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ABSTRACT

Let f be the function which maps conformally a given doubly-

connected domain Q onto a circular annulus, and let

H(z) = f'(2/f(2) - Vz.

In this paper we consider the problem of determining the main
singularities of the function H in compl (QuUdQ). Our purpose is to
provide information regarding the location and nature of such
singularities, and to explain how this information can be used
to improve the efficiency of certain expansion methods for numerical

conformal mapping.






1. I ntroduction

Let Q be a finite doubly-connected domain with boundary
0Q=0Q,u0Q, in the complex z-plane, where 0Q2, | = 1,2 are piecewise analytic
Jordan curves. We assume that 0Q,; i = 1,2 are respectively the inner and outer

components of 0Q, and that the origin O liesin the "hole" of Q, i.e.

0 e Int (0Q),).
Let t be afixed point on 0Q, and let
w=1(2), (1.1)

be the function which maps conformally Q onto the circular annulus
R={w:1<|W <M}, (1.2)

so that f(t) = 1. The radius M of the outer circle is the so-called

conformal modulus of Q.

This paper is concerned with the problem of determining the
singularities of the function
HZ =f'(2/f(z) -z, (1.3

in the complement of Q=0 v oQ,, i.e. the singularities of the analytic
extensions of H in Int(0Q,) and Ext(0Q, ). The above problem may be re-

garded as the generalization to the case of doubly-connected domains of
the problem considered recently in [6], concerning the singularities of
the analytic extension of the function that maps conformally a given

simply-connected domain onto the unit disc. The work of [6] is connected
with the use of kernel function methods for the numerical conformal
mapping of simply-connected domains. Similarly, the work of the present
paper is connected with the study of certain expansion methods for

determining approximation to the mapping function (1.1). These methods



determine the numerical conformal map after first approximating the function H

by means of a finite sum of the form

HH(Z)=ich~(Z), (1.4)

and the significance of knowing the singularities of H concerns the choice

of the set of basis functions {n;.(z)}. More specifically, the practical

significance of the work of the present paper emerges from the observation
that the computational efficiency of the numerical mapping techniques

improves considerably when the basis set contains terms that reflect the
main singularities of H on 0Q and in compl(ﬁ); see [5].

Any singularities that H may have on 3ft are corner singularities, and
the problem for dealing with these is discussed fully in [5]. For this
reason, in this paper we are concerned only with the singularities that H

may have in compl(Q). In particular, we are concerned with the behaviour

of H at common symmetric points with respect to 0, andoQ, , i.e. at pairs
of points § | e Int(0Q,) and &, ¢ Ext(0Q,) which are symmetric to each other
with respect to both 0Q, and 0Q,. Such points play a very central role in

in the study of the singularities of the analytic extension of H. A simple
example illustrating this is provided by considering the case where Q is
the doubly-connected domain bounded by the two circles

0Q, ={z:|z| =1}
and (1.5)

0Q, = {z:|z—a| =1}, |a| <1, —T,.

In this case the exact mapping function is
f(z) =k(z-C)(z-C,), (1.6)

Where k is a constant such that ‘f(Z)‘=1, zeoQ),, and C,,C, are



Common symmetric with respect to the two circles (1.5), i.e. {, and &,

satisfy the equations

C1C_2= 1‘12
and . (1.7)
(€, —a) (G, —a) = ry .

This means that
H(z)=1/(z-¢,)-1/(z-§,)—-1/2, (1.8)
i.e. H has a simple pole at each of the points ¢, and C,.

In the present paper we consider more general geometries than that
defined by (1.5) and show that, under certain conditions, common symmetric
points are again singular points of the function H. Unfortunately, in
the case of a more general Q, we do not know the precise nature of the
singularities of H. However, for the purposes of the numerical mapping
techniques, our results suggest strongly that the singular behaviour of H

may be reflected approximately by introducing into the basis set {n;.(z)}

functions corresponding to simple poles at the common symmetric points.

The details of the presentation are as follows. In Section 2we
consider in detail the case where Q is a regular polygon with a circular
hole. The study of this special, but non-trivial, geometry leads naturally
to the study of more general geometries in Section 3. Finally, in Section
4 we present several numerical examples illustrating the importance of
our results, in connection with expansion methods for numerical conformal
mapping. In each of these examples the approximations to H, and hence to the
mapping function f, are computed by using the orthonomalization method

studied recently in [5].



2. Regular Polygon with Circular Hole

In this section we consider in detail the case where the inner

boundary 0Q, of Q is the circle |z| = a, a < 1,and the outer boundary
0Q,is a concentric n-sided regular polygon with short radius (apothem)

unity. We assume, without loss of generality, that the polygon 0Q, is

orientated so that one of its sides the side AC, is bisected by the
real axis at the point B = (1,0) and, referring to Fig. 2.1(a), we let

0

r,=arc DF={z:z=ae",

<m/n} 2.1)

and

rZ:AC:{z:z:1+iy,

y| < tan(/n)} (2.2)

(a) z-plane (b) _w-plane

FIGURE 2.1



Let

W=f(z), (2.3)
With f(a) =1, be the function which maps conformally Q on to
the circular annulus

R={w:1<|W|< M}, (2.4)

and let G denote the shaded region of Fig. 2.1(a), i.e. the region
bounded by I,,I, and the two rays &==xx/n. Then, because of the 2n-fold

symmetry of Q, the function f maps G conformally onto the sector

G':{w:w:peie,1<p<M, 6|<n/n}, (2.5)

so that the straight line EB, joining the points (a,0) and (1,0) goes
onto the straight line E'B', joining the points (1,0) and (M,0); see
Fig. 2.1 (b.

As was previously remarked, the purpose of this section is to

examine the behaviour of the analytic extension of the function

Hz)=f'(2)/f(z) - 1z, (2.6)

near the two common symmetric points with respect to r; and r,. In order
to do this, we need to introduce some additional notation and to establish

the preliminary results contained in Lemma 2.1.

Let I} (z) and I,(z) define respectively the symmetric points, of a
point z, with respect to the circle |z[ = a and the straight line x = 1,
ie.

I, (z)=a’/z and 1, (2) =2-z (2.7)

Also let

Slz I] 0 Iz and Sz:Iz 0 Il, (28)



so that
S| (z) = a%/(2-z) (2.9)

and

S, (Z) =2-a%/z (2.10)

define respectively the symmetric points of I,(z) with respect to the
circle |Z| = a and of I,(z) with respect to the straight line x = 1.
Then, the common symmetric points £, € Int(0€Q,) and ¢, € Ext(0Q,), with
respect to I and I',, are fixed points of both functions Sj; j =1,2.
That is, ¢, and ¢, are the roots of the quadratic equation

7P -2z+a"=0, (2.11)

1.€.
1 1

{ =1-(1-a%)? and {,=1-(1-a%)2 . (2.12)

Lemma 2.1
Let ¢, and ¢, be the common symmetric points (2.12), and define

recursively the two point sequences {zk’j}; j = 1,2 by means of

Zinj=Sj(zy);,  k=1.2,... (2.13)
Then, the following results hold.

(i) Forany z,;e G,

lim 7, ,=C =12, (2.14)

k—o0 i’
and, in each case, the convergence is linear.

(ii) The mapping function f can be continued analytically across
[and I, into two regions G(I,) and G(I,) which contain respectively the



real intervals ;< x <a and 1<x<(,.

(iii)  For any %, € G,

1lim f(z,,) =0 and 1lim f(z,,) = .

(2.15)
Proof
(1) The result is established by using the identities
§/(2-z), ifj=1,
8-S G} (2=¢) = (216
C/z if j=2.
These imply that
k S
‘Zk+l,j_Cj‘SC1 ‘Zo,j_c.:j ; J=12, k=20, 2.17)

and hence the convergence of the two sequences to G, and G, respectively. That the

convergence is linear follows at once from the observation that

lgg [{Zk+1,j -G }/{Zk,J =& }] =56 i=12, (2.18)

where
Slj (CJ):(a/Cz)z 5 =1.2. (2.19)

(i1) The proof is based on the repeated application of the
Schwarz reflection principle. This principle shows that the function

f can be continued analytically across [ and I,

by means of

fl,(2)) = /@ and  fly(z)) =M /@, z€G (2.20)

Then, for any k = 0, f can be continued recursively into two regions



G+ (T); j = 1,2, which contain respectively the points

Zi+1 5] = 1,2, by means

f(s(z) = flzyM, zeG (T),
and
(2.21)
f(s,(z)) = M*f(z) , zeG.([I,),
k=0,1,2..,

where G,(I7)=G,(I,)=G. Therefore, because of (2.14), f can be

continued into two regions G(I';); j = 1,2, which contain respectively
the intervals {, <x <aand 1 <x < ¢,.

(ii1) The equations (2.21) imply that

f(zii1.1) = f(z1)/M? and  f(zg+1.2) = M*f(zi2) , k>0 . (2.22)

Since M > 1, the result (2.15) follows at once from (2.22) and (2.14).

In particular we observe that

l{l{g f(x)=0 and }(132 f(x) =.

This is established by taking the points zp;; j = 1,2 to be real.

Our main result concerning the behaviour of the function Hnear the
common symmetric points {, and {, is contained in the following theorem.

Theorem 2.1
Let {z, j}; ] = 1,2, be the two sequences defined by (2.13) and let

H be the function (2.6). Then for any z,; € G_,

lim {(z, ;-G H(z)f =45 §=12 (2.23)



where A, and A, are finite and, in general, non-zero numbers which

depend respectively on the points zy,; and z .

Proof
Let
d(2) =f (z)/f(z) , (2.24)
and
€ =2 — G- (2.25)
Then from (2.21) and (2.22),
0(Zyy) Si(zy) = 0z );  j=1,2,k>0, (2.26)
and, from (2.16),
Sy =C 8 ()3 J=12, (2.27)

where g1(z) = {,/(2—2z) and gx(z) = {,/z. Thus

Cus)j ¢(Zk+1,j) = {gj (Zk,j)/sv (Zk,j)}ek,j ¢(Zk,j)

= (1+Cj ek,j)ek,j ¢(Zk,j)

k
= {mrzlo (1+cjem,j)}e&j z,;); Jj=12, (2.28)

where ¢; = 1/(2 -¢,) and ¢, = 1/(,. Because of (2.18)-(2.19), D'

Alembert 's ratio test shows that the series Z‘Gm,j ;] =1,2, converge

and this in turn implies that
k
111_)mw {HEIO (I+c; em,j)} =a;; =12, (2.29)

wherea, anda, are finite and non-zero numbers; see e.g. Henrici [3,p.4].
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Therefore, from (2.28)-(2.29),
l{g& e; H(z;) = 1113; ek,j¢(zk,j) =L j=12, (2.30)

where

)\'j =0 eo,j(l)(zo,j) (2.31)

(That the constants A; depend on z; can be seen by observing that
ifzo; € G then A ; #0. However, if zo; is one of the corners A or
Cof 0Q, then A; =0, because in this case ¢(z,;) =0.)

Theorem 2.1 shows that the common symmetric points with respect of I
and I', are "singular" points of H, and provide the only information we
have regarding the behaviour of H at {; and (,. The theorem suggests
that it might be possible to reflect approximately the singular behaviour
of H by that of two simple poles at {, and C, .

It is of interest to observe that if H did have simple poles at
¢, and ¢, , with residues r; and r; respectively, then near the two symmetric

points the mapping function f would have behaved like the multivalued

function
@-¢)"; j=1,2. (2.32)
Furthermore, from (2.22) and (2.18)-(2.19), the values r; and r; in

(2.32) would have satisfied
r, = -1, = logM/log(,/ a) . (2.33)

The above lead us to conjecture that the behaviour of f near the common
symmetric points is reflected approximately by (2.32) - (2.33). This
conjecture is supported by the following theorem.
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Theorem 2.2

Let {z;}; j = 1,2, be the two sequences defined by (2.13) and

let r; and r; be given by (2.33). Then for any 2, €6 ,

him (7, - C) M )f=n5 i=12,

Where # and #2 are finite and non-zero numbers

respectively on the points zy; and z .
Proof

The Equations (2.27) may be written as
€= Wiley;) 5 =12,
where
v,(@) =L+ (1) 2 j=1,2.

®
Vi

Let the functions be defined recursively by means of

\Vgl) =y, ’ngﬂ) =y, o ‘1/;( k=12, ,
so that
Cvj = \I/gk) (eo;)s k=12,..., j=1,2,

where by induction,
v = (/) 1+ (-D)b,2) |
with
b = 1= /) Y G- ¢) -
Since, from (2.22),
f(z, ) = M) f(z,))

(2.34)

depend

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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it follows from (2.38) and (2.39) that

Cj ﬂf(Zl«,j):{eo,j/ (1+(_1)jbkeo,j)}7fj {(Cl/Cz)fr ) }k f(z,) . (2.42)

But, from (2.33),
GG "= (G/G) ™ =M,
and therefore
ev; Mz )=leo /1+(-1)b, e [ iz, ). (2.43)

Since
1
limb, = 1/2(1-a*)?,

the result (2.34) follows at once from (2.43).

We end this section by establishing a result which indicates that
the functions (2.32) - (2.33) reflect more closely the behaviourof f
at the common symmetric points, when the radius a of 0Q, is close to
unity. We do this as follows.
Let
t, = a’sec(mu) , t, =sec(wu) , (2.44)
and let the sequence of functions {z,,(t)} be defined recursively

by means of

z,, () = texp (imin/, t, < t<

(2.45)
Zk+l,l(t) = Sl (Zk,l(t)) ; k = 071925"‘ s
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where S; is the function (2.9). Then, referring to Fig. 2.1(a),
Lo={z:2 = z,,(t) , t, <t<t]

is the straight line segment joining the point ty exp(iz/n) to the
point C and, from the proof of Lemma 2.1,

G=1{z 1z =2, (0, t,< t<t |; k=123,...,

is an infinite sequence of circular arcs whose union

1= ¢,

i=

o0

forms part of the boundary of the region G(I, ). Let G be the region
bounded respectively by the straight line L, the curve J, the straight
line L, joining the common symmetric point &, to the point B = (1,0),
and the straight line BC; see Fig. 2.1(a). Then, the function f maps
G onto the sector

OA'c'= {w :0<|w|<M,0<argw<n/n}
so that the straight line L; and the curve Lo U J go respectively onto
the radial lines OE'B' and OD'C' of Fig. 2.1(b).

The above suggest that it might be possible to determine how closely
(2.32)-(2.33) reflect the behaviour of fat £, and ¢, by considering the
function

Q(t) = lim arg (z,,(t) - ¢,), —m<arg(e) < =, (2.46)
and determining constants « and £ such that, for all t € [t0,t1],

a<Q@) <P. (2.47)

More precisely, the motivation for using (2.47) as a criterion emerges
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from the observation that if f had the behaviour (2.32)-(2.33) then
the curve which is mapped by f onto the straight line OE'B' would have

had a tangent at the point (, . Furthermore this tangent would have

been inclined at an angle

0 =n/r,n (2.48)
to the real axis and, for all t € [to,t;], the function Q would have
satisfied
Qt)=10. (2.49)
Theorem 2.3

Let to,t; be given by (2.44). Then, for any t € [to,t;], the
function Q of (2.46) satisfies

a<Q) <, (2.50)
where
1
a = Q(a)=arg{(cos(m/n)—a+ i(1—a*)? sin (#/n)} (2.51)
and
B=Q(,) = arg{cos(2n/n)—a20052(ﬁ/n)+2i(1—a2)%sin(2n/n)} . (2.52)
Furthermore,
lirgl a=m/n, lirgl B=2n/n, (2.53)
and
lima= limB=m. (2.54)

a—>I1- a—l1-
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Proof

By using (2.12) and (2.38)-(2.40), it can be shown that
Q(t) = arg(texp(im/n)- ;) + arg(L, -texp(-im/n)) . (2.55)

The theorem follows easily from (2.55).

Theorem 2.33 shows that when a is close to unity then the functions

(2.32)-(2.33) reflect more closely the behaviour of fat £, and
,, in the sense that the difference B —a of the two constants in

(2.50) tends to zero as a— 1-. Furthermore the theorem, in conjunct-
tion with (2.48)-(2.49), suggests that r; might satisfy

n/np <r < m/na . (2.56)

3. Other Geometries

Let I' be an analytic are with parametric equation

z=1(8), s1<s<sy. (3.1)

Then, for any point z sufficiently close to I",

I(2) =1{1"" (2)} (3.2)

defines a symmetric point of z with respect to " ; see e.g.

Sansone and Gerretsen [8,p.103]. Let now I'; € 0Q;;j=1,2,be

two analytic arcs of the boundary 0Q = 0Q, U 6Q, of a doubly—connected
domain . Also, let I;(z); j = 1,2, be the functions corresponding

to (3.2), which define respectively pairs of symmetric points

(z,1j(2)); j = 1,2, with respect to the arcs T';; j = 1,2. Then,

as in the case of the special geometry considered in Section 2, the

points ¢, € Int(0Q,) and &, € Ext(0Q,) are said to be common symmetric
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points with respect to I'; and I'; if

G=T1E) and L=1G); j=12, (3.3)

i.e. {, and {, are common symmetric points if they are both fixed

points of the two composite functions
S] :Il OIQ and 82212011 . (34)

Of course the points ¢, and {, may not exist. (For example,

there are no common symmetric points with respect to two straight
line segments I'; and I, .) Here we assume that {; and §, exist,

and also make a number of additional assumptions. Our assumptions
are as follows:

Al: The arcs I'; and I'; are such that the common symmetric points

€, and &, exist.

A2: There exists some region G 55, partly bounded by I'; and I';, so
that for any z,.; € G

ez =0 =12, (3.5)

where the two point sequences {z, ;.}; j = 1,2, are defined, as

in Section 2, by means of
Zia = 8i(z;) 5 k=0,1,2,..... (3.6)
A3: The rate of convergence of each of the two sequences (3.6)
to ; and &, is at least linear.
A4: The two functions S; and S, are analytic at the points {;

and &, respectively.

We observe that the assumption A4 implies that
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$,6)=8,(,), (3.6)
and that
S;(2)=S;(§)) = (z-¢) " g (zsj=12. (3.7
where n;. = 1 if S‘J(CJ) #0, n;>1 if Slj(Zj) =0 and where the
functions gj; j =1,2 are analytic and non-zero at the points ¢ i

J= 12, respectively. Clearly, because of (3.6), the integers N;

in (3.7) are either nj=n,=1 orn> 1; j=1,2,
As in Section 2, we let
Cij :Zk,j_Cja (3.8)
and
Hiz)=09(z) - 1/z, ¢=1f/f, (3.9)
wherefis the function that maps € conformally onto the circular
annulus (2.4) so that f(t) = 1,te 0€,. Then, corresponding to

Theorem 2.1, we have the following.

Theorem 3.1
Under the assumptions A1 - A4, the following results hold.

: | . s -

@ If S(E;#0;) j=1,2  then, for any z,;€G,
oAz —COHEZ =L 5 =12, (3.10)

where the constants A; and A, are finite and, in general, non-zero.

. | oo
() If S;(E)#0; j=12, then, for any z,; €G

(2 —CH(Z, ) =0, j=12, G-11)

and
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Lir:oo{‘zk,j _Cj‘log‘zk,j _Cj‘ ‘H(ij)‘} =H;; j=12,

where the constants? and M2 are finite and, in general, non-zero.
Proof

The proof is similar to that of Theorem 2.1. Thus, from (3.7),

Cralj :ei,jjgj(zk,j); j=12, k>0,

S}(Zk,j) = eEfjil {njgj(zk,j) + ek,jg}(zk,j)}; j=12, K=0,
and hence, because of (2.26),
€1 9(Z,1 ;) = 11/n; +0(e, ) }ey ;0(z, )

k
{H (1/n_|‘+0(em,j))}eo’j(p(zo,j) ; =12, k=0.
m=0

Since

a,0, if n;=1,

o {ﬁ(l/nj +0(em,j))} =

0, if n;>1,

the results (3.10) and (3.11) follow at once from (3.9) and .15).
The result (3.12) also follows from (3. 15) - (3.16) by observing that

log‘ekﬂ;j ‘: njlog‘ ek’j‘ + log‘ gj(zk’j)‘.

Theorem 3.1 extends the results of Section 2, concerning the
singular behaviour of H at common symmetric points, to more general
doubly-connected domains than polygons with circular holes .

Corresponding to the formula (2.33) we now have that

n = -1, = 2 logM/log{S} (¢,)} ,

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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where the principal value of the logarithm is taken. That is, in the

G,

case of a general fi, if the function H did have simple poles at
C2 then, by taking n, = n, = 1 and using (2.2), (3.6) and (3.7), it

can be shown that the residues ">"2 of these poles would have satisfied
(3.18).

Although, in general, it might be difficult to verify rigorously

the assumptions Al -A4, there are many geometries for which the common

symmetric points may be determined easily. To illustrate this we con-

sider below the two cases where €2 is respectively an elliptical domain

with a circular hole and a circular domain with a "cardioid shaped" hole.

3.1 Elliptical domain with circular hole

Let 2 be the doubly-connected domain whose interior and exterior

boundaries are respectively

0Q, = {(x,y):x* +y’ =a’/9}, (3.19)
and

an = {(ij) . (X+a/2)2/212 +y2 =]} l<a<2,
and let FJ = aQ]’ J=1,25 Flg 3.1. Then

Il (Z) — a2/9£’ (3.20)
and, from [ 7, Eq. (3.8) ],

L (z) = —a/24+{(& +1)(z+a/2) + 2ia@> — 1 — (z+a/z} )2} /(& —1) (3.21

1
where the branch of the square root is chosen so that 0 <arg(.)® < T

We consider the seven domains which correspond respectively to

the values a=1.04, 1.08 and a = 1.2(0.2)2.0 and, in each case, we
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Q with a=1.04 Q with a=2.0

FIGURE 3.1
determine numerically the common symmetric points with respect to

r; and 1, by using the function S, =1, o I,. More precisely, since

any fixed points of S, are zeros of the quartic polynomial,

Q=Y b7,

(3.22)
b,=a‘(a’—1)/81=b,=2a’/9,b, =a’(25-2a’)/9,b, =—2a,b, =a’ -1,
we determine the common symmetric points by solving numerically the equation
Q(z) =0. (3.23)

This leads to the following results:For each of the values a = 1.04, 1.08 the Eq. (3.23) has

four real roots, two of which are fixed points of S, . Thus, for each
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of these values of a, there is one pair of real common symmetric points

€, € Int((0Q,)) and {, =a*/9 €, € Ext ((0€2,).) The computed values of {, are

listed in Table 3.1.
(i1) For each of the values a=1.2(0.2)2.0 the Eq. (3.23) has two
pairs of complex conjugate roots, all of which are fixed points of S,.

Therefore, for each of these values of a, there are two pairs of complex
common symmetric points (;,C, and C_l , Q where , € Int(0Q)),

G, Z eExt (0Q,) and ;= a*/ 9(;_1. The computed values of (; are listed

in Table 3.1.
TABLE 3.1

a G

1.04 0.092 993 479 887
1.08 0.090 844 724 819
1.2 0.057 522 976 644
1.4 0.068 995 111 309
1.6 0.081 566 371 190
1.8 0.095 912 475 177
2.0 0.113 004 586 098

0.011 768 596 709
0.077 804 537 657
0.133 874 647 455
0.198 980 792 698
0.279 182 238 643

+ + + 4+ +

3.2 Circular domain with a "cardioid shaped" hole

Let Q be the doubly-connected domain whose interior and exterior
boundaries are respectively
0Q, ={Z:Z=T,(S), -n<S<mj,
with (3.24)

T,(s) = {0.5+ cos(s/2)} €”,
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and

o, ={z:l7=a, a>15; (3.25)

see Fig3.2. As in the previous example we take I'; =0Q; ; j=1,2.

Q with a=1.55 Q with a=1.75
FIGURE 3.2

In this case the formula I, (z) = ¢, {11[71](Z)} , for the symmetric

Point with respect to I';, cannot be written down explicitly. However,

For any real value of't,
t,(*it) = {0.5 + cosh (t/2)} ™ (3.20)
defines two real symmetric point with respect to r; and these are

common symmetric with respect to r; and r; provided that the parameter

t satisfies the equation.

7, (it).7,(-it) =a”>,
e

0.5+ cosh (t/2)=a (3.27)

Since the equation (3.27) has roots
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t=2 cosh™ (a-0.5)
1
_+21logb; b=a—-05+{(a—-0.5>-1}2, (3.28)
It follows that there is one pair of real common symmetric points

¢, € Int(0Q,) and ¢, € Ext(6Q,)

where
(;1 - a/b2 and Cl = abz. (329)
4. Numerical Conformal Mappings

In this section we illustrate how the information regarding the
singularities of the analytic extension of H may be used to improve
the efficiency of certain numerical conformal mapping techniques. We
do this by presenting a number of numerical examples, involving the
mapping of the domains considered in Sections 2 and 3. In each example,
the approximation to the mapping function f is computed by using the
orthonormalization method (ONM) , considered recently in [5]. The ONM
emerges easily from the theory contained in [2,p.249], [1,p.102] and
[4,p.373]. The details of the method are as follows.

Let L2(n) be the Hilbert space of all square integrable functions
which are analytic and possess a single-valued indefinite integral in €,

and denote the inner product of L, (QQ) by ( , ), i.e.

2.2, = | [2/(2)g,(2)xdy. (4.1)
Q
Then it is shown in [2,p.250] that, for each function M€ L,(©)
(n.H) =i [n(z)loglz|dz, (4.2)

oQ
where H is the function defined by (1.3). It is also shown in [2]

that the modulus M of €2 is related to H by means of
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11
Ij Elog|z|dz - ||H||2}/2n ,

oQ

log M ={
(4.3)

2
where ”H” =(H,H).

Let {n; (z)} be a complete set of L,(fl). Then the result (4.2) suggests the

following procedure for obtaining a numerical approximation

N
to the mapping function f. The set {n;-(z)} ! is orthonormalized by

* N
means of the Gram-Schmidt process to give the orthonormal set ;@)

and the function H is approximated by the finite Fourier series sum

Hy@ = Y 8@, (4.4)

where the Fourier coefficients
Bj:(Honj)a (45)

are known by means of (4.2). Then, because of (1.3) and (4.3),
1 z
fu(z)=—zexp | [ Hy (L dg
t (4.6)
and
1 2
M :exp{[7I 10g|z|dz—||HN || j/2n}, 4.7)
1 oQ
give respectively the Nth ONM approximations to the mapping function
f and to the modulus M of Q. Clearly,
lim [ Hy-H | =0 (4.8)

N—oow

and, in the space L,(Q), this norm convergence implies that Hy(z) = H(z)

for N = % in every compact subset of Q

The information regarding the singularities of the analytic extension
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of H is needed for selecting the set of basis functions {nj(z)} so that

the resulting approximating series (4.4) converges rapidly. This is an
essential requirement for the successful application of the ONM, because
the Gram-Schmidt process is numerically unstable. The significance of
the results of Sections 2 and 3 emerges from the observation that rapid
convergence can be achieved by using an "augmented basis", formed by

introducing into the "monomial set”

R (4.9)

functions that relfect the main singularities of H on 9Q and in compl(5 );
see [5,Sect.4].

The problem of constructing an augmented basis for dealing with any

corner singularities that H may have on 0Q s studied fully in [5].

Here we are concerned only with the treatment of singularities in

comp1(€2), and the purpose of the examples presented below is to illustrate
the importance of introducing into the basis set functions that reflect
the singular behaviour of H at common symmetric points with respect to

oQ, and %22 The form of these singular functions is suggested by the

results of the previous sections. Thus, if the domain under consideration

has common symmetric points at G € Int( an) and &2 € Ext( aQZ) then, in
order to reflect the singularities of H at these two points, we introduce

into the set (4.9) the functions

m (2 = U(z-¢) —1/z (4.10)
and
n, (2) = N(z-G,) . (4.11)

(The term -1/z is included in (4.10) so that the function ™ has a
single-valued integral in €2).
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The computational details of the ONM procedure used in the numerical
examples are as described in [5,Sect,5]. In particular, the estimate Ex

of the maximum error in {fx (z)} is given, as in [5], by the quantity

}

2 2 . 20
where { 7 }and { ’ } are two sets of'boundary test points" on ~"1

E, = max {max‘ ‘fN (zg”)‘ -1
J

, max ‘ £ (23)] My

(4.12)

and o, respectively. We expect (4.12) to be a reasonable estimate because

in general, the approximation My to the modulus M of ft is more accurate

than |fx (z)], z € oQ ; see e.g. the numerical results in [5,Sect.6].

In presenting the results we adopt the notation used in [5], and
denote the ONM with monomial basis (4.9) by ONM/MB and the ONM with
augmented basis by ONM/AB. Also, in each example, the numerical results
correspond to the approximation fyop,, Where N = N, is the "optimum
number" of basis functions which gives maximum accuracy in a sense similar
to that described in [5,Sect.5].

All computations were carried out on a CDC7600 computer, using
programs written in FORTRAN with single precision working. Single length
working on the CDC7600 is between 13 and 14 significant figures.

Example 4.1
Let £ be the domain considered in Section 2. That is, €2 is bounded
internally by the circle
o, = {z:|z|:a,a<l}
and externally by the n-sided regular polygon

o0, =U ;.

=1



27

where
v, =T, o , o= exp{2nmi/}; j=12,.,1n,

and y, =T, is the side given by (2.2).

In this case there are n-pairs of common symmetric points associated

with 0Q, and each of the sides Yis j=1,2,...,n of 0Q,. These

points are respectively

G =go and = o j=12..n, ¢-13)

where (" = ¢, and () = {, are defined by (2.12).

Because the domain has 2n-fold symmetry about the origin, the

monomial basis set is taken to be

ZWY =1, 22, (4.14)

Also, because of the symmetry, the n-pairs of singular functions
(4.10)-(4.11), corresponding to the common symmetric points

4.13), can be combined into the two functions

n (2 =nz""/(z"-¢)-n/z , (4.15)
and

n, (z) = nz""'/(z"-C}) . (4.16)

We consider first the case where n=3, i.e. the case where 0Q,

is an equilateral triangle, and in Table 4.1 we list the computed values
of Enopt corresponding respectively to circular holes of radii a = 0.1,
0.2, 0.5, 0.9, 0.95, 0.99 and 0.995. (In presenting the numerical re-

sults we use throughout the abbreviation x(-M) to denote x10™ )
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TABLE 4.1

Equilateral triangle with circular hole

a ONM/MB ONM/AB
Nopt ENop . Nopt ENop !
0.1 23 5.0(-7) 5" 6.7(-4)
0.2 21 2.6(-7) 5" 6.9(-4)
0.5 21 4.2(-7) 21 3.7(-8)
0.9 21 1.2(-4) 21 2.2(-7)
0.95 29 8.8(-4) 20 1.7(-7)
0.99 25 1.2(-2) 25 3.7(-7)
0.995 23 1.8(-2) 15 2.4(-6)

* The Gram-Schmidt process breaks down when N = 6.

In the two cases a = 0.1 and a = 0.2 the ONM/AB breaks down after

only a few applications of the Gram-Schmidt process. The reason for
this is that the function m,, given by (4.15) with n = 3, has the series
expansion

ne = GL) Y Gt

=1

Z| >, ,

which for small a converges rapidly in Q. This means that there is

"near" linear dependence between 7, and the first few "negative" monomials

7O =12, (4.17)
and, for this reason, severe ill-conditioning occurs. One way of partly
overcoming this difficulty is to omit from the augmented basis the first
term of (4.17), i.e. the term z™*. If this approach is adopted then the
ONM/AB gives
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Nopt =18, Eig=3.1x 10", (4.18)
whena=0.1,

Nopt=18, Eig- 1.5 x 107, (4.19)
when a=0.2, and

Nopt =18, E18=3.1 x 10®, (4.20)

when a=0.5.

The results of Table 4.1, together with (4.18)-(4.19) and results for other values of
a not presented here, indicate that, when n = 3, the use of an augmented basis containing

the functions (4.15)-(4.16) always leads to improved approximations. This is so,

provided that the near linear dependence of ' mentioned above is taken into account,
and when a is small the monomial z* is omitted from the basis. However, our results

show that the improvement achieved by the ONM/AB is considerable only when the

radius a of o0, is close to unity. For all other values of a the accuracy of the ONM/MB

is good and there is no real need for using an augmented basis.

The above observations, concerning the significance of the singular basis

functions Mand "2 in the case n = 3, also apply to the mapping of domains whose outer

boundary o0

2 is a polygon with n > 3 sides. In other words, for any n, the effect of the
singularities of H at the common symmetric points (4.13) is serious only when the radius

of o, is close to unity. This is certainly so when n = 4, i.e. when €2 is a square with a

circular hole. In this case, because of the increased symmetry, the ONM/MB results are
substantially more accurate than those listed in Table 4.1. For example, when a = 0.2, 0.4

and 0.8 the ONM/MB gives respectively
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Exo =95 X102, By =31 % 102 and Ey = 1.8 x 107 ;

see [5,Ex.5.1]. If n> 4 then the function H has a branch point singularity

at each of the n corners of %2 These corner singularities are always
serious and, for this reason, when n > 4 the augmented basis must always
contain "corner" singular functions of the type described in [5]. For

most values of a, high accuracy is achieved by using an augmented basis
formed by introducing only corner singular functions into the set (4.14).

The inclusion of the functions "rand "2 leads to improved approximations

only when a is very close to unity. Thus, in general, the need for

reflecting the singularities of H at the common symmetric points arises

only when the hole of the polygonal domain under consideration is large.

Such domains are apparently of practical significance, in connection with

certain elasticity problems for infinite plates having doubly periodic distributions of
closely spaced holes; see e.g. [7,p.318].

In order to illustrate the above remarks we consider the mapping of

0Q,

Q in the two cases where n =4 and n = 5, i.e. where is a square and

a pentagon. The computed values of Exgpi, corresponding to circular holes

of radii a= 0.9, 0.99 and 0.999, are listed in Tables 4.2 and 4.3 In the

case of the pentagonal domain the results ONM/AB, in Table 4.3, are obtained
by using a basis formed by introducing into the set (4.14) the functions

™ > M2 and also a corner singular function "> whose purpose is to reflect

the corner singularities of H. The results ONM/ AB, , which are also listed
in Table 4.3, are obtained by using as basis the monomial set (4.14) augmented

by introducting the corner singular function " only.

The results of Tables 4.2 and 4.3 illustrate the significant improve-
ment in accuracy that can be achieved when a is very close to unity, by

introducting into the basis set the singular functions ' and "2. The results
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TABLE 4.2

Square with circular hole

a ONM/MB ONM/AB
Nopt E xopt Nopt E \opt
0.9 25 4.7(-8) 17 3.0(-8)
0.99 25 1.9(-3) 23 1.8(-9)
0.999 27 1.7(-2) 11 1.3(-5)
TABLE 4.3
Pentagon with circular hole
a ONM/MB ONM/ AB ONM /AB
Nopt E xopt Nopt E xopt Nopt E Nopt

0.9 30 4.6(-5) 24 2.5(-10) 18 1.7(-9)
0.99 26 1.8(-5) 30 1.2(-5) 25 1.4(-10)
0.999 27 5.5(-3) 28 4.3(-3) 25 1.5(-10)

also show that the ONM/MB or, if n > 4, the ONM/ AB achieve high

accuracy even when the radius of the hole is as large as a=0.9. In fact, in

the case a = 0.9 of the pentagonal domain the

E )
Nopt  corresponding to the

ONM/ AB s less than that of the ONM/AB. This is due to greater

instability, caused by the introduction of the function i into the basis set.

Theorem 2.2 and the discussion which led to this theorem suggest

that, in the ONM/AB, the coefficients ¢, and c; of the singular functions Ui

and "2 might be close to =1, respectively, where r; is given by (2.33). In

order to test this, we list in Tables 4.4-4.6 the computed coefficients
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c1 and c; and we compare them with the value r; , which we compute from
(2.33), by using the best available approximation Myt to the onformal
modulus M of Q. In each table we also list the values of Myopt used for

determining ry.

TABLE 4.4
Equilateral triangle with circular hole
a M ot R1 C1 C2
0.1 11.320 933 159 0.810 716 0.912 058 -0.941 970
0.2 5.660 452 463 0.756 186 0.891 406 -0.811 842
0.5 2.262 776 769 0.620 060 0.751 555 -0.526 729
0.9 1.222 664 205 0.430 342 0.424 505 -0.429 393
0.95 1.137 027 112 0.397 531 0.397 566 -0.397 259
0.99 1.052 393 003 0.359 587 0.359 587 -0.359 578
0.995 1.035 851 938 0.351 507 0.351 449 -0.351 492
TABLE 4.5
Square with circular hole
a M ot R1 C1 C2
0.9 1.184 090 961 0.361 719 0.397 421 -0.358 626
0.99 5.040 412 137 0.278 964 0.278 964 -0.278 963
0.999 1.011 633 061 0.258 514 0.258 611 -0.258 609
TABLE 4.6
Pentagon with circular hole
a M oot r C1 C2
0.9 1.162 649 997 0.322 602 0.410 822 -0.344 350
.99 1.033 311 414 0.230 741 0.230 739 -0.230 743
0.999 1.009 390 376 0.208 908 0.208 908 -0.208 908




33

It is gratifying to observe that the results of the above tables
con-firm the prediction which emerged from Theorem 2.3. That is, the
agreement between the computed coefficients ¢; and ¢, and the values
+r; increases with a, and there is close agreement when a is close to
unity. (In Table 4.5, the agreement between c¢; ¢, and £r; when a =
0.999 is not as close as when a = 0.99. This is due to the fact that the
accuracy of the ONM/AB approximations when a = 0.999 is

considerably worse than when a = 0.99; see Table 4.2.)

Finally, we note that the values of r; listed in Tables 4.4-4.6
satisfy the inequality (2.56) and, as might be expected, when a is
close to unity both B = w/np and a = wna are close to r;. For

example, in the

case n = 5 and a = 0.999 we find that

B =0.208 144 and a =0.209 151 .

Example 4.2

Let Q0 be the domain defined in Section 3.1, whose boundary components

are respectively the circle 0Q, and the ellipse 0€2, given by (3.19).

We consider the mapping of Q in the seven cases where a = 1.04,

1.08 and 1.2(0.2)2.0 and recall that, depending on the value of a,

there are either one real pair {;, {, or two complex pairs (,, {, and

¢,,C, of common symmetric points with respect to 8Q, and 8Q,; see

Table 3.1 for the values of {,. Thus, the augmented basis is formed by
introducing into the monomial set (4.9) either two or four singular
functions of the form (4.10) - (4.11).

The computed values of Exopt Obtained by using the ONM/MB and the
ONM/AB are listed in Table 4.7. These results show that considerable

improvement in accuracy is achieved by the ONM/AB in the cases where a
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is close to two or to unity,i.e. when 0Q, 1is "close" to 0Q, or 0Q,

is nearly circular.

TABLE 4.7
A ONM/MB ONM/AB
Nopt E \ont Nopt E xopt
1.04 31 2.1(-5) 30 1.0(-8)
1.08 31 8.7(-6) 21 9.7(-8)
1.20 29 7.5(-8) 19 6.1(-8)
1.40 29 2.0(-6) 23 1.9(-7)
1.60 25 3.2(-5) 25 5.6(-7)
1.80 23 3.9(-4) 19 7.6(-6)
2.00 27 2.0(-3) 25 2.7(-6)

In Table 4.8 we list the computed approximations E to

Nopt
the modulus M of Q, the computed coefficients ¢; and c, of the two
singular functions corresponding to the points {, and {, and the
values r;, which we determine from (3.18) by using the

approximations E,, instead of M. The purpose of this table is to

test whether the coefficients ¢y, ¢, are close tory, —1,.
TABLE 4.8

a E ot I C1 )

1.04 2.081 686 626 1.020 0.399 -1.020

1.08 2.053 744 500 | 1.052 1.011 -1.053

1.20 1.968 317 921 0.839-11.048 0.216 —10.863 -0.925-10.990
1.40 1.824 572 938 0.703 -10.194 0.391 -11.092 -0.705-10.214
1.60 1.683 966 719 0.673 -10.111 0.728 —10.103 -0.671 -10.117
1.80 1.549 091 634 0.647 -10.071 0.640 —-10.073 -0.641 -10.078
2.00 1.419 684 616 0.620 —1 0.046 0.621 —10.044 -0.620 —1 0.046
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The overall behaviour of the results of Table 4.8 is rather erratic
and, for this reason, it is difficult to reach any precise conclusions
regarding the coefficients ¢; and c,. We observe however that there is
closer agreement between the values c, and —E than there is between
the values ¢; and r;. More specifically, there is always some agreement
between ¢, and —E , whilst when a = 1.04, 1.20 and 1.40 there is no

agreement at all between c¢; and r;. This is probably due to the numerical
instability of the method. We also observe that the results of Table 4.8
resemble those of Tables 4.4-4.6, in the sense that the agreement

between the computed coefficients and the values ry, —E, tends to be

closer in the cases where the ONM/AB produces considerably more accurate

approximations than the ONM/MB.

Example 4.3

Let Q be the domain defined in Section 3.2, whose boundary components

0Q),and 0Q, are given by (3.24) and (3.25).

In this case, for any value of the radius a of 0Q,, there is only one
pair of real common symmetric points (,,, with respect to 0Q, and 0%,
. Thus, for any value of a, the augmented basis is formed by introducing
into the monomial set (4.9) the two singular functions (4.10)-(4.11),
where (, and C, are given by (3.28) -(3.29).

The numerical results obtained for the four cases where a = 1.51, 1.55,
1.60 and 1.75 are listed in Table 4.9. These results illustrate the very
considerable improvement in accuracy which is achieved by the M/AB when

the radius of 0Q, is close to 1.5, i.e. when 0Q, is "close" to 0Q, .
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TABLE 4.9
a ONM/MB ONM/AB
Nopt ENOpt Nopt ENopt
1.51 30 2.0(-2) 28 3.9(-10)
1.55 28 3.1(-4) 28 5.7(-10)
1.60 30 1.3(-5) 26 2.3(-9)
1.75 28 6.8(-8) 26 1.7(-9)

In Table 4.10 we list the value of My, , the computed coefficients
ci, ¢2 of the two singular functions n,, n,, and the values r; which,a s

in Ex. 4.21, we determine from (3.18) by using the approximations My,

instead of M . For the four values of a considered, our results show
that there is always some agreement between c¢; ¢, and r;, -r; and that
the agreement is excellent when a is close to 1.5. Thus, the entries of

Table 4.10 display the same behaviour as those of Tables 4.4-4.6 and
4.8, in the sense that the agreement between c¢;, ¢, and ry, -r; is closer

in the cases where the ONM/AB leads to considerably improved approximations,

TABLE 4.10
a MNopt I Cl C2
151 1.051 456 961 1.068 052 0 1.068 052 0 | -1.068 052 0
1.55 1.128 173 218 1.163 576 0 1163 573 6 | -1.163 564 3
160 | 1.196 339 075 1.243 205 8 1243 188 1 | -1.244 268 8
1.75 1362 121 219 1.419 850 1 1422 547 3 | -1372 296 4




5. Discussion
Our remarks, concerning the improvement in accuracy achieved by
introducing into the basis set singular functions of the form (4.10) -(4.11),
also apply to the other expansion methods for the numerical conformal mapping
of doubly-connected domains. For example, precisely the same remarks hold
in connection with the use of the variational method of Gaier [2,p.249],
the numerical implementation of which is considered in [5],
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