycle time of over 1.6 times that of scheme 1 while the information readout time is increased at least 4 times.

Memorandum M-2197

Page 3

6. Opposite-Polarity Double-Read and Compare (Fig. 3-B)

This method is similar to scheme 5 except that the second read pulse is opposite in polarity to the first. This allows the use of a magnetic-matrix switch or transformer driver. The first read is delayed, inverted and compared with the second read in the same manner as described in scheme 5. The rewrite may be as in scheme 1 unless magnetic-core drivers are used, in which case another pair of opposite-polarity pulses must be used. The memory cycle time is thus increased over scheme 1 by a factor of at least 1.5 for vacuum-tube drivers, or 2 for magnetic-core drivers. The information readout time is increased by a factor of at least 4.

In order to have the delta noise equal during first and second read pulses, it will be necessary to half-select all cores in a write direction prior to the readout. This further increases the overall operation time.

With the addition of integration in this sensing scheme it becomes essentially that being used at R.C.A. Laboratories. Using the integral of the outputs means that all "closed-path" noises will be cancelled out.

7. Single Read with Delay (Fig. 4-A)

If the rise and fall time of the read current pulse are equal, the $d\Phi/dt$ producing both delta noise and air-flux noise will be almost equal in magnitude and opposite in polarity at the start and finish of the read pulse. This noise can be cancelled by proper delay and comparison in a difference amplifier. A post-write pulse is necessary so that the core's history will assure more complete noise cancellation. The overall time added to the present read-write-post-write disturb system is approximately 1/3 the duration of the read gate while the information readout time may be about 3 times larger.

8. Combination of Scheme 3 with Others (Fig. 4-B)

The post-write pulse has the pronounced effect of reducing the delta noise in the sensing winding and may be incorporated with other methods in reducing the overall delta-noise outputs. Schemes 3 and 4 would be a good delta noise-reducing combination. A disadvantage, though, would be the increase in memory-cycle time. The post-write pulse is also necessary with schemes 5 and 7 in order to assure better noise cancellation.

DIGIT PLANE DRIVERS

The Problem

The insertion of binary information into the memory registers of WWII necessitates the use of inhibition pulses supplied to a digit-plane winding of each plane in the memory where a ZERO is to be written. These pulses are approximately the same amplitude and shape as the x and y selection-plane currents. They are applied during the application of x and y write current pulses and nullify the effect of these pulses on the core at the x-y intersection. MTC experience has indicated the usefulness of a post-write disturb pulse, that is a pulse applied to the digit-plane winding of every memory plane, of the same amplitude and approximately the same shape as the inhibition pulse. A convenient

Memorandum M-2197

Page 4

time to apply this pulse is immediately after the memory write time. The **post-write** disturb pulse is effective in reducing the "delta" noise in large **arrays when certain configurations** of ONES and ZEROS are stored.

Theoretical studies of noise in large arrays predict that a reduction in noise can also be accomplished by using the post-write disturb pulse only on those planes into which a ONE has been written. This reduction of noise is of the same order as that which is obtained by using a post-write disturb pulse at the end of each memory read-write cycle irrespective of whether a ONE or a ZERO is written. The use of post-write disturb pulses only in those planes into which a ONE has been written lends itself nicely to some of the digit-plane driving schemes to be mentioned in this report since it would be difficult (in these cases) to supply a post-write disturb pulse immediately after an inhibition pulse. The problem as to whether or not a postwrite disturb pulse is to be used or whether a "partial" post-write disturb or a "full" post-write disturb system is to be used is largely dependent on the nature of the memory cores and the sensing scheme to be used, therefore the relative merits of each system will not be discussed further.

Drawing once more from MTC experience we can list the tentative specifications for a WWII digit plane driver:

Im	300 - 500 ma
Rise Time	0.3 - 0.6 µsecond
Current Regulation	<u>+</u> 5%
Overshoot or Ripple on Top of Pulse	<u>+</u> 5%
Inhibit Pulse Duration	approx. 2 µseconds
Post-Write Disturb Pulse Duration	approx. 1.5 µsecond
Interval between Inhibit and Post- Write Disturb Pulses	may be as small as O µsecond
Memory Cycle Time	5 - 10 useconds

It may be possible to allow digit-plane currents to vary much more than + 5% as stated above. In MTC while a "complemented checkerboard pattern" (so called worst possible pattern) was being interrogated, the digit-plane driver currents could be varied in any one of 3 digits (these were the only ones tried) + 30% from the normal operating current without causing an error. While this test was by no means conclusive it indicates that the above specification on current regulation may be too strict. Further study will be needed in this matter.

The problem at hand is to outline digit-plane driving schemes which will meet the above specifications and to list the advantages and disadvantages of each.

Memorandum M-2197

Page 5

The Proposed Systems

To supply memory plane inhibition and possible post-write disturb pulses in WWII, four schemes are hereforth proposed:

A. Utilizing digit-plane drivers of the type currently used in MTC. Inhibition and post-write pulse currents would flow through a digit-plane winding in the plane directly coupled to the plate circuit of the output driver stage. This requires that the driver output tubes pass peak currents of approximately 0.5 ampere. A schematic diagram of such a driver which meets the tentative specifications above is shown in Fig. 6. A block diagram of such a system is given in Fig. 7. Advantages and disadvantages of this scheme are given in Fig. 11.

B. Utilizing a digit-plane driver of the same type used in part A with the exception that the plate circuit of the output stage is transformer coupled to the digit-plane winding of the memory plane. Since better transfer of energy to the digit-plane winding is attained, a saving of one of the output tubes in the circuit of figure 1 can be realized. Advantages and disadvantages of this system are given in Fig. 11.

C. Essentially the scheme described in part B with diodes in transformer secondary. An objection to the scheme proposed in part B is that the negative overshoot on the secondary of the pulse transformer is objectionable when applied to a driving line of a memory. Also if an attempt is made to keep the amplitude of this overshoot small by adjusting transformer parameters a long time is taken for the overshoot to disappear completely and the transformer is PRF sensitive. A means of overcoming either of these two faults might be to place a dipde either in series or parallel with the transformer secondary. Advantages and disadvantages of this system are given in Fig. 11.

D. Utilizing switch cores. No experience has been gained with this type system, therefore a more detailed explanation will be given. Switch cores of the type now under investigation for use in x and y selection-plane driver systems could be used here. A block diagram is shown in Fig. 8 and a timing diagram in Fig. 9 while a schematic diagram of the system is shown in Fig. 10. The operation of the system is as follows: Control Pulses are (see Fig. 9) applied from a current source. The first pulse which occurs during the memory write time causes the switching of unbiased cores and a resulting inhibition pulse is applied to each digit plane where a ZERO is to be written. A removal of bias on all cores during the Post-Write Disturb time allows a second positive pulse in the control winding to switch cores not previously switched and thus a post-write disturb pulse is applied to those digit planes into which a ONE was just written. A negative pulse applied to the control winding resets all switch cores to their original state. A junction diode in the output line

FIGURE 11

1	A	В	C	I D
	Direct-Coupled	Transformer-	Transformer-	Switch=Core
	Drivers	Coupled Drivers	Coupled Drivers	Drivers
	DILVEIS	confired privers	with Dieden in	DILVEIS
			with blodes in	
			Secondary	and the second se
Experience with	Much experience	None	None	None
the system	with this system			
Experience with	Same as above	Fair: A little	Fair: Same as B.	Fair: Experience
components		work has been	Almost no work	has been gained
		gained on trans	- has been done	from research on
		formers. More	with junction	switch cores for
		work is needed.	diodes	x and y plane dri-
		Drivingcimuits	arouse	vers. Almost no
		annearto be con-		work done on juno-
		wantiana]	1	tion diadea
Autout miles	Good one he con	Ventional	Sama an D	Cion diodes.
Output puise	Good-can be con-	Good	Same as b.	Can be made good
snape	trolled			by doctoring Con-
				trol Pulse shape
Overshoot	Same as above	Unknown-depends	Same as B.	Good
		on design of		
		transformer		
Current regu-	Same as above	Appears might	Same as B.	Same as B
lation		be good		VER GUIDDORE U DA PORTA STRA
Line to line	Same as above	Same as A	Same as A	Fair: may have to
regulation				be controlled by
- oguine of the				selecting cores
Pagowawy time	Good	Poor core must	Unknown-boned	Good
Recovery orme	0000	be given long	that transformer	Good
		be given tong	that transformer	1
		time in which	parameters can	
		to recover 11	be adjusted to	
		overshoot is to	give fast re-	1
		be kept small	covery	
PRF Sensiti-	Good	Subject to	Subject to	Good-except cores
vity		above	above	may need forced
				cooling to dissi~
				pate heat caused
				by core losses
Signal to moise		,		Unknown
ratio	∞	~	~	- 1.5.1X
Effect of load	Minimized by	Same as A	Same as A	Unknown
	circuitry			
Sensing schemes	None	No. 3 (question-	Same as B	None
not compatible	none	able)	Suno ao D	NOLIG
the compactore		4010)		
No of tubos	E Z	1. 5	L E plue 1	1.0 -1
No. of tubes	2=0	4-2	4-5 plus 1	1=2 plus 1 junc-
per digit			Junction diode	tion diode
No. tubes in	0	0	0	5-7
control circuit				
Difficulty of	Requires 32 sub-	Same as A	Same as A	Cores may be moun-
fabrication	chasses for 2-		personal and an and a second and a second	ted on single frame
	plane drivers			Less components
	Paulo di Lioro			faster accembly
				time
				CIMe

J)

FIGURE 11 (CONTINUED)

	A Direct Coupled Drivers	B Transformer- Coupled Drivers	C Transformer⊭ Coupled Drivers with Diodes in Secondary	D Switch-Core Drivers
Availability of tubes	Investigation of tube types for this use is now going on	Same as A	Same as A	Unknown
Availability of other components	Good	Good-except transformers unknown	Good-except transformers and junction diodes unknown	Good-switch cores in small quanti- ties appear to be available. Junc- tion diodes un- known.
Type of Post- Write Disturb System-compa- tible with	Any	Partial Post- Write Disturb No Post-Write Disturb	No Post-Write Disturb. Partial Post-Write Dis- turb. Probably. Full Post-Write Disturb	Same as B

Memorandum M-2197

Page 6

of each core prevents the reset pulse of each core from being applied to the digit-plane winding of the memory planes. Advantages and disadvantages of this system are listed in Fig. 11.

Signed Approved N. Papian

WJC/SF:jrt

Drawings Attached: SA 37479 SA 37480 SA 37481 SA 37482 SA 37483 SA 37483 SA 37483 SA 37484 SA 54918-2 SA 55146 SA 55147 SA 55148 Figure 11

Distribution List:

D. R. Brown
N. Edwards
C. A. Laspina
J. H. McCusker
R. A. Nelson
D. Shansky
Magnetic Memory Section

7430

5 P 1

le

 $\hat{\mathbf{x}}$ 10

Tran. CriticRabuerteDuriticRabuerteDuriticRabuerteContanteNumberNumberSame </th <th></th> <th>SCHEME 1</th> <th>SCHEME 2</th> <th>SCHEME 3</th> <th>SCHEME 4</th> <th>S 3M3H3S</th> <th>SCHEME 6</th> <th>SCHIEME 7</th> <th>SHEME</th>		SCHEME 1	SCHEME 2	SCHEME 3	SCHEME 4	S 3M3H3S	SCHEME 6	SCHIEME 7	SHEME
Trat cycle $\frac{1}{10}$ or $\frac{1}{10$		READ-WRITE	MULTIFLE	POST-WRITE	DELAYED	READ-READ WRITE	DOUGL &	READ-DELAY	COMBINAT
	TOTAL CACLE TIME	2/3 or Scheme 3	SANTE AS	SPECS. REGUNEE	SAME AS	4/3 TIMES	3/2 to 2 Time scheme	7/6 T WE 3	1 314 45
Rischurgens Monage Monage Samuelyse Comments Comme	DELTA -NOISE REDUCTION	an su N s N	2	2021051948	12 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	HEARLY	NEWRICH	NEANTY CINPLETE	T SE T
Bit VERS To Bit Tyte Multi Tyte MultiTyte Mu	AIR-FLUX HOIGE	an or	SAME AS AS	8 2 7 Z	35190 SV	Computed	C LANNE FEE	323741423	2445 A 4
Exercitive Exercitive Evendore Some Some Some Some EFFECTURE EFFECTURE EFFECTURE Contract Some An Some An Some An EFFECTURE Contract Contract Contract Contract Contract Contract Contract Some An An Some An An Some Some	DRIVERS TO RE VSED	3442 5440	Any Tryfe	SSAL KNN	ANY TYPE	VACUUM TUBE	SAY SYPE	ANY TUPE	ANT YAA
EFFECTURE Control Control <td>EXPERIE MICE</td> <td>EXTENSIVE</td> <td>3 7 o 7</td> <td>3015113682</td> <td>314.15</td> <td>4 W 0 5</td> <td>NONE</td> <td>5 0 m F</td> <td>Sow B</td>	EXPERIE MICE	EXTENSIVE	3 7 o 7	3015113682	314.15	4 W 0 5	NONE	5 0 m F	Sow B
NEEDED No YES NO NO YES NO	EFFECTIVE CORF	CANTERL FACTOR	TAME AC	LESS THAN	1	NOT AS CRITICAL AS DIMERS	SAME AS	SAME AS	S AME
HUMBER OF TURE 32.71ME A N. TIME A SAME A SAME A SAME A ACDED LOGIC ADDED LOGIC SCHEME I I I I (214) ADDED LOGIC LESS LESS LESS VES VES VES ADDED COMPARED TO SCHEME 3) ADDED COMPARED TO SCHEME 1 I I (214) SAME AS ADDED LOGIC LESS LESS LESS VES VES VES ADDED COMPARED TO SCHEME 3) NO NO VES VES VES ADDED COMPARED TO SCHEME 3) SCHEME 3 LESS VES VES VES ADDED COMPARED TO SCHEME 3) SCHEME 3) VES VES VES VES ADDED COMPARED TO SCHEME 3) SCHEME 3) SCHEME 3) SCHEME 3) SCHEME 3)	PELT - WHITE DISTURY NEEDED	° Z	ž	. 531	OZ	274	7 ES (Neg)	465	5 14 7
ADDED LIGIC LESS LESS LESS LESS VER VES VES VES VES VES VES VES (OMMARED CIMENER) ADDED CIMENARD TO SCHERES) ADDED CIMENERS) ADDED CIMENERS) A	NUMBER OF TUBES	32 TIMES NUMBER IN ONE AMP. (IBD)	N THATE	in invs	SAME AS	SCHEME 1 PLUS 2 64 (224)	SANTE AS	SALAR AS	SAME A
ADDED CIMENTY NO NTIMES NO 155 YES	ADDED LOGIC	5537	5537	X	4 E 6	581	485	1924	14
INFORMATION SAME AS SAME AS TWATE HITTER HITTER STMENE SAME READDATTINE TIME SAME AS CONFORED TO SEMEME 3 SCHEME 3 SCHEM	ADDED CAMPONENTS (COMPARED COMPARED 3)	e Z	N-TIMES	X	b Z	5 a r	334	5 W F	2 1 7
	READOUT TIME READOUT TIME	S APPE AS	E SWAR 15		TWARE THIAT OF SCHENE 3	H TIFFE	H TIMES THAT OF SCHENE 3	3 TIMES THAT OF SCHEME 3	SAME /

FIGURE . 5

SA-

APPROVED FOR PUBLIC RELEASE. CASE 06-1104. S Tining Diagram: Digit-Plane Dairing Scheme D. 67 6 - Fist Wate Distant Tom. 7 - Switch Clear Time +, This may occur during next address on Read Time Control Pulse Input. Core Bias On" Pulse Input Switch Core Output For Cores in Digits Where a"1" is Being WRitten. Switch CORE Output for Cores in Digits Where a "O" Is Being WRITTen. SA-5 -19-9 6 W.J. Canty May 19,1953

(1)