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The Damping of an Oscillating
Ellipsoid Near a Free Surface

By J. N. Newman!

The six damping coefficients are derived for an ellipsoid with three unequal axes,
which is moving with constant horizontal velocity beneath a free surface, and oscillating
in any one of six degrees of freedom. It is assumed that the flow is irrotational and
incompressible, and that the ellipsoid is either slender or deeply submerged, in order

that the disturbance of the free surface be small.

With these assumptions the six damp-

ing coefficients are derived and computations are presented for two particvlar ellips-
oids. Of special interest is the occurrence of negative damping at very high forward

speeds.

IN the analysis of ship motions, considerable im-
portance has been attached to the damping provided by
energy radiation in the form of outgoing surface waves.
Although there are other damping mechanisms, notably
viscosity, these have been neglected in most analyses,
especially in the study of pitch and heave. For the case
of roll the importance of viscous damping depends
strongly on the shape of the hull, and one must therefore
proceed with caution. Nevertheless for many applica-
tions, such as surface ships without bilge keels or other
significant appendages, the neglect of viscosity seems
permissible, and the analysis can therefore be based upon
potential theory. A notable step has been made in this
direction by Ursell [t]? who developed a theory for the
roll damping of two-dimensional cylindrical sections.
For fairly long, slender ships at low speeds a two-dimen-
sional or “strip” theory should be valid and Ursell’s
results may be applied.

1 Seaworthiness Branch, David Taylor Model Basin, Navy
Department, Washington, D. C.

@y, a3, a; = semi-lengths of principal axes of an ellipsoid
Bj; = damping coefficients (j = 1, 2, 3, 4, 5, 6)
¢ = forward velocity
Dy = virtual-mass coefficients defined following equation
11
D; = nondimensional virtual-mass coefficients defined fol-
lowing equation (31)
G = Green'’s function
g = gravitational acceleration
h = depth of submergence
1= =1
j = index referring to direction of axis or motion

4]
ja(2) = spherical Bessel function, j.(2) = (?-2) Jat 174 (2)

K = wave number, K = /g
u; = velocity components of ellipsoid (j = 1, 2,...6)
V(z\,23,73) = gravitational potential of ellipsoid
z,y,2 = Cartesian co-ordinates translating in spaee’

Nomenclature

In three dimensions there has been considerable work
on pitch and heave damping, and Hishida [2] has studied
the sway damping of a submerged spheroid. Hishida
assumes that roll and sway damping are similar, at least
in their dependence on forward speed, and this assump-
tion seems to be justified by experiments with surface
ships. Nevertheless it is desirable to study the damping
of pure rolling motion for a three-dimensional body with
forward speed, and for such purposes an axisymmetric
body such as a spheroid is unsuitable due to its circular
sections. With the advent of model testing in oblique
waves it is also desirable to analyze all six degrees of
freedom.

For these reasons the present paper considers the
damping of a submerged ellipsoid with three unequal
axes, which is moving with constant forward velocity
and oscillating in surge, heave, sway, roll, yaw, or pitch.
In order to study this problem, the ellipsoid is repre-
sented by a distribution of singularities, and the damping

2 Numbers in brackets designate References at end of paper.

1,270,273 = Cartesian co-ordinates fixed in ellipsoid
¥1,¥2,s = Cartesian co-ordinates translating in space
a; ='Green’s integrals defined by equation (6) (j = 1, 2, 3)
34 = Kronecker delta function, &; = 0 if i » j, = 1 if
i=j
¢; = translational displacements of ellipsoid (j = 1, 2, 3)
ns; = dummy co-ordinates corresponding to y; (§ = 1, 2, 3)
0 = root of equation (7) defining ellipsoidal co-ordinates;
polar co-ordinate
0; = rotational displacements of ellipsoid (j = 1, 2, 3)
A = ellipsoidal co-ordinate normal to confocal ellipsoids
¢ = dummy co-ordinates corresponding to z; (j = 1,2, 3)
p = fluid density
* = wc/g
¢ = velocity potential
¢; = components of velocity potential defined by equa-
tion (2)
w = circular frequency of oscillations



coefficients are then found from energy radiation at
infinity.

With regard to the derivation of this theory, two items
should be emphasized. The singularity system consists
of a distribution of steady-state dipoles, represernting the
constant forward velocity of the ellipsoid, plus a distribu-
tion of oscillating dipoles and quadripoles due to the un-
steady motion. However the strength of the oscillating
singularity distribution is dependent on the forward
speed. This is a consequence of the fact that the
boundary condition for the velocity potential due to the
forward speed must be satisfied on the actual oscillating
surface of the ellipsoid rather than its mean position with
respect to time. A similar result has been noted for the
ellipsoid by Eggers [3] and for the thin ship by Newman
[4, 5]. In this respect the present theory differs from
that of Hishida.

The second item to be emphasized is the use of energy
radiation at infinity to determine the damping co-
efficients. Physically the most direct method would be
from pressure integration over the actual surface of the
body. Mathematically, however, the two methods are
equivalent, and the present theory cannot be applied at
the surface of the body without first correcting for the
“image” of the free surface inside the body. This dif-
ficulty is avoided by working with the velocity potential
at infinite distance from the ship, where to first order
these image corrections do not contribute. In this sense
the present results are only valid for a deeply submerged
ellipsoid or else for a slender one. The limits of this re-
striction are not definitely known but related work has
shown good agreement with experiments for depths of
submergence a few times the beam or depth of the body.

Numerical results have been obtained for various
speeds, frequencies and eccentricities of the ellipsoid and
these are illustrated in Figs. 1-12. Of particular interest
is the fact that certain of the damping coefficients be-
come negative at very high speeds.

The derivation of the theory is divided into two sec-
tions. In the first of these we obtain the singularity dis-
tribution for oscillatory motion in an infinite fluid, and
in the second section these results are applied to obtain
the damping near a free surface. This is followed by a
discussion of the results and by graphs showing the com-
puted coefficients.

Motion in an Infinite Fluid
We consider an ellipsoid, defined by the equation

¢

? .t Xt
a? +az’+a;’ =1
where (21, 25, z5) is & Cartesian co-ordinate system fixed
with respect to the ellipsoid, and (a, as, as) are the semi-
lengths of the three principal axes. We may assume
without loss of generality that a; > a2 3 a; > 0, whence
the z;-axis ceincides with the major axis of the ellipsoid.
Adopting the notation of St. Denis and Craven [6],
the motion of the ellipsoid is defined by the translational
velocity components (u: us, us) and the rotational

velocity components (w4, us, us) relative to the (x, x., 3)
axes. In an infinite fluid with the usual assumptions of
incompressible, inviscid flow, the velocity potential,
whose gradient is equal to the velocity vector, may be
written?

[i]

&(x1, T2, T3) = d(x)) = 2, usds(x0)

i=1

()

where in an infinite fluid the potentials may be written in

the form*

-1
2x(2 — a;) Ox,

1

diva(x) = — s

és(z) = G=123 @

aji+1® — @42’
2(aj+1? — Gj42) + (@j41® + 2 (@i41 — @it2)
oV oV ,
. —_— ilo—0 = 2
(301 22 ) (=129 ®
Here V(z;) denotes the gravitational potential of the
ellipsoid of unit density,

Viz) =

fff[(-"?l -&)+ (::sf&;)i: + (s — &)1

- [ o

with the volume integral taken over the interior of the
ellipsoid given by (1), and the constants a; are given by
the integrals

ay = alazasfm a\
! o (@ + Nl@® + N(a? + N(as? + V]

)

In equation (4) and hereafter we adopt the cyclic con-
vention, i.e., @ = ai, as = Gz, and similarly for «; and z;.

Following Havelock [9] we deduce that since the gravi-
tational potentials of a family of confocal ellipsoids are
proportional to their masses, the potential V(z,) may
be expressed in terms of a volume integral over a confocal
ellipsoid

xl’ xz’ + xa’ =
a?+0 a*+0 a’>+0
and in the limit # = —a;?, in terms of a surface integral
over the elliptic focal conic

+ 1 @

3 A function of argument (z:) will be used to imply a function
of the three variables (z1, x2, zs).

¢ Reference (7], chapter 7, section 6. uations (3) and (4)
can also be verified from Lamb [8] by combining equations (2)
through (5) of section 339 with the expressions for the velocity
potential as derived in sections 114 and 115. The present equa-
tions differ from these references by a minus sign due to the
different definitions of the velocity potential.



Fig. 1 Surge damping coefficient for ellipsoid a/ay = 1/7,
a/ay = 1/14, b/a, = 2/7, for various Froude numbers
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Fig. 2 Sway damping coefficient for ellipsoid &/a1 = 1/7,
a/a, = 1/14, b/ay = 2/7, for various Froude numbers
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Fig. 3 Heave damping coefficient for ellipsoid as/e; = 1/7,
o:?cl = 1/14, b/: 8- 2/7, for vlriouspul)’roude numbers
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Fig. 4 Roll damping coefficient for ellipsoid a/ay = 1/7,
/ey = 1/14, b/ay = 2/7, for various Froude numbers
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Fig. 5 Pitch damping coefficient for ellipsoid ay/a; = 1/7
a/a, = 1/14, b/ay = 2/7, for various Froude numbers
¢/ (2ga)"/»

Fig. 6 Yaw damping coeflicient for ellipsoid 4:/a, = 1/7,
= 1/14, b/ay = 2/7, for various Froude numbers
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Fig. 7 Surge damping coefficient for ellipsoid #;/ay = 1/7,
a/a, = 1/14, b/a, = 2/7, for various Froude numbers

¢/ (2g4)"/2 Fig. 10 Roll damping coefficient for ellipsoid /&y = 1/7,

a/ay, = 1/14, b/a, = 2/7, for various Froude numbers
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Fig. 8 Sway 'damping coefficient for ellipsoid &/ay = 1/7, Lo
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Fig. 11 Pitch[damping coeflicient for ellipsoid «./a, = 1/7,
ay/ay, = 1/14, b/ay = 2/7, for various Froude numbers
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Fig. 12 Yaw damping coefficient for ellipsoid a:/ay = 1/7,
a/ay = 1/14, b/ay = 2/7, for various Froude numbers

Fig. 9 Heave damping coeflicient for ellipsoid #;/a = 1/7,
c/(2ga) '/

/@ = 1/14, b/a = 2/7, for various Froude numbers
c/(2ga)'/



where the surface integral is over the surface bounded by
the ellipse
&2 &2 1
al — a;? | @ — a? -
A detailed derivation of this equation is given in the
Appendix.

Substituting (9) in (3) and (4) and noting from direct
differentiation that

o2 (l) ==2 (!)
ox; \r Of; \r
and

g =2 (1)_,. L(l)
it+1 drj42 \r i+2 dz;41 \r

e 1 0 1
2 Qs ()
Ofj+2 (") b Ofj41 \7
it follows that

_ l _ fx’ _ &z /2 2
4 = rD’ ff [l a?—a?  a'— as’] o,

&=0

= —§in

(;) dede (G =1,2,3 (10

1 ¢ 2 &z /s
$its = ;Dj+3 ff (1 T a? l a' ot — aa’)

t=0

o (1 o (1
(63 (7) = oor s (3) Joes

G=123 @y

where

D, = 010203 . 1,23
1T 2 - a)) [(@:® = asN)(a? — &)]” G=123

Dj+3 = G102Gs

[(@* = a?)(as® — a)]”
[2 + (M)(“i+l - a,-+2)].1

aj+1* — @42
(j =12 3)

Equations (10) and (11) express the potentials ¢, in
terms of certain dipole distributions over the elliptic focal
conic. The first of these expressions has been derived by
Havelock [9].

The foregoing results express the velocity potential in
terms of a Cartesian co-ordinate system (z,) fixed with
respect to the ellipsoid. Since we shall ultimately be
concerned with oscillatory motion near a free surface, it
is necessary to transform to a steady-state co-ordinate
system. To be explicit, let the unsteady motion of the
ellipsoid consist of infinitestimal oscillatory translations
t“ along the z,-axes and rotations 0, about the
z,-axes, where the real part is to be taken in all complex
expressions. If (y,) is the steady Cartesian co-ordinate
system about which the (z;) system is oscillating, then

neglecting squares of the displacements {; and 6, it
follows that

¥ =12 + & + Op1Zie2 — Oiazi41)e™
(12
=y — @ + Gywi+e — G+ayi+1)e™

It will also be necessary to employ orthogonal ellips-
oidal co-ordinates (A, &, ») which are defined as the three
roots of equation (7) when considered as a cubic in 8.
Details of this co-ordinate system are given by Lamb (8]
(section 112). The co-ordinate A is normal to the surface
of each ellipsoid and is analogous to the radial co-ordinate
in a spherical system. The ellipsoid defined by (1) is the
surface A = 0 and the normal component of the velocity
is proportional to 0¢/ON. The Cartesian co-ordinates
may be expressed in terms of (A, u, ») as

(a,® + N)(a;® + w)(a2 + ») .
= =123
o (a2 — aj+1%(a;® — aj42Y) G )
and thus
oz, _ 1 _ 3z
O\ 2 a,’ + A

If the ellipsoid translates with constant velocity ¢
along the y;-axis and ¢(y,) is the perturbation velocity
potential, the boundary condition on the ellipsoid may
be written [8] as

DH _OH _ 0H o = _
o= 5 cbyl+VHV¢—-0 onH =0 (13)
where

g @ n_
ay a?  a?
On H = 0,\ = 0, and thus

5 oH 2 _ & 2

H. = -_—
vi-ve i=1 bl‘; b:c,

%
=1 ajz bx,
3
b¢ bz, b‘f’
=4 — — =4 — (14
,‘;1 dx; OA . OA (14)
Furthermore from (12) it follows that

oH 9E=§9§(bﬁ_f_c%)
An %y Som \ot om

3
. g x
= —2iwe™ Zl aj—’; (€1 + 0+1%i42 — Oi42Ti41)
-

Z
_20_-‘2.
17}

+ 2ce (% o6 — = o,) (15)
Q2 (&)

Thus the boundary condition on the ellipsoid may be
written

1. aud 2
g—:=§m"§“;"’(§.1+0j+1x"+2—0j+2z’-+1)
1o 1 a«c( o _ ﬂ)
+2°a,’+2“ o’aa’ o.a” (16)



The potentials given by equations (10) and (11)
satisfy the boundary conditions

Op; _0z; _ % .
bk i S i RN =123
Mo 2ep U=L2I
Obi+a _ , %41 _ . . Orjto
P 7+2 TN AR
= Litr%ite o 2 g 2 i=123
RO (@41 — 642" (G =1,2,3)

Comparing these boundary conditions with (16) it is
apparent that to first order we may satisfy the problem
of the oscillatory ellipsoid in an infinite fluid with the
potential

. 3 . .
¢ = cpr + twe™ Zl (@58; + dj438)) + che™'d, — cOse™'¢p2
i=

an

This result may also be derived from a physical argu-
ment. In the (z;) co-ordinate system, fixed with respect
to the ellipsoid, the three translational velocity com-
ponents are, to first order in {; and 6;,

(wg-’ Jwt + c, mg-zewl — caseml w;‘;e"" + 002 )

where the contributions involving 6; and 6; are due to the
“angle-of-attack’” components of the forward velocity c.
Substituting in equation (2), the total potential to first
order is

¢ = (WwhHe™ + ¢) ¢ + (Gwfz — cfs)ee™
+ (lwts + cf2)ae™ + twe™ (Grds + Oodbs + Osde)

and equation (17) follows directly.
Substituting equations (10) and (11) in (17), we obtain

= }. ff [1 — flz _ 522 ]I/'
x a? — a2 a? — ag?
l u.»l 1
{“D‘ 2% ( ) E 5101 5, ( )

Pe) 1 Pe) 1
“ 3" 6,D; o 1
+ e :gl #£7ite [EJ“ Ofj+2 () CALY R O%j+1 (")]

+ obse D ;; (l) cBsei Dy ;; ( )} dedes (18)

Equation (18) expresses the potential as a function of the
oscillatory (z;) co-ordinate system. We proceed now to
transform this expression to a function of the steady

co-ordinate system (y,). We have
1 1
r o= &)+ (@ — 8+ (3 — B
1
= 1/2 = G y
=) T G = m F o =T O )
where

n = & + €5 + Osrkivs — Ojpabipr)e™

and G denotes the Green’s function, which in an infinite
fluid is simply equal to the source function 1/r. In
order to carry out the surface integration in (18) we
expand the Green’s function using Taylor’s theorem:

Ol m) = 6 &) + 3 (o = &) (Z] _+--.
/]

ni=§1

=Gy, &) + 21 &1 + Oi41tir2 — Oj42ki41)
=

o
b_E,G(y"E') +....

Substituting in (18), and neglecting terms of second order
in {; and 6j, we find that

oy) = 1 ff& _ 0[1 - azf_lzazz_azzfizaa’:l'/a

{CDl G(yc, &) + cheml [E (fj + 01+

‘bf =1
it S o
0,+2£,+1) N G(yh Et):l + dwe™t Y [IJDI — G(yy, &)
i=1 0¢,

be)
Yo — &40 a£;+1) G(yy, 51)]

+ cf;,Dye’ bi G(yy, £1) — cOsDye™ 9— Gy, Ef)} dbidés
s of, (19)

Equation (19) demonstrates the importance of a sys-
tematic development in problems involving both transla-
tion and oscillations. It should be noted that there are
two ways in which the forward velocity influences the
oscillatory potentials in (19). The first of these is the in-
fluence of the last two terms in the integrand, correspond-
ing, as stated before, to the “angle-of-attack” velocities
due to forward motion at an angle of pitch or yaw. The
second inﬂuence, represented by the terms

+ 0,Dy43 (&H

Jwl
cD\é b £ 2
is due to the fact that the original steady-state singu-
larity distribution representing the translation is located
on an oscillating surface. Thus these terms represent
the change in location of the steady singularity dis-
tribution.

E (&5 + 8iakss2 — Op42ksn1) Sb_& Gy, &)

Motion Near a Free Surface

We consider now the case where the ellipsoid is be-
neath a free surface, and we make the usual assumption
that, to first order, the potential is given by the same
distribution of singularities as for the motion in an infinite
fluid, but with the singularities satisfying the linearized
free surface condition. It has been shown [11, 15] that
it is necessary to add to this a singularity distribution
which cancels the induced velocity on the body due to
the free-surface portion of the original singularities.
However this corrective distribution consists of ele-



mentary singularities which do not generate waves and
which will not radiate energy at infinity. In other words,
as Havelock has frequently pointed out,® a higher degree
of approximation is usually necessary in working with
the pressure on the body as opposed to studying the
asymptotic behavior at infinity. Thus we may neglect
the corrective distribution provided the damping is dertved
on the basis of energy flux at infinity.

We proceed therefore to substitute for the Green’s
function in equation (19), the potential of a source be-
neath the free surface. The steady-state term

lf{ [1 —_ Elz —- 222 ]l/’
TJIha=0 a® — a? a:* — a;?®

[cp, a% Gy, a)] ddts

in (19) has been studied by Havelock [9, 10] in connec-
tion with the steady-state wave resistance and will be de-
leted from the present analysis. The remaining terms in
(19) are sinusoidal in time and it is necessary therefore
to employ the expression for a submerged source which
translates with velocity ¢ and pulsates in strength si-
nusoidally with frequency w/2r.

Let (z, y, 2) be a Cartesian co-ordinate system moving
in space in the z-direction with velocity ¢, with the plane
z = 0 corresponding to the undisturbed level of the free
surface and z-axis positive upwards. The potential of a
source of strength ¢ located at the point z = ¢, y = 19,

= ¢ may be represented [4] by the asymptotic ex-
pansion

1/ 2 N
G(xv Y, 2, t; M i') =1 (81‘;) Z Z
m=1n=]

Am(us) sin? 0 K4
{sin’ Un P, o5 (u; )] } 8m(1s)
duy

exp {X..(u.) [24 ¢+ ix — §) cos us

+ i(y — n) sin u,] = }+0(R) (20)

where
z = Rcos@
y = Rsm$é
Mm(u) = W [1 4+ 27rcosu = (1 4+ 47 cos u)'/?]
(m=1,2)
T = wefg
81(1[) = |x:|
&(u) = —1

$ Cf. reference [12], page 15.

and the (%) sign in (20) is determined by the sign of
dia: cos (uy — 6)

The second summation is over the N-roots of the equa-
tion
sin? us = (1 + 47 cos u,)"*

ctn @ = — -
SIN Ux COS Uy

satisfying the inequality

—vrZu. 26| - 0] € =

27

Substitution of (20) in (19) gives the asymptotic ve-
locity potential due to the oscillations of the ellipsoid,
valid at large distances from the ellipsoid. We shall re-
strict the subsequent analysis to the case of a submerged
ellipsoid with the as-axis vertical, that is with a “beam-
depth” ratio greater than or equal to one. The horizontal
case or the more general problem, where the ratios of the
three principal axes a,, az, and a; are arbitrary, involves
only slight modifications of the following analysis, and
in fact the final results can be shown to be valid for
arbitrary values of a1, a2, and a; without the restriction
aSaeSa

Assuming, then, that the g;-axis is vertical, we set
¢t =4%,n = &,and ¢ = & — h, where h is the mean depth
of the centro.d below the free surface. The appropriate
asymptotic source function is therefore

/2
G(x) Y, Z;f, n, f) = 1‘(87;) Z

m,n

xm('Ur-a) sin? @ 12
{sin’ Un 4 cos (uy — o)‘ 8n(u.) exp
dun

{x.,.(u.) [c — b + iR cos (u, — 6) + & — &

cos 4 — if; cos u] % %’}
and the oscillatory potential, from (19), may be written

in the form
An(u,) sin? 0 Vs
- _ it
Re e ( ) & )sin? u, B o (un — 0))
dUn

8m(Ux) €Xp {)\,..(uh) [z — h 4+ iR cos (us — 6)]

} > [52P(un) + .Palun)] (21
where
2 &2 /2
Py(u) = f.!;.-o( — a; T a? — a;’)
(wD; — cAm(u) cos uDy) D—E; exp {Am(u)[ts —
— t& sin u]}dfld& (=123 (22

1, cos u



and

P, () = f ﬁ B (1 - az,‘f as,)"'

o
[(WD;+3 — cAm(u)D; cos u) (E“l FY — b DE,H)

+ icba(D2 — DY) 5% — icba(Ds — Dy) &]

-eXpi{An(u) [£s — i1 cos u — if, sin u]}didé
G =123 (23)

The functions P;(x) may be obtained by differéntiation
from the integral

_ _ £l2 _ &2 2]
P(A, B) - fL=0 (1 a? — a3’ a? — a:’)

cos At cos Bhdtdt: (24)

which has been evaluated by Havelock [10]. Denoting
m? = a,2 — a;? and n? = a;® — a;* Havelock has shown
that

J,/,{(mzAz + n2B?)"*}
(m2A? + nsz)’/c

where J, is the Bessel function of the first kind, of order
n. Introducing the spherical Bessel function

ire) = (212)/ Tl

P(A, B) = 2'"x"*mn

and denoting
g = [(a® — a:9)4* + (a2 — a;?) B*1'”,
we have

P(4, B) = 2x[(a:* — as?)(a® — as?)]”* [L(ég] @

It is easily seen that the integrals P,(u) are given by
Py(u) = —1DiAm cos u(w — cAm cos u)P(A, B)

Py(u) = —iAn(wD: — cAnDh cos u) sin u P(4, B)
Ps(u) = Am(wDs — cAmD, cos u)P(A, B)
Piu) = An(wDs — cAmD: cos u) oP(4, B)
OB
Ps(u) = —iAa(wDs — cAmDi cos u) bP(bfil B)
—icM(Ds — Dy)P(A, B)
oP oP
Ps(u) = An(wDs — cAmDy cos u) [SZ sinu — >B cos u]
+ Anc sin w (D — Dy)P(4A, B)
with

A =Mucosu and B = \,sinu

Carrying out the indicated differentiations we obtain
the following expressions: -

P;(u) = —211:[((112 - 032)(02: b a;’) ]I/’ Am COS “(le -
cAnD: cos u) [71(q)/q]
Py(u) = —2xi[(ai? — 032)(022 — a;)]/* A sin u
(wD: — eAnDh cos u) [ji(g)/q]
Pi(u) = 2x[(a:® — as?)(a:? — as?) I
Am(wD; — eA\uD; cos u) [ii(g)/q]
P(u) = —2xi[(a:® — a:?)(a:? — @?)]”* Aa?
sin u(wDy — cAnDy cos u)(as — as?) [j2(q)/¢?%]
Pi(w) = 2xi[(a® — &?)(as® — a?)]”
{An? cos u (wDs — cAmD) cos u)(a® — as?)
[]2(9)/q2] — An(D3 — Dy) l]x(‘I)/Q]}
Pe() = —2x[(a: — a:2)(a:? — a:)]'* {An? cos u sin u

(wDs — cAmDy cos u)(ar? — a2?)[52(¢)/¢?]
— c\m sin w(D: — D) [5:1(g)/q1}

Substitution of these relations in (21) gives the oscilla-
tory potential at large distances from the ellipsoid. This
potential may be employed to determine the energy
radiation due to the damping forces and moments.

The analysis of energy flux for a pitching and heaving
surface ship has been carried out in [4] and the results
can be applied to the present problem without essential
changes. Thus we shall only outline the remainder of
the analysis, details of which may be found in [4].

The average work done per unit time by the damping

forces is
2x
- .5

where the bar denotes the timé average, p is the fluid
density, and

oo 1 (b¢ M)

* ot bx 2=0

is the free-surface elevation. Expanding the second
term of the integrand in a Taylor series about z = 0,
integrating with respect to 2, and neglecting terms of
third order in the potential,

2x b¢a¢
W» = _” .’1 ot oR dde

—psj; [g‘f(g‘f g'i’)] Recos0dd (27)

Substituting equation (21) for the potential, integrating
with respect to z, and neglecting cross terms of order
1/R, we obtain the expression

Wy = (— — ¢ cos O)Rdz dg (26)

)Y e—-2k h
m

w 4wp

D_.__

T mn

Pi(u) + 0,P,-+3(u)]

[sgn u.]do  (28)

Changing the variable of integration from 0 to u, and
taking into consideration the appropriate limits of in-



tegration, this reduces to

W, = — 4ﬂ fr—lo xﬂe—z).,,,h
P * me1Jo (1 + 47 cos u)"?
3 2
;1 [£Ps(u) + 6;Pj43(w)]| sw(u)du  (29)
]
where

for r <1,

0
Yo = Ycos—1 (l) for > 1,
47

Let u,B; denote that component of the force or
moment in the jth direction which is in phase with the
velocity u;, so that By is the damping coefficient. If
only one degree of freedom is allowed,

W5 = B = 4u%,*By G=1,23)
= %“’.201'—3’31'1 (.7 = 4,5, 6)
and thus we obtain the six damping coefficients

J\,.(u) e~ 22 mh

B 8p 2 x =40
e j; (1 + 47 cos u)'*

Pi(u) ‘sm(uydu (5 =1,2,3,4,56) (30)
or to adopt a more convenient notation,
T R e I W
By, w PO G ,,.z.“l o (14 4rcosu)”
[Qi(u) ]2 sm(u)du (.7 =1,2,:3, 4, 5, 6) (31)
where
Qi(u) = Dw — D1 cos u) cos u []—'(qq)]

Q:(u) = (D:w — cAmD1 cos u) [‘%2] sin u
- — oDy 39
Q) = Ow m&cmw[q]
Qi(u) = (Dew — cAnD:1 co8 u)(a2* — a3*)Am 8in @ [‘7153)]
Qs(u) = (Do — AmD: cos ) (a:? — as®)Am COS % [‘727(:1—)]

_ - e
¢c(D: — D) [ p ]
Qo(u) = (Dew — cAmD) cos u)(a:? — a2?)Am coOS u
[‘Zﬁ—;g)] sin u
— ¢(D. — Dy [‘ll(q—Q)] sin u

and
for 12 Y,

0
Yo = {cos‘l (—1—) for r>1/,
47

Am(u) = 26—,0%-';,—“ [1 4 27 cos u = (1 + 4r cos u)*"]
(m=1,2)

o - g2
Sz(u) = —1

qg= )\...[(a;’ ~ as?) cos*u + (a,’ — as?) sin? u]'/'

D = —— G=1,273)

2 — ay

Djss = Gj+1* — Gj42°

T 2(aj+1% — aj+2?) + (@417 + 42D (@41 — @jt2)
(j = lr 2) 3)

It will be recalled that we have restricted the orienta-
tion of the ellipsoid in that the mean position of the a;-
axis is in the direction of forward motion, the mean
position of the a;-axis is vertical, and a1 > a2 > as.
However it may be verified, by derivation of the func-
tions Pj(u) for each possible case, that equation (31)
holds for all values of a;, a;, and a; without the restric-
tion @y > a2 > as. Of course it is necessary that the
mean position of the g;-axis be horizontal and in the
direction of forward motion, and that the mean position
of the as-axis be vertical.

Discussion and Conclusions

The principal analytical results of this investigation
are contained in equation (31) wherein the six damping
coefficients are expressed as integrals of rather compli-
cated functions. It is not surprising to note that the
form of these expressions is similar to the pitch and heave

~ damping coefficients of a thin ship [4, 14].

In particular the pitch, heave, and surge damping co-
efficients of the submerged ellipsoid become infinite at
r = !/, in exactly the same manner as for the thin ship.
It should be noted however that the damping coefficients
of sway, roll, and yaw are not singular at this point and
are bounded for all speeds and frequencies. Thus there
is a fundamental difference between the three modes of
oscillation in the vertical z-z plane, which have a logarith-
mic singularity at + = 14, and the three modes of os-
cillation perpendicular to this plane, which are non-
singular. a

A surprising aspect of the results is that in spite of the
complexities introduced in deriving the coefficients for
ellipsoids with three unequal axes, the final results, as
expressed by equation (31), are basically no more com-
plicated than those of a spheroid. Nevertheless exten-
sive computations are necessary in order to study the
form of the six coefficients B;;, For this purpose a
program has been prepared for the IBM 704-type digital
computer, based upon numerical methods which are out-
lined in the Appendix. This program may be employed
to find the damping of an ellipsoid of arbitrary dimen-
sions and depth of submergence, as a function of for-
ward speed and frequency. The results of such calcula-
tions are shown in Figs. 1-12 for two different ellipsoids.



Both are submerged at a depth of 1/; times the length.
The first of these two ellipsoids has a depth-length ratio
(as/a1) of /u and a-beam-length ratio (as/ai) of
/7, while in the second case these two ratios are inter-
changed. Calculations have been made with a wider
variation of the beam and depth ratios but the results
are not significantly different from the curves shown.

Figs. 1 to 12 show, in addition to the three-dimensional
coefficients computed from equation (31), the damping
coefficients derived from a two-dimensional or “strip-
theory” analysis. The derivation of the two-dimensional
results is given in the Appendix. The two-dimensional
results agree quite well with the three-dimensional (zero-
speed) results in the cases of heave, roll, and sway, and
for high frequencies the agreement for surge, yaw, and
pitch is also good. However at low or moderate fre-
quencies there are significant discrepancies in the last
three modes. This is physically explainable by the fact
that for heave, roll, and sway the normal velocities at
different sections of the ellipsoid are all in phase with one
another, whereas for the cases of surge, yaw, or pitch, the
normal velocities at the bow and stern are 180 deg out of
phase, and will interfere with one another at low fre-
quencies, where the body is small relative to a wave
length. At very high frequencies it is seen from the
curves, and shown analytically in the Appendix, that the
two and three-dimensional results are identical for all six
coeflicients, at zero speed.

It is especially interesting to note that for very high
forward speeds (i.e., Froude numbers of about 1.0) the
surge damping coefficient becomes negative, and for the
“thin” ellipsoid, Fig. 11, this is also true of the pitch
coefficient. Similar calculations with a sphere also show
a negative heave damping coefficient, but no cases have
yet been found of negative damping in sway, roll, or
yaw. The possibility of negative damping was antici-
pated by Eggers [16] who found similar results for a
source and dipole combination. The concept of negative
damping is not easy to accept, although the situation is
not unlike aeroelastic flutter. In the case of surge a
physical argument can be devised,® for it is well known
that the steady-state wave resistance of a submerged
body rises to a maximum with increasing velocity and
thereafter falls off to zero at very high velocities. Thus
for velocities greater than that corresponding to the
maximum, an increase in speed will give rise to a de-
crease in resistance, and vice-versa. From a pseudo-
steady-state argument it follows that at these speeds,
the surge damping coefficient will be negative for suf-
ficiently low frequencies.

The presence of negative damping implies a source of
energy other than the oscillating forces acting on the
body. At zero speed there is no other energy source, but
when forward speed is involved there is a possible source
of energy due to the forward velocity, just as for the case
of flutter. If the body is in a fixed position in space
and the fluid is flowing past it, this energy source is the

¢ This analogy was suggested by Marshall P. Tulin.
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infinite kinetic energy of the stream. If on the other
hand the body is moving in space and the fluid is at rest
at infinity, there is a source of energy in the work done
to overcome wave resistance. In fact if the body is
moving in space with velocity ¢, then the total work done
in overcoming both the damping and the wave resistance
iS’

Wo+ Ws = —f:'f_f: [p(a—cb—x)

(ﬁ — ¢ cos 0)— pe cos O]Rdzdﬂ

OR

as compared with equation (26) for Wy alone. Here p
is the fluid pressure. Substituting the velocity potential
of the submerged ellipsoid we obtain, in place of (29),

r —uo )‘me-2xmh

Wo+ Wg= — 2p 22: __Mme W
L " —etw (1 + 47 cos )"/

T m=1
3

2. [6Pi(w) + 6iPjaa(u)] lz (w — cAm cOS u)sw(u)du
! (32)
It is easily shown that
(w — ¢Xm COS u)sm(u) € 0
and thus that
Wp+ Wr3>0

Therefore the total energy flux at infinity is always
positive, and the negative damping may be interpreted
as coming from the work done to overcome the increase
of wave resistance due to the oscillations.
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APPENDIX

Derivation of Equation (9)

The volume of an ellipsoid is the product of the semi-
lengths of the three principal axes times 4x/3. Thus
the ratio of the mass of the ellipsoid (1) to the confocal
ellipsoid (7) is

a;a:03

[(@:® + 6)(a:® + 0)(as® + 0)]|r,
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and the gravitational potential is, for any value of 6,

A1Q203
[(@® + 6)(as® + 6)(as? + O)]'"

fff [(@: — &) + (I‘ffffgg + (m — £)]"

where now the volume integration is over the interior of
the ellipsoid defined by (7). For 6 = 0 this reduces to
(5). Now let 8 &= —a;2.  Then the ellipsoid defined by
(7) degenerates to the elliptic focal conic or the plane
area defined by equation (8). As 6 — —as;? the integral
in (33) tends to zero while the ratio of the masses tends to
infinity. To find the limiting value of (33) let ¢ =
—as? + 2. Setting & = 0 in the integrand and carrying
out the integration between the limits

—c (1 - El’ &2
a;

1/2
12— ag? a,? — aag)

Viz) =

(33)

__ & __ &
<£:<e(1 o —ap a22_aa’)

we obtain in the limit as ¢ = 0

2a,a203
[(alz — aaz)(azz -— azz)]'/:

Ir (1 I S . )/
. a® — as? a? — as®
1

dbdts

V(z:) =

[(xl —_El)’ -+ (:tz —_— &)2 + (13 — &)2]‘/1 (34)

where the integration is over the surface

&? &’

@? — as? @t — a5’

21,

£=0

Numerical Analysis of Results

To facilitate computations based upon equation (31)
we nondimensionalize the physical parameters by
substituting .

o = <
g

B = a/o

C = as/a

D = 2h/ay

and we change the variable of integration to

14+ 27rcosu = (1 + 47 cos u)'
272 cos u ’

K

With these substitutions equation (31) transforms to

82 i, ,f,“ (Kr — 18| Kr — 1]
. PEBC | ks - Ky

e—nb(xr—l)l Q;’dK (35)

B, =



where
0 oK o _ i@
QI(A) - (KT — 1)2 (D‘ f!‘Dl) q
_ o Er = D= K ey 319)
Q) = o g gy @ KD

Q) = oD — KDY HO
QuK) = wa,¥(B? — CH[(KT — 1) — K,]x/,
(D — KDy 2@
q
Q(K) = wai(l — CHK(Ds — rKDx)j’;_g)

— oDy — Dl)j%;q)

 nai gy [Er = = K
Q(K) = wa:2(1 — B)K &r = 1)
(De — 7KDy) ‘%3) — ¢(D:. — Dv)

[(Kr — 1) — K"]'/’ .7_1_(_(2
(Kr — 1) q

and
g = Q[K*(1 — B?) + (Kr — 1)(B* — CY)]'"

The prime after the integral sign in equation (35) de-
notes that only the intervals where

(Kr—1)'— K230

are to be included in the integration. The four zeros of
this function are

2r — 1 ¥ (1 = 47)"~

K2 = 272

K _2r+1F 1+ 40"
34 = .
27

but the first two are complex for r > 14, while for r = 0
K, and K, are infinite. Thus the integral in (35) may
be decomposed in the following manner:

¢

Ks
F(K)dK if r=0
K»

(o [0+ f) pooax
if 0<r<ly
(ff + w)-zF(K)dK i oSy

® K.

f _:'F(K)dK =

where F(K) denotes the integrand of (35). Since this
function has a square-root singularity (either infinity or
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roro) at each of the finite limits of integration, some care
is required and it is necessary to consider both the finite
integral

K
F(K)dK
K,
and semi-infinite integrals of the form
K @
" F(K)K  or f F(K)IK
Kq

The finite integral is, by a linear change of the variable
of integration, of the form

fl _I® __ gy = j;"f(coso)do

-1 (1 "" x’)'/'

where f(z) is regular in the interval of integration. In-

. tegrals of this form are readily evaluated from the Gauss-

Tchebysheff quadrature formula
b T 2j—1
J; f(cos 6)db = "’Z:lsm( - ,)
2j—1
I (cos( o r)) + E. (36)

where E, is an error term which goes to zero with in-
creasing n.
_The semi-infinite integrals are treated by changing the
variable of integration to )
z=(|K.— K} )" (n=1,34)

Then, for example,

" FK)K = 2 j; " F(K. + 2)adz  (37)

Ky
and in this form the integrand is a regular function of z.
In order to evaluate this integral we subdivide into an
infinite number of finite integrals of length A:

w ©  AM+D
Zf F(Ky + 2)zdz = 2 ), F(K, + z*)zdz
[\] n=0 o An

(38)

and for each of these finite integrals Gauss-Legendre
quadratures [17] may be employed. In programming
these integrals for the digital computer, a 16-point
quadrature formula was used, and the degree of accuracy
was then controlled by varying the parameter A in
(38). The infinite series in (38) was terminated when the
contribution from the last term did not affect the final
answer to one part in 2%, or better than seven significant
figures.

The parameters n of (36) and A of (38), which control
the accuracy of the numerical integrations, were esti-
mated from the approximate behavior of the integrand,
but a “safety factor” was placed in the program arbi-
trarily to increase the accuracy. By making trial cal-
culations the proper value of the safety factor was de-
termined, such that increasing beyond this point did not
significantly affect the final computed damping co-
efficients.



The ""Strip Theory” Analysis

If the ellipsoid is long and slender, and the forward
velocity is zero, the flow near any transverse section
(except near the ends) will be approximately two-
dimensional and the damping coefficients can be ob-
tained from slender body or “strip” theory. This tech-
nique employs the solution of the analogous two-dimen-
sional problem of an oscillating submerged elliptic
cylinder.

The problem of a rolling or swaying elliptic cylinder
has been solved by Havelock [13]. If the vertical and
horizontal axes of the ellipse are of length 2a and 2b, re-
spectively, and the depth of submergence is h, Havelock
finds that for horizontal oscillations of amplitude d, the
wave amplitude at infinity is

o b) e ™I(K(a* — b%)') (39)

while for roll of amplitude 4, about the centroid of the
ellipse,

A= 21rKad(

A = xK6 (a + b)%e~*;(K(a? — b?)'") (40)
where
K = vy
Following an analysis similar to Havelock, it is readily
shown that for heave oscillations of amplitude d,

A = 2xKbd (“ + b)" P (K(a? — b)) (41)

Finally, in order to analyse surge by the strip theory
we must consider an elliptic cylinder which dilates with
constant eccentricity. If the area of the ellipse is xab +
5 cos wi so that & denotes the amplitude of the change of
area, then

A = Kée®M(K(a? — b%)'") (42)

The average rate of energy flux per unit time, in two

dimensions, is
1 Az

2 e W
and this must equal the work done by the damping force
at each section.

To obtain three-dimensional damping coefficients we
substitute in the foregoing equations the local values of
a and b and integrate over the length of the ellipsoid. If

T _ w
—Tco<?l
2< <2’

it follows from the equation (1) of the ellipsoid that

I = a Sin 0,

a = az cosf
b = a;cos

Substituting in (39-42) and integrating we obtain the
following six damping coefficients, as derived by the strip
theory:

2y 2 /2
By = 8x%wp ‘l"%‘i e—zxnf {Io(K(as* — a:?)'"
1 0
cos 8)}? cos 0 sin? 6d8  (43)
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6:*By; = @By
= 8x%wpaias’a;%e~?** f v {I(K(as® — as?)V? cos
° 0)}2cos*0do (44)
Bu = 2x%pai(a: + a;z)'e—***

j;m {I:(K(a* — a:")"" cos 6)}* cos® 68 (45)

a3’Bg = a2 By = 8x%wpa;’asa;? (:———+ :) e—2kh

J:/z {1:(K(as* — as?)'/* cos 8)} % sin? 8 cos® 6d6  (46)

These expressions may be given in closed form in terms
of modified Bessel and Struve functions. It can be shown
that the foregoing strip-theory equations reduce to

By = 2x%wp —— a'as’ e—2K»
a
1 .
{Io + I, + L 3 [m b 1] (IlLo - Iol-l)}

@n

as + az) e
@G — a

{r-sh+x [1 - m%_—az,—)] (ko - IoLl)}
(48)

@2?B;y: = a;3?B3; = 2x%wpaas:’a;? (

e—!Kh

Bu = 3—20)}"11(0: + a5)* K—z(m

{[105 + 44K%(a? — a))lo
— [20K*(as® — as?) + 315]I.
-3 [161<=(a, - o) -

105
+ m] (Ihiko — IoLl)} (49)

0:2Bgs = 02?Beg = ’_"_z_ wpari st (M)
8 a; = ap
e—th
Ko — o)) {"‘ {15 + 4K?*(a:® — a»?) 1o

+ [4K*(as® — an?) — 45]1,
x 202 — a?) — 45 X
+ 21680 - 0) - 24 o ]
(L — Ly  (50)
where the argument of all Bessel and Struve functions is
2K(a;’ — a’z)‘/:,

and the Struve function of imaginary argument is de-
fined by



(3/2)2m+n+l
Lu(z) = ...z.:o Tm+HITm+n+ P

The equivalence of equations (47-50) with the preceding
integral expressions may be*verified by expanding in
powers of

K(a;’ —_ mz)'/:

and making use of the expansions®
L)@ — I@)@) = 2 L T

_ T C(z/2)™

* o mi(m + 1)!(2m + 3)

and?

/2
f [L.(z cos 6)]* cos?™*! ¢ sin®” 9 d8
0

I ) (3 c0s6)2™+27(2m + 2n)!
= j; cos?* 1 g gin? omZ.ZO m![(m + n)1)2(m + 2n)!
-— l -

- ()% (2m + 20)! (> + )
2 mmoml[(m + a)*T(m +2n + » + 3)

It is interesting to note that in the limit of zero speed
and @, ~ o (or a long, slender ellipsoid), the three-
dimensional coefficients given by equation (31) tend to
the foregoing results. To show this we set r = 0 in (31)
and take the limit as as/a, and a;/a, approach zero.

From (6) it follows that

203 24,

o = ay = ————— a = ——
ay + as a: + as

and thus the entrained mass coefficients D, tend to the
limits

- —D =2ta —p,=Bta
Di=3% D:=Ds %, D: = Ds %,
_ (@2 + @)*
D daa;

Therefore in the limit of large a,, and zero speed,
By = 2% pasaratre® [ Qrds G51)
)

where

@ = }w cos uJ‘(Q)

Q= fo (ag;i;a;)[ EIQ)]sinu

- (224

8 The first uahty follows from referénce [19], sectnon 7.14,
equatlon (5) aftel substltutmg £ = ix; the second equality is
obtwlx) by expsndmg Iy(¢) in an infinite series and integrating

! The ﬁrst. equaht.y follows from the Neumann series for the
square of a Bessel function (c¢f. Watson [18], section 2.61).
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Q= ok (-t 000 = 0 [540)]
Qs = 3wKar? (a—’-::—m) cos u [‘Z’ng)]
Qs = 3wKa,? (a_,_;l—’_a_;) cos u :J-’—(—g-) ] sin u

and
g = Kl(a® — as?) cos? u + (as* — a?) sin® u]
Let
z = K(a® — a;2)'/* cos u

so that in the limit of Ka, = «, z will vary from — « to
. Since the only contribution, to first order in (1/Ka,),
is from the vicinity of . = x/2, we may set

sinu =1
z
CoOsS U = —
a4
dz
du = —
K01

and, taking advantage of the symmetry, (51) tends to
the limit

By = 6%' PKmantase~ 25 J; ) Qi@)dz  (52)

where
()
&= 2Ka, ¢
Qs = Qs = }ula: + az)j‘—(—qq)
Q= 2l @+ 0o — ap 2D
Qs = a:Qs = Ywai(ax + ai)z ]’;q)
and

¢ = [ + K@ — o)
The integrals in (52) are all of the form
" a(lz* + K¥a* — a)]) ]
0 [z* + K*¥as® — ad)]*
where n = 1or2and m = O or 1. These integrals are

special cases of the discontinuous integral of Sonine and
it follows that

F» = "dx

T(m + 1)
2[K(as? — ag?)/'Pr—mt

f ™2 Iyn-m+14(2K(a:* — as?)"”?) do
0 cos™ '/ g

Fl_

® ]bid., section 13.47, equation (7).



Substituting Sonine’s first integral!! for the foregoing

integrand we obtain

- 1 /2
P& = o = az’)l"“ﬁ @

Lrﬂ d#,

Ion—om (2K(as® — @?)"* cos 8 sin ¥) -sin?* ~2m+1 y cos™™y

/2
2 I”_mz (K(a;’ — a,:)‘/: sin ¢) .gip2n—2m+1 v cos?™ ¥

= x[K¥at — a) ™ Jo

1 Tbid., section 12.11, equation (1).
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where we have performed the integration with respect to
6 by using the integral expression for the product of two
modified Bessel functions.!?

Using this reduction for the integrals in equation (52),
the strip equations (47-50) follow directly. Thus we
have proved that the strip theory is analytically valid for
zero speed in the limit where the length tends to infinity.

12 Ibid., section 12.72, equation (2).
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