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ABSTRACT 

 
 

L e t  f  b e  t h e  f u n c t i o n  w h i c h  m a p s  c o n f o r m a l l y  a  g i v e n  d o u b l y -

connected domain  onto a circular annulus, and let Ω

 
H(z)   =   f '(z) / f(z)  -  1/z . 

 
I n  t h i s  p a p e r  w e  c o n s i d e r  t h e  p r o b l e m o f  d e t e r mi n i n g  t h e  ma i n  

s i n g u l a r i t i e s  o f  t h e  f u n c t i o n  H  i n  c o mpl )( Ω∂∪Ω .   Ou r  pu rpose  i s  t o  

p rov ide  i n fo rma t ion  r ega rd ing  t he  l oc a t i on  a nd  na tu r e  o f  s uc h  

s i n g u l a r i t i e s ,  a n d  t o  e x p l a i n  h o w  t h i s  i n f o r m a t i o n  c a n  b e  u s e d  

t o  improve  t he  e f f i c i ency  o f  c e r t a i n  e xpa ns ion  me thods  fo r  nume r i ca l  

conformal mapping. 
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1. Introduction

 Let   be a f inite doubly-connected domain with boundary 

 in the complex z-plane, where 

Ω

21 Ω∂∪Ω∂=Ω∂ iΩ∂    i = 1,2 are piecewise analytic 

Jordan curves.  We assume that iΩ∂ ;  i = 1,2 are respectively the inner and o u t e r  

components of ,Ω∂  and that the origin 0 lies in the "hole" of Ω ,  i .e.   

0 ∈  Int  ( ). 1Ω∂

Let t be a fixed point on 1Ω∂  and let 

                                                          w = f(z) ,                             (1.1) 

 

be the function which maps conformally Ω  onto the circular annulus 

,M}W1:{wR <<=                                                                             (1.2) 

s o  t h a t  f ( t )  =  1 .   T h e  r a d i u s  M  o f  t h e  o u t e r  c i r c l e  i s  t h e  s o - c a l l e d  

con fo rma l  modu lus  o f   .Ω

 

T h i s  p a p e r  i s  c o n c e r n e d  w i t h  t h e  p r o b l e m  o f  d e t e r m i n i n g  t h e  

s i n g u l a r i t i e s  o f  t h e  f u n c t i o n   

           H (z)  =  f ' (z) / f(z)  – 1/z ,                                      (1.3) 

in the complement of ,  i .e.  the singularities of the analytic 

extensions of H in I n t ( )  a n d  E x t (

,Ω∂∪Ω=Ω
−

1Ω∂ 2Ω∂  ) .   The  above  p rob l em may  be  r e -

garded  as  the  genera l i za t ion  to  the  case  o f  doub ly-connec ted  domains  o f  

t h e  p r o b l e m c o n s i d e r e d  r e c e n t l y  i n  [ 6 ] ,  c o n c e r n i n g  t h e  s i n g u l a r i t i e s  o f  

t h e  a n a l y t i c  e x t e n s i o n  o f  t h e  f u n c t i o n  t h a t  m a p s  c o n f o r m a l l y  a  g i v e n  

simply-connected domain onto the unit  disc.  The work of [6] is  connected 

with the use  of kernel function methods for the numerical  conformal  

mapping of simply-connected domains.  Similarly,  the work of the present 

paper is  connected with the study of certain expansion methods for 

determining approximation to the mapping function (1.1).  These methods  
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determine the numerical conformal map after first  approximating the function H  

by  means  of a finite sum of the form 

 

          (1.4) (z),ηc(z)H
n

1j
jjn ∑

=

=

 
and the s ignif icance of  knowing the s ingular i t ies  of  H concerns  the c ho i c e  

o f  t h e  s e t  o f  b a s i s  f u n c t i o n s  { . ( z ) } .  M o r e  s p e c i f i c a l l y ,  t h e  p r a c t i c a l  

significance of the work of the present paper emerges from the o b s e r v a t i o n  

that the computational efficiency of the numerical mapping techniques 

improves  cons iderab ly  when the  bas i s  se t  conta ins  te rms  tha t  re f lec t  the  

main singularities of H on 

jη

Ω∂  and in  compl( Ω );    see  [5].  

Any singularit ies that  H may have on 3ft  are corner singularit ies,   and  

t h e  p r o b l e m f o r  d e a l i n g  w i t h  t h e s e  i s  d i s c u s s e d  f u l l y  i n  [ 5 ] .   F o r  t h i s   

r eason ,  in  th i s  paper  we  a re  concerned  on ly  wi th  the  s ingu la r i t i e s  tha t  H  

may have  in  compl( Ω ) .  In   par t icu la r ,  we  are  concerned  wi th  the  behaviour            

of  H at  common symmetr ic  points  with respect  to  1Ω∂  and  ,  i .e .  a t  pairs  2Ω∂

of points ζ 1 ∈  Int( ) and 1Ω∂ ζ 2 ∈  Ext( 2Ω∂ ) which are symmetric to each other   

wi th  respec t  to  bo th    and  1Ω∂ .2Ω∂   Such  po in t s  p lay  a  ve ry  cen t ra l  ro le  in   

in the study of the singularities of the analytic extension of H.  A s i m p l e   

example  i l lus t ra t ing  th i s  i s  p rov ided  by  cons ide r ing  the  case  where  Ω  i s   

the doubly-connected domain bounded by the two circles 

and                  
⎪
⎭

⎪
⎬

⎫

−<=−=∂

==∂

.rra},raz:{zΩ

}rz:{zΩ

2.122

11

  (1.5) 

In this case the exact mapping function is 
 

                                                ),ζ)/(zζk(zf(z) 21 −−=     (1.6) 
 
Where  k  i s  a  cons tan t  such  tha t  are,and,z,1)z(f 211 ζζΩ∂∈=  
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C o mmo n  s y mme t r i c  w i t h  r e s p e c t  t o  t h e  t w o  c i r c l e s  ( 1 . 5 ) ,  i . e .  1ζ  a n d  2ζ  

s a t i s f y    t h e     e q u a t i o n s          

             

   

)7.1(
              .r)aζ(a)( ζ

rζζ

2
221

2
121

⎪⎭

⎪
⎬
⎫

=−−

= 
and 

 
This means that 
 

                                                      ,2/1)z/(1)z/(1)z(H 21 −ζ−−ζ−=       (1.8) 
 
i .e.  H  has  a  simple   pole   at    each   of   the  points   1ζ  and 2ζ .  
 
     In  the  presen t  paper  we  cons ider  more  genera l  geomet r ies  than  t h a t  

defined by (1.5) and show that,  under certain conditions,  common symmetric 

p o i n t s  a r e  a g a i n  s i n g u l a r  p o i n t s  o f  t h e  f u n c t i o n  H .   U n f o r t u n a t e l y ,  i n  

t h e  c a s e  o f  a  mor e  g e n e r a l  Ω ,  w e  d o  n o t  k n o w  t h e  p r e c i s e  n a t u r e  o f  t h e  

s i n g u l a r i t i e s  o f  H .   H o w e v e r ,  f o r  t h e  p u r p o s e s  o f  t h e  n u m e r i c a l  m a p p i n g  

t e c h n i q u e s ,  o u r  r e s u l t s  s u g g e s t  s t r o n g l y  t h a t  t h e  s i n g u l a r  b e h a v i o u r  o f  H  

may  be  re f l ec ted  approx imate ly  by  in t roduc ing  in to  the  bas i s  se t  { . ( z ) }  

functions corresponding to simple poles at the common symmetric points.  

jη

     T h e  d e t a i l s  o f    t h e    p r e s e n t a t i o n  a r e  a s  f o l l o w s .   I n  S e c t i o n  2 w e  

cons ide r  in  de ta i l  the  case  where  Ω  i s  a  r egu la r  po lygon  wi th  a  c i r c u l a r  

h o l e .   T h e  s t u d y  o f  t h i s  s p e c i a l ,  b u t  n o n - t r i v i a l ,  g e o me t r y  l e a d s    n a t u r a l l y  

t o  t h e  s t u d y  o f  mor e  g e n e r a l  g e o me t r i e s  i n  S e c t i o n  3 .   F i n a l l y ,  i n     S e c t i o n    

4  w e  p r e s e n t  s e v e r a l  n u me r i c a l  e x a mp l e s  i l l u s t r a t i n g  t h e  i mp o r t a n c e  o f    

our  resu l t s ,  in  connec t ion  wi th  expans ion  methods  fo r  numer ica l  conformal  

mapping .  In  each  of  these  examples  the  approximat ions  to  H,  and  hence  t o  t he    

mapping function   f, are computed    by using the orthonomalization method    

studied    recently in  [5].  



4 

 

 
2.   Regular  Polygon  with   Circular Hole
 

I n  t h i s  s e c t i o n  w e  c o n s i d e r  i n  d e t a i l  t h e  c a s e  w h e r e  t h e  i n n e r  

b o u n d a r y   o f   i s  t h e  c i r c l e  | z |  =  a ,  a  <  1 , a n d  t h e  o u t e r  b o u n d a r y   1Ω∂ Ω

2Ω∂ i s   a   concentr ic   n-s ided  regular   polygon  with   short  radius  (apothem) 

u n i t y .   We  a s s u me ,  w i t h o u t  l o s s  o f  g e n e r a l i t y ,  t h a t  t h e  p o l y g o n  2Ω∂   i s  

o r i e n t a t e d  s o  t h a t  o n e  o f  i t s  s i d e s  t h e  s i d e  A C ,  i s   b i s e c t e d  b y  t h e    

r e a l  a x i s  a t  t h e  p o i n t  B  =  ( 1 , 0 )  a n d ,  r e f e r r i n g  t o  F i g .  2 . 1 ( a ) ,  w e  l e t  

                                        π/n}θ,aez:{zDFarcr iθ
1 ≤===      (2.1) 

 
and 

n)}tan(yiy,1z:{zACr2 /π≤+===
−

               (2.2) 
 
 

 
 

(a)   z-plane      (b)    w-plane 
  

FIGURE  2.1 
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Let 
 

                                                                   W=f(z),            (2.3) 
 
With   f(a) = 1 ,  be   the      function    which   maps   conformally      on  to   

the   circular                                                        annulus 

Ω

 
                                                    R={w:1< M},W <             (2.4) 

 
a n d  l e t  G  d e n o t e  t h e   s h a d e d  r e g i o n  o f  F i g .  2 . 1 ( a ) ,  i . e .  t h e   r e g i o n  

bounded by  21,ΓΓ  and  the  two rays  ./ nπθ ±=  Then ,  because  of  the  2n- fo ld  

symmetry of Ω ,  the function f maps G conformally onto the sector 

 
                       { } ,π/nθ,Mρ1,eρw:w iθ' <<<==G     (2.5) 
 
s o  t h a t  t h e  s t r a i g h t  l i n e  E B ,  j o i n i n g  t h e  p o i n t s  ( a , 0 )  a n d  ( 1 , 0 )  g o e s  

o n t o  t h e  s t r a i g h t  l i n e  E ' B ' ,  j o i n i n g  t h e  p o i n t s  ( 1 , 0 )  a n d  ( M , 0 ) ;  s e e   

Fig.  2.1 (b. 

 
A s  w a s  p r e v i o u s l y  r e ma r k e d ,  t h e  p u r p o s e  o f  t h i s  s e c t i o n  i s  t o  

examine the behaviour of the analytic extension of the function 

 
                                                    H(z) = f ' (z) / f(z) - 1/z ,     (2.6) 
 
nea r  the  two  common symmet r ic  po in t s  wi th  respec t  to  r 1  and  r 2 .  In  o rder  

to  do  th i s ,  we  need  to  in t roduce  some addi t iona l  no ta t ion  and  to  es tab l i sh  

the preliminary results contained in Lemma 2.1. 

 
L e t  I 1  ( z )  a n d  I 2 ( z )  d e f i n e  r e s p e c t i v e l y  t h e  s y m m e t r i c  p o i n t s ,  o f  a  

p o i n t  z ,  w i t h  r e s p e c t  t o  t h e  c i r c l e  | z [  =  a  a n d  t h e  s t r a i g h t  l i n e  x  =  1 ,  

i.e. 

                                              .z2(z)Iandz/a(z)I 2
2

1 −==               (2.7) 
 
 
Also let 
 
                                                   S1= I1 0 I2   and   S2 = I2 0 I1,         (2.8) 
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so that 
                                                            S1 (z) = a2/(2-z)       (2.9) 
and 
 
                                                            S2 (Z) = 2-a2/z       (2.10) 

 

d e f i n e  r e s p e c t i v e l y  t h e  s y m m e t r i c  p o i n t s  o f  I 2 ( z )  w i t h  r e s p e c t  t o  t h e  
c i r c l e  z  =  a  a n d  o f  I 1 ( z )  w i t h  r e s p e c t  t o  t h e  s t r a i g h t  l i n e  x  =  1 .  

Then, the common symmetric points ∈ζ1  Int( 1Ω∂ ) and ∈2ζ  Ext( ),  with 
r e s p e c t  t o  ,  a r e  f i x e d  p o i n t s  o f  b o t h  f u n c t i o n s  S

2Ω∂

21 ΓΓ and j ;  j  = 1 , 2 .  
That is,  21 ζζ and   are the roots of the quadratic equation 

                                            
                                 Z2 – 2z + a2 = 0,                  (2.11) 

i.e. 

            .)a(11ζand)a(11ζ 2
1

2
2

2
1

2
1 −−=−−=    (2.12) 

 
Lemma 2.1 
        L e t  21 ζζ and  b e  t h e  c o mmo n  s y mme t r i c  p o i n t s  ( 2 . 1 2 ) ,  a n d  d e f i n e  
recursively the two point sequences { } ;z jk,   j  = 1,2 by means of 

                            Zk+1,j = Sj (zk,j); k= 1,2,… .     (2.13) 
 
Then, the following results hold. 

 
 ( i ) For any ,Gz j0, ∈  

;ζzlim jjk,k
=

∞→
    j=1,2 ,      (2.14) 

 
and, in each case, the convergence is l inear.  

        (i i)     The mapping function f can be continued analytically across 
 into two regions G(21 ΓΓ and 1Γ )  and G( 2Γ )  which contain respect ively the 
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real intervals .ζx1andaxζ 21 <<<<  

(iii) For any ,Gz j0, ∈  
 

                     
.)zf(limand0)zf(lim 2k,k1k,k

∞==
∞→∞→                      (2.15) 

 
Proof 

(i) The result is established by using the identities 
   

{ }
⎪
⎩

⎪
⎨

⎧

=

=−
=−−

2.jif/zζ
(2.16)

,1jif,z)(2/ζ
)ζ(z/)(ζS(z)S

1

1

jjjj

 
These imply that 

                                     
,0k1,2,j;ζzζζz jj,0

k
1jj1,k ≥=−≤−+       (2.17) 

and hence the convergence of the two sequences to 21 and ζζ  respectively. That the 
convergence is linear follows at once from the observation that 
 

                           
{ } { }[ ] ,1,2j;)(ζSζz/ζzlim j

'
jjjk,jj1,kk

==−−+∞→    (2.18) 
where 

                                   j= 1,2 .     (2.19) ;)/a()(S 2
2j

'
j ζ=ζ

 
(i i)  The proof is based on the repeated application of the  

Schwarz reflection principle. This principle shows that the function  
f  can be continued analytically across 21 ΓΓ and  by means of 
 

  f(I1(z)) = f(z)1/  and f(I2(z)) = Gz,/f(z)M2 ∈         (2.20) 
 
Then, for any  k ≥  0, f can be continued recursively into two regions 
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Gk+1 ( ); j = 1,2, which contain respectively the points  jΓ

zk+1,j ; j = 1,2, by means  

 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

=
∈=

∈=

,...0,1,2k
,)(ΓGz,f(z)M(z))f(s

and
,)(ΓGz,f(z)/M(z))f(s

2k
2

2

1k
2

1

          (2.21) 

 
w h e r e   T h e r e f o r e ,  b e c a u s e  o f  ( 2 . 1 4 ) ,  f  c a n  b e  

con t inued  in to  two  reg ions  

.)()( 2010 GGG =Γ=Γ

)( jG Γ ;  j  =  1 ,2 ,  which  con ta in  respec t ive ly   

t h e  i n t e r v a l s  1ζ  <  x  <  a  a n d  1  <  x  <  2ζ .  

(i i i)  The equations (2.21) imply that 

 

f(zk + 1 , 1)  = f(zk , 1)/M2  and f(zk + 1 , 2)  = M2f(zk , 2)  ,  k ≥ 0 .         (2.22) 

 
S ince  M >  1 ,  the  resu l t  (2 .15)  fo l lows  a t  once  f rom (2 .22)  and  (2 .14) .       

In particular we observe that 

   .f(x)limand0f(x)lim
21 ζXζX

∞==
↓↓

    

 

This is established by taking the points z0 , j  ;  j  = 1,2 to be real.  

 

     O u r  ma i n  r e s u l t  c o n c e r n i n g  t h e  b e h a v i o u r  o f  t h e  f u n c t i o n  H n e a r  the 
common symmetr ic  points  21 and ζζ  i s  contained in  the fol lowing theorem. 

Theorem 2.1 

Let  {zk , , , j} ;  j  =  1 ,2 ,  be the two sequences def ined by (2.13)  and le t  

H be the function (2.6).  Then for any ,Gz j,0 ∈  

 

                                        { } 1,2j;λ)(zH)ζ(zlim jjk,jjk,k
==−

∞→
                  (2.23) 
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where 1λ  and 2λ  are finite and, in general,  non-zero numbers which 

depend respectively on the points z0 , 1  and z0 , 2 .  

Proof 

Let 

                                                                (2.24) ,f(z)/(z)f(z) '=φ

 and 

                                                        .ζze jjk,jk, −=      (2.25) 

 

Then from (2.21) and (2.22), 

 

                                    j= 1, 2, k 0,   (2.26) ;)(z)(zS)(z jk,jk,
'
jj1,k φ=φ + ≥

and, from (2.16), 

                                              ,1,2j;)(zgee jk,jjk,j1,k ==+     (2.27) 

where g1(z) =  and gz)(2/ζ1 − 2(z) = . Thus /zζ 1
 

{ }

)28.2(,1,2j;)(ze)ec1(Π

)(ze)ec(1

)(ze)(zS/)(zg)(ze

j0,j0,jm,j

k

0m

jk,jk,jk,j

jk,jk,jk,
'

jk,jj1,kj1,k

=φ
⎭
⎬
⎫

⎩
⎨
⎧ +=

φ+=

φ=φ

=

++

 

 

where  c 1  =  1 / (2  - )  and  c1ζ 2  =  1 / .  Because  of  (2 .18)- (2 .19) ,  D '  
Alember t  ' s  r a t i o  t e s t  shows  t ha t  t he  s e r i e s  

2ζ

∑ jm,e ;  j  =  1 , 2 ,  c o n v e r g e  
a n d  t h i s  i n  t u r n  implies  that 

                                            j=1,2 ,               (2.29) ;α)ec(1Πlim jjm,j

k

0mk
=

⎭
⎬
⎫

⎩
⎨
⎧ +

=∞→

where  and  are  f ini te  and non-zero numbers;  see e .g .  Henrici  [3 ,p .4] .  1α 2α
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Therefore, from (2.28)-(2.29), 

,1,2j;λ)(zelim)(zHelim jjk,jk,kjk,jk,k
==φ=

∞→∞→
      (2.30) 

where 

)(zeαλ j,0j0,jj φ=    (2.31) 

 

(That the constants depend on zjλ 0,j can be seen by observing that 

if z0,j ∈  G then # 0. However, if zjλ 0,j is one of the corners A or  

C of  then  = 0, because in this case 2Ω∂ jλ )0.)(z j0, =φ  

Theorem 2.1 shows that the common symmetric points with respect of  1Γ

and  are "singular" points of H, and provide the only information we 2Γ

have regarding the behaviour of H at  and . The theorem suggests 1ζ 2ζ

that it might be possible to reflect approximately the singular behaviour 

of H by that of two simple poles at  and . 1ζ 2ζ

It is of interest to observe that if H did have simple poles at 

1ζ  and 2ζ , with residues r1 and r2 respectively, then near the two symmetric 

points the mapping function f would have behaved like the multivalued 

function 

 .       (2.32) 21,j;)ζ(z jr
j =−

Furthermore, from (2.22) and (2.18)-(2.19), the values r1 and r2 in  

(2.32) would have satisfied 

  a) .    (2.33) /(ζlogM/logrr 221 =−=

 
The above lead us to conjecture that the behaviour of f near the common  
symmetric points is reflected approximately by (2.32) - (2.33). This  
conjecture is supported by the  following  theorem. 
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Theorem 2.2 

Let {zk,j}; j = 1,2, be the two sequences defined by (2.13) and                                     

let r1 and r2 be given by (2.33). Then for any Gz jo ∈, , 

 
{ } ,1,2j;μ)f(z)ζ(zlim jjk,

j
jjk,k

r

==−
−

∞→     (2.34) 

Where 1μ  and 2μ  are finite and non-zero numbers which depend                                     
respectively on the points z0,1 and z0,2 . 

Proof 

The Equations (2.27) may be written as 

  ,21,j;)(ee jk,jj1,k =ψ=+      (2.35) 

where 

 { } .21,j;z1)(ζz/ζ(z)ψ j
21j =−+=     (2.36) 

Let the functions  be defined recursively by means of 
(k)
jψ

 

     (2.37) ,1,2,...k;ψψψ,ψψ k
jj

1)(k
jj

(1)
j === + o

so that 

      (2.38) ,1,2j1,2,...,k;)(eψe j0,
(k)
jjk, ===

 

where by induction, 

 { } ,z)b1)((1z/)/ζ(ζψ k
jk

21
(k)
j −+=      (2.39) 

with   

{ } .)ζ(ζ/)/ζ(ζ1b 12
k

21k −−=     (2.40)  

Since, from (2.22),  

       (2.41) ,)f(z)(M)f(z j0,
1)(2k

jk,

j−=
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it  follows from (2.38) and (2.39) that 

 

 { } { } .)f(z)(M)/ζ(ζ.)eb1)(/(1e)f(ze j0,

k1)(2jr
21

jr
j0,k

j
j0,jk,

j
jk,

jr −−−
−+=

−

  (2.42) 

 

But,  from (2.33), 

    ,M)/ζ(ζ)/ζ(ζ 2r
21

r
21

21 == −−

and therefore 

{ } .)f(zeb1)(/1e)f(ze j0,
jr

j0,m
j

j0,jk,
j

jk,
r −

−+=
−

    (2.43) 

Since 

,)a1/2(1blim 2
1

2
kk

−=
∞→

 

the result (2.34) follows at once from (2.43). 

 

We end this section by establishing a result which indicates that                   

the  funct ions (2 .32)  -  (2 .33)  ref lect  more closely the behaviour  of  f                      

at  the common symmetric points,  when the radius a of 1Ω∂  is close to                   

unity. We do this as follows. 

Let 

      (2.44)  ,/u)(sect,/u)(secat 1
2

0 ππ ==

and let the sequence of functions { } be defined recursively )(1, tzk

by means of 

(2.45)
,0,1,2,...k;(t))(zS(t)z

ttt,(iπiπ/expt(t)z

1k,11,1k

j00,1

⎪
⎭

⎪
⎬

⎫

==

≤≤=

+
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where S1 is the function (2.9). Then, referring to Fig. 2.1(a), 

   { }100,10 ttt,(t)zz:zL ≤≤==  

is the straight line segment joining the point t0 exp( ni /π ) to the  

point C and, from the proof of Lemma 2.1, 

 Ck = { } ;ttt,(t)zz:z 10k,1 ≤≤=  k = 1,2,3,… , 

is an infinite sequence of circular arcs whose union 

     U
∞

=

=
1i

k ,CJ  

forms part of the boundary of the region G( 1Γ ). Let G be the region 

bounded respectively by the straight line L0, the curve J, the straight  

line L1 joining the common symmetric point 1ζ  to the point B = (1,0),   

and the straight line BC ; see Fig. 2.1(a). Then, the function f maps  

G onto the sector 

  OA'c' = { }π/nargw0,Mw0:w <<<<  

so that the straight line L1 and the curve L0 U J  go respectively onto  

the radial lines OE'B' and OD'C' of Fig. 2.1(b). 

 

The above suggest that it might be possible to determine how closely 

(2.32)-(2.33) reflect the behaviour of f at 1ζ  and 2ζ  by considering the 

function 

 Q(t) = ,π)(argπ,)ζ(t)(zarglim 11,kk
≤•<−−

∞→
  (2.46) 

and determining constants α  and β  such that, for all t ∈  [t0,t1], 

   .β(t)Qα ≤≤     (2.47) 

More precisely, the motivation for using (2.47) as a criterion emerges 
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from the observation that if f had the behaviour (2.32)-(2.33) then 

the curve which is mapped by f onto the straight line OE'B' would have 

had a tangent at the point . Furthermore this tangent would have  1ζ

been inclined at an angle 

               (2.48) nπ/rθ 1=

to the real axis and, for all t ∈  [t0,t1], the function Q would have  

satisfied 

   

   Q(t) = θ  .      (2.49) 

Theorem 2.3 

Let t0,t1 be given by (2.44). Then, for any t ∈  [t0,t1], the  

function Q of (2.46) satisfies 

   β(t)Qα ≤≤  ,     (2.50) 

where 

=α Q(a) = arg{(cos( −π/n) a + /n)}(sin)ai(1 2
1

2 π−    (2.51) 

and 

π/n)}(2sin
2
1)ai(12/n)(cosaπ/n)(2{cosarg)(tQβ 222

0 −+−== π  . (2.52) 

Furthermore,      

,π/n2βlim,π/nαlim
0a0a

==
+→+→

   (2.53) 

and  

πβlimαlim
1a1a

==
−→−→

 .       (2.54) 
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Proof 

By using (2.12) and (2.38)-(2.40), it can be shown that 

Q(t) = arg(texp(i /n)- ) + arg( -texp(-i /n)) .             (2.55)  π 1ζ 2ζ π

 

The theorem follows easily from (2.55). 

 

Theorem 2.33 shows that when a is close to unity then the functions  

(2.32)-(2.33) reflect more closely the behaviour of f at  and  1ζ

2ζ , in the sense that the difference αβ −  of the two constants in  

(2.50) tends to zero as a 1-. Furthermore the theorem, in conjunct- →

tion with (2.48)-(2.49), suggests that r1 might satisfy 

 

    π/nαrπ/nβ 1 ≤≤  .             (2.56) 

 

3.  Other Geometries 

Let Γ  be an analytic are with parametric equation 

 

z = τ (s),  s1 < s < s2  .    (3.1) 

 

Then, for any point z sufficiently close to Γ , 

 

                               (z)}ττ{I(z) 1][−=                                                              (3.2) 

 

defines a symmetric point of z with respect to Γ ; see e.g.  

Sansone and Gerretsen [8,p.103]. Let now jj ΩΓ ∂⊆ ; j = 1,2,be  

two analytic arcs of the boundary 21 Ω∂Ω∂=Ω∂ U  of a doubly—connected  

domain . Also, let Ij(z); j = 1,2, be the functions corresponding  

to (3.2), which define respectively pairs of symmetric points  

(z,Ij(z)); j = 1,2, with respect to the arcs jΓ ; j = 1,2. Then,  

as in the case of the special geometry considered in Section 2, the  

points  Int( ) and ∈1ζ 1Ω∂ ∈2ζ  Ext( 2Ω∂ ) are said to be common symmetric 
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points with respect to Г1 and Г2  if 

 (3.3)1,2,j;)(ζIζand)(ζIζ 1j22j1 ===  

 

i.e.  and  are common symmetric points if they are both fixed  1ζ 2ζ

points of the two composite functions 

 

  S1 = I1 O I2 and       S2 = I2 O I1 .                       (3.4) 

 

Of course the points  and  may not exist.  (For example,  1ζ 2ζ

there are no common symmetric points with respect to two straight  

line segments Г1 and Г2 .)  Here we assume that ζ1 and ζ2 exist,  

and also make a number of additional assumptions.  Our assumptions  

are as follows: 

A1:  The arcs Г1 and Г2 are such that the common symmetric points  

 ζ1 and ζ2 exist. 

 A2:  There exists some region G ,Ωε   partly bounded by Г1 and Г2, so  

that for any z0.j G∈  

                   (3.5) 1,2,j;ζz jjk,
lim
k ==∞→

where the two point sequences {zk, j.};  j = 1,2, are defined, as  

in Section 2, by means of 

.....2,1,0,k;)(zsz jk,jj1,k ==+                (3.6) 

 A3:  The rate of convergence of each of the two sequences (3.6)  

to ζ1 and ζ2 is at least linear. 

 A4:  The two functions S1 and S2 are analytic at the points ζ1  

  and ζ2 respectively. 

 

 We observe that the assumption A4 implies that 
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),(ζS)(ζS 2
'
21

'
1 =       (3.6) 

and that 

1,2.j(z);g)ζ(z)(ζS(z)S j
n

jjjj
j =−=−     (3.7) 

where nj. = 1 if  and where the  0)(zSif1n0,)(ζS j
|
jjj

|
j =>≠

functions gj; j =1,2 are analytic and non-zero at the points ;jζ   

j = 1,2, respectively.  Clearly, because of (3.6), the integers   jn

in (3.7) are either n1= n2= 1 or nj> 1;  j = 1,2, 

As in Section 2, we let 

,ζze jjk,jk, −=       (3.8) 

and 

H (z) =              (3.9) ,/ffφ1/z,(z)φ |=−

where f is the function that maps Ω  conformally onto the circular  

annulus (2.4) so that f(t) = 1,t  Then, corresponding to  .1Ω∂∈

Theorem 2.1, we have the following. 

 

Theorem 3.1 

 Under the assumptions A1 - A4, the following results hold. 

 (i) G,zanyforthen,1,2j)0;(ζSIf j0,j
|
j ∈=≠  

              (3.10) 1,2,j;λ)}(zH)ζ{(z jk,jjk,
lim
k ==−∞→

where the constants λ1 and λ2 are finite and, in general, non-zero. 

(ii) If  Gzanyforthen,1,2,j0;)(ζS j0,j
|
j ∈=≠     

  (3.11)  1,2,j0;))H(zζ{(z jk,jjk,
lim
k ==−∞→

and 
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(3.12),1,2j;μ})H(zζzlogζz{ jjk,jjk,jjk,
lim
k ==−−∞→  

where the constantsμ   and   are finite and, in general, non-zero. 2μ

Proof 

 The proof is similar to that of Theorem 2.1.  Thus, from (3.7), 

   

                          
(3.13)  

0,k1,2,j);(zgee jk,j
n

jk,j1,k
j ≥==+

   (3.14),0K1,2,j;)}(zge)(zgn{e)(zS jk,
'
jjk,jk,jj

1n
jk,jk,

|
j

j ≥=+= −

 
and hence, because of (2.26),  

    )(z)}e0(e{1/n)(ze jk,jk,jk,jj1,kj1,k φ+=φ ++  
             

=  
(3.15)0.k1,2,j;)(zj,e))0(e(1/n j0,

φ
0jm,j

k

0m

≥=
⎭
⎬
⎫

⎩
⎨
⎧

+∏
=

Since 

(3.16)
1,nif0,

1,nif0,a

))0(e(1/n

j

jjk

0m
jm,j

lim
k

⎪
⎩

⎪
⎨

⎧

>

=

=
⎭
⎬
⎫

⎩
⎨
⎧

+
≠

=
∞→ ∏

 
the results (3.10) and (3.11) follow at once from (3.9) and .15). 

The result  (3.12) also follows from (3. 15)  -  (3.16) by observing that 

 

 (3.17).)(zglogelognelog jk,jjk,jj1;k +=+  
 

 Theorem 3.1 extends the results of Section 2, concerning the 

singular behaviour of H at common symmetric points, to more general 

doubly-connected domains than polygons with circular holes . 

Corresponding to the formula (2.33) we now have that 

 

,)}(ζS{logM/log2rr 1
|
121 =−=                               (3.18) 
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where the principal value of the logarithm is taken.  That is, in the 

case of a general fi, if the function H did have simple poles at  1,ζ

2ζ  then, by taking n1 = n2 = 1 and using (2.2), (3.6) and (3.7), it 

can be shown that the residues  of these poles would have satisfied 21,rr

(3.18). 

Although, in general, it might be difficult to verify rigorously   

the assumptions A1 -A4, there are many geometries for which the common 

symmetric points may be determined easily.  To illustrate this we con- 

sider below the two cases where  is respectively an elliptical domain  Ω

with a circular hole and a circular domain with a "cardioid shaped" hole. 

 

3.1   Elliptical domain with circular hole 

Let Ω  be the doubly-connected domain whose interior and exterior  

boundaries are respectively 

       (3.19)   /9},ayx:y){(x,Ω 222
1 =+=∂

and 

   ,2a11}y/aa/2)(x:y){(x,Ω 222
2 ≤<=++=∂

and  let  Гj  =  
Then3.1.Fig.1,2;j;Ω j =∂

   (3.20),z/9a(z)I 2
1 =  

and, from [ 7, Eq. (3.8) ] , 

(3.21)1)}/(a)a/z)z(1a2ia()a/2z(1){(aa/2(z)I 22
1

222
2 −+−−++++−=  

where the branch of the square root is chosen so that 0 < arg(.)   < 
1
2 .π  

 

We consider the seven domains which correspond respectively to 

the values a= 1.04, 1.08 and a = 1.2(0.2)2.0 and, in each case, we 
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         Ω  with  a = 1.04     Ω  with  a = 2.0
 

FIGURE 3.1 

 

determine numerically the common symmetric points with respect to 

r1 and r2 by using the function  S2 = I2  o  I2 .  More precisely, since  

any fixed points of S2 are zeros of the quartic polynomial, 

 

(3.22)
1,ab2a,b/9,)2a25(ab/9,2ab81/1)(aab

,zbQ(z)

2
43

32
2

3
1

24
0

j
4

0j
j

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

−=−=−===−=

=∑
=

 
we determine the common symmetric points by solving numerically the equation 

       

    Q (z)  =  0  .               (3.23) 

 

This leads to the following results:For each of the values a = 1.04, 1.08 the Eq. (3.23) has 

four real roots, two of which are fixed points of S2 .  Thus, for each 
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of these values of a, there is one pair of real common symmetric points  

∈1ζ  Int( ) and ζ)( 1Ω∂ 2  =a2/9  Ext (∈1ζ ).( 2Ω∂ ) The computed values of  are  1ζ

listed in Table 3.1. 

(ii) For each of the values a=1.2(0.2)2.0 the Eq. (3.23) has two  

pairs of complex conjugate roots, all of which are fixed points of S2.  

Therefore, for each of these values of a, there are two pairs of complex 

common symmetric points ζ1,ζ2 and 1ζ , 2ζ  where ∈1ζ     Int(∂Ω1), 

ζ2, ∈2ζ Ext  and ζ)( 2Ω∂ 2 = .ζ9/ 1
2a  The computed values of  ζ1 are listed  

in Table 3.1. 

 TABLE 3.1 
 
  a      ζ1

1.04      0.092 993 479 887       
1.08      0.090 844 724 819       
1.2      0.057 522 976 644 + i 0.011 768 596 709 
1.4      0.068 995 111 309 + i 0.077 804 537 657  
1.6      0.081 566 371 190 + i 0.133 874 647 455 
1.8      0.095 912 475 177 + i 0.198 980 792 698 
2.0      0.113 004 586 098 + i 0.279 182 238 643 

 
3.2  Circular domain with a "cardioid shaped" hole

Let  Ω  be the doubly-connected domain whose interior and exterior  

 boundaries are respectively  

 

with    (3.24) 

⎪
⎪
⎭

⎪
⎪
⎬

⎫

+=

≤<−==∂

,cos(s/2)}e{0.5(s)T

π},Sπ(S),TZ:{ZΩ

is
1

11
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and 

  ;}5.1,:{2 >==Ω∂ aazz     (3.25) 

 

see  Fig 3.2.   As in the previous example we take .21,j;ΩΓ jj =∂=  
 

          Ω  with  a = 1.55     Ω  with  a = 1.75

FIGURE 3.2 

 

 In this case the formula I1 (z) = 
[ ]( ) ,}z{ 1

11
−ττ  for the symmetric  

Point with respect to Г1, cannot be written down explicitly. However, 

For any real value of t, 

 
t

1 (t/2)}cosh{0.5it)(τ m+=±     (3.26) 

 

defines two real symmetric point with respect to r1 and these are  

common symmetric with respect to r1 and r2   provided that the parameter 

t satisfies the equation. 

 
2,

11 ait)((it).ττ =− , 

i.e 

     0.5 + cosh (t/2) = a      (3.27) 

 

Since the equation (3.27) has roots 
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  t = 2 cosh-1
 (a - 0.5) 

            = ,}1)5.0a{(5.0ab;blog2 2
1

2 −−+−=±          (3.28) 

It follows that there is one pair of real common symmetric points  

( ) ( 2211 ΩExtζandΩIntζ ∂∈∂∈ )  where 

                       (3.29) .abζanda/bζ 2
1

2
1 ==

4.  Numerical Conformal Mappings

In this section we illustrate how the information regarding the  

singularities of the analytic extension of H may be used to improve  

the efficiency of certain numerical conformal mapping techniques.  We  

do this by presenting a number of numerical examples, involving the  

mapping of the domains considered in Sections 2 and 3.  In each example,  

the approximation to the mapping function f is computed by using the  

orthonormalization method (ONM) , considered recently in [5].  The ONM 

emerges easily from the theory contained in [2,p.249], [1,p.102] and 

[4,p.373].  The details of the method are as follows. 

  

        Let L2(n) be the Hilbert space of all square integrable functions  

which are analytic and possess a single-valued indefinite integral in Ω,  

and denote the inner product of L2 (Ω) by ( , ), i.e. 

(4.1)dxdy.(z)g(z)gg,g 2
Ω

121 ∫∫=
 

Then it is shown in [2,p.250] that, for each function )(Lη 2 Ω∈  

          dz,zlogη(z)i(n.H)
Ω
∫
∂

=           (4.2)

 where  H  is the function defined by  (1.3).  It is also shown in  [2] 

that the modulus M of   is related to  H by means of Ω
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,/2πHdzzlog

Z
1

i
1Mlog 2

Ω ⎭
⎬
⎫

⎩
⎨
⎧

−= ∫
∂   (4.3) 

where 
2H =(H,H). 

Let {ηj (z)} be a complete set of L2(fl).  Then the result (4.2) suggests the 

following procedure for obtaining a numerical approximation  

to the mapping function f. The set {ηj-(z)}   is orthonormalized by  
N

1j=

means of the Gram-Schmidt process to give the orthonormal set   ,(z){ N
1j

*
j =η

and the function H is approximated by the finite Fourier series sum 

  

  
(4.4),(z)ηβ(z)H *

j

N

1j
jN ∑

=

=

where the Fourier coefficients 

              (4.5) ),(H,β *
jj η=

are known by means of (4.2).  Then, because of (1.3) and (4.3), 

   
{ }dζ(ζζHexpz

t
1(z)f

z

t NN ∫=
      (4.6) 

and 

  (4.7),/2πHdzzlog
i
1expM 2

N
Ω

N
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

∂

 

give respectively the Nth ONM approximations to the mapping function  

f and to the modulus M of Ω.  Clearly, 

)8.4(0HHlim NN
=−

∞→  
and, in the space L2(Ω), this norm convergence implies that HN(z) →H(z) 

for  in every compact subset of Ω ∞→N

        The information regarding the singularities of the analytic extension 
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of H is needed for selecting the set of basis functions {ηj(z)} so that 

the resulting approximating series (4.4) converges rapidly.  This is an  

essential requirement for the successful application of the ONM, because  

the Gram-Schmidt process is numerically unstable.  The significance of   

the results of Sections 2 and 3 emerges from the observation that rapid  

convergence can be achieved by using an "augmented basis", formed by  

introducing into the "monomial set"  

                (4.9) { } ,1j,z j
j −≠
∞

−∞=

 
functions that relfect the main singularities of H on Ω∂  and in comp1(Ω );  

see [5,Sect.4]. 

The problem of constructing an augmented basis for dealing with any  

corner singularities that H may have on Ω∂  is studied fully in [5].   

Here we are concerned only with the treatment of singularities in  

comp1(Ω ), and the purpose of the examples presented below is to illustrate  

the importance of introducing into the basis set functions that reflect  

the singular behaviour of H at common symmetric points with respect to  

1Ω∂  and 2Ω∂ .The form of these singular functions is suggested by the  

results of the previous sections.  Thus, if the domain under consideration  

has common symmetric points at ∈1ζ  Int( 1Ω∂ ) and ∈2ζ  Ext( 2Ω∂ ) then, in  

order to reflect the singularities of H at these two points, we introduce  

into the set (4.9) the functions 

   1/z)ζ1/(z(z)η 11 −−=            (4.10) 

and 

   .)ζ1/(z(z)η 22 −=             (4.11) 
 (The term -1/z is included in (4.10) so that the function   has a  1η

single-valued integral in ). Ω
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         The computational details of the ONM procedure used in the numerical  

examples are as described in [5,Sect,5]. In particular, the estimate EN  

of the maximum error in {fN (z)} is given, as in [5], by the quantity 

   

            
{ }N

2
jNj

(1)
jNjN M)(zfmax,1)(zfmaxmaxE −−=

                         (4.12) 

where { } and { } are two sets of"boundary test points" on 
(1)
jz (2)

jz
1Ω∂  

and  respectively.  We expect (4.12) to be a reasonable estimate because 2Ω∂

in general, the approximation MN to the modulus M of ft is more accurate  

than |fN (z)|, z  ;  see e.g. the numerical results in [5,Sect.6]. Ω∂∈

In presenting the results we adopt the notation used in [5], and  

denote the ONM with monomial basis (4.9) by ONM/MB and the ONM with  

augmented basis by ONM/AB.  Also, in each example, the numerical results  

correspond to the approximation fNopt,  where N = Nopt  is the "optimum  

number" of basis functions which gives maximum accuracy in a sense similar  

to that described in [5,Sect.5]. 

All computations were carried out on a CDC7600 computer, using  

programs written in FORTRAN with single precision working.  Single length  

working on the CDC7600 is between 13 and 14 significant figures. 

Example 4.1 

Let Ω  be the domain considered in Section 2.  That is, Ω  is bounded  

internally by the circle 

   { }1a,az:z1 <==Ω∂  
and externally by the n-sided regular polygon 

U
n

1j
j2 ,γΩ

=

=∂
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where 

  

  { } ,n1,2,...,j;2ππi/expω,ωΓγ 1j
2j === −  

 

and  is the side given by (2.2).  21 Γγ =

 
         In this case there are n-pairs of common symmetric points associated  

w i t h   a n d  e a c h  o f  t h e  s i d e s    j  = 1 , 2 , . . . , n  o f  .  T h e s e  

p o i n t s  a r e  respectively 

1Ω∂ ;γ j 2Ω∂

                               (4.13) ,n1,2,...,j;ωζζandωζζ 1j
2

(j)
2

1j
1

(j)
1 === −−

 

where   and   are defined by (2.12). 1
(1)
1 ζζ = 2

(1)
2 ζζ =

 

Because  the  domain  has  2n- fo ld  symmetry  about  the  or ig in ,  the  

monomia l  basis set is taken to be 

                        (4.14) .

,

.....2,1,j;z 1)(nj ±±=−

 

A l s o ,  b e c a u s e  o f  t h e  s y m m e t r y ,  t h e  n - p a i r s  o f  s i n g u l a r  f u n c t i o n s  

( 4 . 1 0 ) - ( 4 . 1 1 ) ,  c o r r e s p o n d i n g  t o  t h e  c o m m o n  s y m m e t r i c  p o i n t s  

4 . 1 3 ) ,  can be combined into the two functions 

   

                       (4.15) n/z)ζ(z/nz(z)η n
1

n1n
1 −−= −

and 

                                  (4.16) .)ζ(z/nz(z)η n
2

n1n
2 −= −

 
W e  c o n s i d e r  f i r s t  t h e  c a s e  w h e r e  n = 3 ,  i . e .  t h e  c a s e  w h e r e  2Ω∂   

i s  an  equi la te ra l  t r iangle ,  and  in  Table  4 .1  we  l i s t  the  computed  va lues  

of EN o p t   corresponding respectively to circular holes of radii a = 0.1, 

0 . 2 ,  0 . 5 ,  0 . 9 ,  0 . 95 ,  0 . 99  and  0 .995 .  ( I n  p r e sen t i ng  t he  numer i ca l  r e -  

sults we use throughout the abbreviation x(-M) to denote x10- M .) 
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TABLE 4.1 

Equilateral triangle with circular hole 

 

         ONM/MB         ONM/AB       a 

Nopt NoptE  Nopt NoptE  

0.1 23 5.0(-7) *5  6.7(-4) 

0.2 21 2.6(-7) *5  6.9(-4) 

0.5 21 4.2(-7) 21 3.7(-8) 

0.9 21 1.2(-4) 21 2.2(-7) 

0.95 29 8.8(-4) 20 1.7(-7) 

0.99 25 1.2(-2) 25 3.7(-7) 

0.995 23 1.8(-2) 15 2.4(-6) 

*  The  Gram-Schmid t  p rocess  b reaks  down when  N =  6 .  

 
In  the  two cases  a  =  0 .1  and a  = 0 .2  the  ONM/AB breaks  down af ter  

only  a  few appl icat ions  of  the  Gram-Schmidt  process .  The reason for        

t h i s  i s  t h a t  t h e  f u n c t i o n   g i v e n  b y  ( 4 . 1 5 )  w i t h  n  =  3 ,  h a s  t h e  s e r i e s  

expans ion  

,1η

   ,ζz,/z)(ζ)(3/ζ(z)η 1
1j

13j
111 >= ∑

∞

=

+  

 
wh i ch  fo r  sma l l  a  conve rges  r ap id ly  i n  Ω .  Th i s  means  t ha t  t he r e  i s     

"near" l inear dependence between 1η   and the first  few "negative" monomials 

                               (4.17) ,1,2,...j;z 1)(3j =+−

 

a n d ,  f o r  t h i s  r e a s o n ,  s e v e r e  i l l - c o n d i t i o n i n g  o c c u r s .  O n e  w a y  o f  p a r t l y  

o v e r c o mi n g  t h i s  d i f f i c u l t y  i s  t o  o mi t  f r o m t h e  a u g me n t e d  b a s i s  t h e  f i r s t  

t e r m  o f  ( 4 . 1 7 ) ,  i . e .  t h e  t e r m  z - 4 .  I f  t h i s  a p p r o a c h  i s  a d o p t e d  t h e n  t h e  

O N M / A B  gives 
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Nopt = 18 ,    E18 = 3.1 ×  10-8  ,  (4.18) 

when a = 0.1, 

 

Nopt = 18 ,    E18 - 1.5 ×  107 ,  (4.19) 

 

when a = 0.2, and 

 

Nopt = 18 ,    E18 = 3.1 ×  10-8 , (4.20) 

when a = 0.5. 
 

The results of Table 4.1, together with (4.18)-(4.19) and results for other values of 

a not presented here, indicate that, when n = 3, the use of an augmented basis containing 

the functions (4.15)-(4.16) always leads to improved approximations.  This is so, 

provided that the near linear dependence of  mentioned above is taken into account, 

and when a is small the monomial z

1η

-4 is omitted from the basis. However, our results 

show that the improvement achieved by the ONM/AB is considerable only when the 

radius a of  is close to unity. For all other values of a the accuracy of the ONM/MB 

is good and there is no real need for using an augmented basis. 

1Ω∂

 

The above observations, concerning the significance of the singular basis 

functions and   in the case n = 3, also apply to the mapping of domains whose outer 

boundary   is a polygon with n > 3 sides. In other words, for any n, the effect of the 

singularities of H at the common symmetric points (4.13) is serious only when the radius 

of   is close to unity. This is certainly so when n = 4, i.e. when 

1η 2η

2Ω∂

1Ω∂ Ω  is a square with a 

circular hole. In this case, because of the increased symmetry, the ONM/MB results are 

substantially more accurate than those listed in Table 4.1. For example, when a = 0.2, 0.4 

and 0.8 the ONM/MB gives respectively 
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E20  =  9.5  ×  10 -12  ,   E22  =  3.1  ×   10-12  and E28  =  1.8  ×   10-10  ; 
 
see [5,Ex.5.1].  If  n > 4 then the function H has a branch point singularity  

at each of the n corners of . These corner singularities are always  2Ω∂

serious and, for this reason, when n > 4 the augmented basis must always  
contain "corner" singular functions of the type described in [5]. For  
most values of a, high accuracy is achieved by using an augmented basis  
formed by introducing only corner singular functions into the set (4.14).  

The inclusion of the functions   and   leads to improved approximations  1η 2η

only when a is very close to unity. Thus, in general, the need for  
reflecting the singularities of H at the common symmetric points arises  
only when the hole of the polygonal domain under consideration is large.  
Such domains are apparently of practical significance, in connection with  
certain elasticity problems for infinite plates having doubly periodic distributions of 
closely spaced holes;  see  e.g.  [7,p.318] . 

 
In order to illustrate the above remarks we consider the mapping of  

Ω  in the two cases where n = 4 and n = 5, i.e. where 2Ω∂  is a square and  
a pentagon. The computed values of ENopt, corresponding to circular holes  
of radii a = 0.9, 0.99 and 0.999, are listed in Tables 4.2 and 4.3 In the  
case of the pentagonal domain the results ONM/AB, in Table 4.3, are obtained  
by using a basis formed by introducing into the set (4.14) the functions  

21 η,η  and also a corner singular function ,η~  whose purpose is to reflect  

the corner singularities of H. The results ONM/ ,~ΒΑ , which are also listed  
in Table 4.3, are obtained by using as basis the monomial set (4.14) augmented  

by introducting the corner singular function η
~

 only. 
 
The results of Tables 4.2 and 4.3 illustrate the significant improve- 

ment in accuracy that can be achieved when a is very close to unity, by  

introducting into the basis set the singular functions  and .  The results 1η 2η
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TABLE 4.2 

Square with circular hole 

  

            ONM/MB               ONM/AB a 

Nopt NoptE  Nopt NoptE  

0.9 25 4.7(-8) 17 3.0(-8) 

0.99 25 1.9(-3) 23 1.8(-9) 

0.999 27 1.7(-2) 11 1.3(-5) 

TABLE 4.3 

Pentagon with circular hole 

 

     ONM/MB        ONM/ ΒΑ~        ONM / AB a 

Nopt NoptE  Nopt NoptE  Nopt NoptE  

0.9 30 4.6(-5) 24 2.5(-10) 18 1.7(-9) 

0.99 26 1.8(-5) 30 1.2(-5) 25 1.4(-10) 

0.999 27 5.5(-3) 28 4.3(-3) 25 1.5(-10) 

 

also show that the ONM/MB or, if n > 4, the ONM/ ΒΑ~
 achieve high 

accuracy even when the radius of the hole is as large as a = 0.9.  In fact, in 

the case  a  =  0.9  of the pentagonal domain the    corresponding to the 

ONM/

NoptE

ΒΑ~
 is less than that of the ONM/AB.  This is due to greater 

instability, caused by the introduction of the function  into the basis set. 1η

Theorem 2.2 and the discussion which led to this theorem suggest 

that, in the ONM/AB, the coefficients c1 and c2 of the singular functions  

and  might be close to ±r

1η

2η 1, respectively, where r1 is given by (2.33). In 

order to test this, we list in Tables 4.4-4.6 the computed coefficients 
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c1 and c2 and we compare them with the value r1 ,  which we compute from 

(2.33) ,  by using the best  avai lable  approximation MN o p t  to  the onformal  

modulus M of Ω .   In each table we also list the values of MNopt  used for 

determining r1.  

TABLE 4.4 

Equilateral triangle with circular hole 

a NoptM  R1 c1 c2

0.1 11.320   933   159 0.810  716 0.912  058 -0.941  970 

0.2   5.660   452    463 0.756  186 0.891  406 -0.811  842 

0.5   2.262   776    769 0.620  060 0.751  555 -0.526  729 

0.9   1.222   664    205 0.430  342 0.424  505 -0.429  393 

0.95  1.137   027    112 0.397  531 0.397  566 -0.397  259 

0.99   1.052    393    003 0.359  587 0.359  587 -0.359  578 

0.995   1.035    851    938 0.351  507 0.351  449 -0.351  492 

TABLE 4.5 

Square with circular hole 

 

a NoptM  R1 c1 c2

0.9 1.184  090  961 0.361  719 0.397  421 -0.358  626 

0.99 5.040  412  137 0.278  964 0.278  964 -0.278  963 

0.999 1.011  633  061 0.258  514 0.258  611 -0.258  609 

 

TABLE 4.6 

Pentagon with circular hole

a NoptM  r1 c1 c2

0.9 1.162  649  997 0.322  602 0.410  822 -0.344  350 

.99 1.033  311  414 0.230  741 0.230  739 -0.230  743 

0.999 1.009  390  376 0.208  908 0.208  908 -0.208  908 
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I t  i s  g r a t i f y i n g  t o  o b s e r v e  t h a t  t h e  r e s u l t s  o f  t h e  a b o v e  t a b l e s  

c o n - firm the prediction which emerged from Theorem 2.3.  That is,  the 

agreement b e t w e e n  t h e  c o mp u t e d  c o e f f i c i e n t s  c 1  a n d  c 2  a n d  t h e  v a l u e s  

± r 1  i n c r e a s e s  wi th  a ,  and  the re  i s  c lose  ag reemen t  when  a  i s  c lose  to  

un i ty .  ( In  Tab le  4 . 5 ,  t h e  a g r e e me n t  b e t w e e n  c 1  c 2  a n d  ± r 1  w h e n  a  =  

0 . 9 9 9  i s  n o t  a s  c l o s e   as  when a  = 0 .99.  This  i s  due to  the  fact  that  the  

accuracy  of  the  ONM/AB approx imat ions  when  a  =  0 .999  i s  

cons iderab ly  worse  than  when  a  =  0 .99 ;  see  Tab le  4 .2 . )  

 

F i n a l l y ,  w e  n o t e  t h a t  t h e  v a l u e s  o f  r 1  l i s t e d  i n  T a b l e s  4 . 4 - 4 . 6   

s a t i s f y  t h e  i n e q u a l i t y  ( 2 . 5 6 )  a n d ,  a s  mi g h t  b e  e x p e c t e d ,  w h e n  a  i s  

c l o s e   t o  unity both  β  =   and   =   are close to rˆ π/nβ α̂ π/nα 1 .  For 

example, in the  

case n = 5 and a = 0.999 we find that 

   .1510.209α̂and1440.208β̂ ==

Example 4.2 
       

       Let Ω   be the domain defined in Section 3.1, whose boundary  components  

are respectively the circle  and the ell ipse 1Ω∂ 2Ω∂  given by (3.19).  

 

We consider the mapping of Ω  in the seven cases where a = 1.04, 

1.08 a n d  1 . 2 ( 0 . 2 ) 2 . 0  a n d  r e c a l l  t h a t ,  d e p e n d i n g  o n  t h e  v a l u e  o f  a ,  

t h e r e  a r e  e i t h e r  o n e  r e a l  p a i r   o r  t w o  c o mp l e x  p a i r s   a n d  21 ζ,ζ 21 ζ,ζ

21 ζ,ζ  o f  c o mmo n  s y mme t r i c  p o i n t s  w i t h  r e s p e c t  t o  1Ω∂  a n d  ;   s e e  

T a b l e  3 . 1  f o r  the  va lues  o f   Thus ,  the  augmented  bas i s  i s  fo rmed  by  

in t roduc ing  in to  t h e  mo n o mi a l  s e t  ( 4 . 9 )  e i t h e r  t w o  o r  f o u r  s i n g u l a r  

f u n c t i o n s  o f  t h e  f o r m ( 4 . 1 0 )  -  ( 4 . 1 1 ) .  

2Ω∂

.ζ1

T he computed values of EN o p t  obtained by using the 0NM/MB and the 

ONM/AB are  l i s ted  in  Table  4 .7 .   These  resul ts  show that  considerable  

improvement in accuracy is achieved by the ONM/AB in the cases where a 
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i s  c l o s e  t o  t w o  o r  t o  u n i t y , i . e .  w h e n  1Ω∂    i s  " c l o s e"  t o   o r   
i s  n e a r l y  c i r c u l a r .  

2Ω∂ 2Ω∂

TABLE 4.7 

   

ONM/MB ONM/AB A 

Nopt ΝoptΕ  Nopt ΝoptΕ  

1.04 31 2.1(-5) 30 1.0(-8) 

1.08 31 8.7(-6) 21 9.7(-8) 

1.20 29 7.5(-8) 19 6.1(-8) 

1.40 29 2.0(-6) 23 1.9(-7) 

1.60 25 3.2(-5) 25 5.6(-7) 

1.80 23 3.9(-4) 19 7.6(-6) 

2.00 27 2.0(-3) 25 2.7(-6) 
 

I n  T a b l e  4 . 8  w e  l i s t  t h e  c o mp u t e d  a p p r o x i ma t i o n s   t o  
t h e  modulus M of Ω ,  the computed coefficients c

ΝoptΕ
1 and c2 of the two 

singular f u n c t i o n s  c o r r e s p o n d i n g  t o  t h e  p o i n t s   a n d    a n d  t h e  
v a l u e s  r

1ζ 2ζ
1 ,  wh i c h  we de termine  f rom (3 .18)  by  us ing  the  

approximat ions  Ε  ins tead  of  M.  T h e  p u r p o s e  o f  t h i s  t a b l e  i s  t o  

t e s t  w h e t h e r  t h e  c o e f f i c i e n t s  c
Νopt

1 ,  c 2  a r e  close to r1 ,  1r− .  

TABLE 4.8 

 

a ΝoptΕ  r1 c1 c2

1.04 2.081  686  626  1.020  0.399  -1.020 

1.08  2.053   744  500  1.052  1.011  -1.053 

1.20 1.968  317  921  0.839 – i 1.048  0.216 – i 0.863  -0.925 – i 0.990 

1.40 1.824  572  938  0.703 – i 0.194  0.391 – i 1.092  -0.705 – i 0.214 

1.60 1.683  966  719  0.673 – i 0.111  0.728 – i 0.103  -0.671 – i 0.117 

1.80 1.549  091  634  0.647 – i 0.071  0.640 – i 0.073  -0.641 – i 0.078 

2.00 1.419  684  616  0.620 – i 0.046  0.621 – i 0.044  -0.620 – i 0.046 
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T h e  o v e r a l l  b e h a v i o u r  o f  t h e  r e s u l t s  o f  T a b l e  4 . 8  i s  r a t h e r  e r r a t i c  

a n d ,  f o r  t h i s  r e a s o n ,  i t  i s  d i f f i c u l t  t o  r e a c h  a n y  p r e c i s e  c o n c l u s i o n s  

r ega rd ing  the  coe f f i c i en t s  c 1  and  c 2 .  We  obse rve  however  tha t  t he re  i s  

c l o s e r  a g r e e me n t  b e t w e e n  t h e  v a l u e s  c 2  a n d  1r−  t h a n  t h e r e  i s  b e t w e e n  

t h e  values  c1  and r 1 .  More  specif ica l ly ,  there  is  a lways  some agreement  

between c2 and 1r−  ,  whilst  when a = 1.04, 1.20 and 1.40 there is no 

agreement at  all  b e t w e e n  c 1  a n d  r 1 .   T h i s  i s  p r o b a b l y  d u e  t o  t h e  n u me r i c a l  

i n s t a b i l i t y  o f  the  me thod .  We  a l so  obse rve  tha t  the  r e su l t s  o f  Tab le  4 .8  

r e semble  those  o f  T a b l e s  4 . 4 - 4 . 6 ,  i n  t h e  s e n s e  t h a t  t h e  a g r e e me n t  

b e t w e e n  t h e  c o mp u t e d  coe f f i c i en t s  and  the  va lues  r 1 ,  1r− ,  t ends  to  be  

c lose r  in  the  cases  where  the ONM/AB produces considerably more accurate 

approximations than the ONM/MB. 

 

Example 4.3

        Let  be the domain defined in Section 3.2,  whose boundary components  

and  are given by (3.24) and (3.25). 

Ω

1Ω∂ 2Ω∂

 

I n  th i s  case ,  fo r  any  va lue  o f  t he  r ad ius  a  o f  2Ω∂ ,  t he re  i s  on ly  one  

p a i r  o f  r e a l  c o mmo n  s y mme t r i c  p o i n t s   w i t h  r e s p e c t  t o  21 ζ,ζ 21 ΩandΩ ∂∂  

.  Thus ,  for  any  value  of  a ,  the  augmented bas is  i s  formed by  in t roducing 

in to  t h e  m o n o m i a l  s e t  ( 4 . 9 )  t h e  t w o  s i n g u l a r  f u n c t i o n s  ( 4 . 1 0 ) - ( 4 . 1 1 ) ,  

w h e r e   and  are given by (3.28) -(3.29). 1ζ 2ζ

 

The numerical results obtained for the four cases where a = 1.51, 1.55, 

1.60 and 1.75 are l isted in Table 4.9.   These results i l lustrate the very 

considerable improvement in accuracy which is achieved by the M/AB when 

the radius of  is  close to 1.5,  i .e.  when 2Ω∂ 1Ω∂  is  "close" to  .  2Ω∂
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TABLE 4.9 

   

        ONM/MB          ONM/AB a 

Nopt ΝoptΕ  Nopt ΝoptΕ  

1.51 30 2.0(-2) 28   3.9(-10) 

1.55 28 3.1(-4) 28   5.7(-10) 

1.60 30 1.3(-5) 26 2.3(-9) 

1.75 28 6.8(-8) 26 1.7(-9) 

 
      In  Tab le  4 .10  we  l i s t  the  va lue  o f   ,  the  computed  coef f i c ien t s  

c

ΝoptM

1 ,  c 2  o f  t he  two  s i ngu l a r  f unc t i ons   a n d  t h e  v a l u e s  r,η,η 21 1  wh ich , a  s   

i n  Ex .  4 . 21 ,  we  de t e rmine  f rom (3 .18 )  by  u s ing  t he  app rox ima t ions  

i n s t e a d  o f  M  .  F o r  t h e  f o u r  v a l u e s  o f  a  c o n s i d e r e d ,  o u r  r e s u l t s  s h o w  

t h a t  t h e r e  i s  a l w a y s  s o m e  a g r e e m e n t  b e t w e e n  c

ΝoptM  

1  c 2  a n d  r 1 ,  - r 1  a n d  t h a t  

t h e  a g r e e me n t  i s  e x c e l l e n t  w h e n  a  i s  c l o s e  t o  1 . 5 .  T h u s ,  t h e  e n t r i e s  o f  

T a b l e  4 . 1 0  d i s p l a y  t h e  s a m e  b e h a v i o u r  a s  t h o s e  o f  T a b l e s  4 . 4 - 4 . 6  a n d  

4 . 8 ,  i n  t h e  s e n s e  t h a t  t h e  a g r e e m e n t  b e t w e e n  c 1 ,  c 2  a n d  r 1 ,  - r 1  i s  c l o s e r  

in the cases where the ONM/AB leads to considerably improved approximations, 

TABLE 4.10 

 

a ΝoptM  r1 C1 c2

1.51 1.051  456  961 1.068  052  0 1.068  052  0 -1.068  052  0 

1.55 1.128  173  218 1.163  576  0 1.163  573  6 -1.163  564  3 

1.60 1.196  339  075 1.243  205  8 1.243  188  1 -1.244  268  8 

1.75 1.362  121  219 1.419  850  1 1.422  547  3 -1.372  296  4 
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5.     Discussion 

Our remarks, concerning the improvement in accuracy achieved by 

introducing into the basis set singular functions of the form (4.10) -(4.11),  

also apply to the other expansion methods for the numerical conformal mapping  

of doubly-connected domains. For example, precisely the same remarks hold  

in connection with the use of the variational method of Gaier [2,p.249],  

the numerical implementation of which is considered in [5], 
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