
Evolving more efficient digital circuits by allowing
circuit layout evolution and multi-objective fitness

Tatiana Kalganova Julian Miller
School of Computing School of Computing

Napier University Napier University
219 Colinton Road 219 Colinton Road

Edinburgh, UK, EH14 1DJ Edinburgh, UK, EH14 1DJ
t.kalganova@dcs.napier.ac.uk j.miller@dcs.napier.ac.uk

Abstract

We use evolutionary search to design combinational
logic circuits. The technique is based on evolving the
functionality and connectivity of a rectangular array of
logic cells whose dimension is defined by the circuit
layout. The main idea of this approach is to improve
quality of the circuits evolved by the genetic algorithm
(GA) by reducing the number of active gates used. We
accomplish this by combining two ideas: 1) using multi-
objective fitness function; 2) evolving circuit layout. It will
be shown that using these two approaches allows us to
increase the quality of evolved circuits. The circuits are
evolved in two phases. Initially the genome fitness in given
by the percentage of output bits that are correct. Once
100% functional circuits have been evolved, the number of
gates actually used in the circuit is taken into account in
the fitness function. This allows us to evolve circuits with
100% functionality and minimise the number of active
gates in circuit structure. The population is initialised with
heterogeneous circuit layouts and the circuit layout is
allowed to vary during the evolutionary process. Evolving
the circuit layout together with the function is one of the
distinctive features of proposed approach. The
experimental results show that allowing the circuit layout
to be flexible is useful when we want to evolve circuits
with the smallest number of gates used. We find that it is
better to use a fixed circuit layout when the objective is to
achieve the highest number of 100% functional circuits.
The two-fitness strategy is most effective when we allow a
large number of generations.

Evolvable Hardware approach is a recently developed
technique to synthesise the electronic circuits using
evolutionary algorithms. A central idea of this approach is
to represent each possible electronic circuit as
chromosome in an evolutionary process in which the
standard genetic operators such as initialisation,
recombination, selection are carried out. The circuits may

be evaluated using software simulation models [1], [2], [3],
[4] or alternatively evolved entirely in hardware [5], [6},
[7], [8].

In this paper, we limit our focus to combinational logic
circuits, which contain no memory elements. Such circuits
contain no feedback paths. Note that this approach can be
easily extended for the combinational multiple-valued
logic circuits. The approach is an extension of evolvable
hardware method proposed in [3], [9], [10], [11] for binary
combinational circuits. A similar approach to the design
multiple-valued combinational circuit has been discussed
in [11], [12], [13]. A discussion concerning a suitable set
of logic gates was given in [13]. It has been shown that the
GA performance strongly depends on the set of logic gates
used to produce the 100% functionally circuits. In [12]
experiments were reported which revealed the dependence
the GA performance with gate array dimensions and the
degree of internal connectivity. Analysis of the evolvable
hardware approach for both binary and multiple-valued
functions shows us that the GA performance strongly
depends on the number of rows and columns and the
internal connectivity [9], [12]. In subsequent discussion we
define the circuit geometry to mean the layout of the
rectangular array of logic cells. It is characterised by just
two numbers: the number of rows and columns in the
cellular array. The degree of connectivity in the circuit
called levels-back defines how many columns of cells to
the left of current column can have their outputs connected
to the inputs of the current cell, this also applies to the
final circuit outputs.

This paper presents an extension of the methods
discussed above. Here we will discuss two possible ways
to improve the quality of evolved circuits. In a previous
work the sole objective was to evolve 100% functional
circuits. The purpose of our work is to consider this aspect
together with attempting to improve the evolved circuits in
terms of the number of active gates used. One of the
obvious ways to improve it is to use a multi-objective
fitness function. Thus in previous works the objective in
digital evolution behaviour was to merely produce a 100%

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/335150?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

functionally correct circuit (F1 fitness). So, the
evolutionary process is terminated at this point. Here we
continue to evolve the circuit beyond the point of 100%
correctness by modifying the fitness function to include a
measure of circuit’s efficiency (F2 fitness). As we mention
above the choice of suitable circuit geometry is a very
complicated task and is intimately linked with the
complexity of the function implemented. So, in order to
avoid this we investigate the possibility of evolving the
circuit geometry at the same time as trying to evolve 100%
functional circuits. The circuit geometry defines the length
of the chromosome, thus we work with chromosomes of
variable length. In this scheme, mutation is carried out in
two ways. First, we can mutate genes associated with a
circuit in a fixed geometry, and secondly, we can by
mutation choose the circuit geometry. The main purpose of
circuit layout evolution was to try to evolve the best circuit
layout together with evolving circuit functionality.
However during the GA execution we find the interesting
result that actually using a flexible circuit geometry allows
us to reduce the number of active gates in circuit [14],
[15]. This was unexpected. In our further research we
define several strategies for the GA. We investigate cases
where we use homogeneous, heterogeneous or partially
heterogeneous (heterogeneous only at the initialisation
stage of GA) circuit layouts during GA execution and
determine the GA performance as a function of both
fitness measures.

1 The Evolutionary Algorithm

In order to evolve combinational logic circuits, an
evolutionary algorithm using tournament selection with
elitism and uniform crossover has been implemented, these
details are given in the following subsections. During the
evolution process we only allow the circuit layout to be
changed by mutation by altering the number of rows or
columns. In this case we will refer to this as heterogeneous
circuit layout during evolution. When the circuit geometry

is not changed during evolution process, we refer to it as
the homogeneous circuit layout.

1.1 Encoding

There are two aspects required to define any
combinational logic network. The first is the cell-level
functionality and the second is the inter-connectivity of the
cells between the circuit inputs and outputs. An encoding
of chromosome was adopted that satisfies these two
aspects.

A combinational logic circuit is represented as a
rectangular array of logic gates (Fig. 1). Each logic cell in
this array is uncommitted and can be removed from the
network if they prove to be redundant. The inputs to any
cell in the combinational network may be logical
constants, primary and inverted inputs, as well as the
outputs of logic cells which are in columns to the left of
the cell in question. In the work reported in this paper we
define each logic function to be chosen from the set of
functions AND, OR, NOT, EXOR with primary and
inverted inputs or a multiplexer.

The chromosome is represented by a 3-level structure: 1)
Geometry structure; 2) Circuit structure; 3) Gate (cell)
structure. At the first level the global characteristics of the
circuit are defined: These are levels-back and the number
of rows and columns. The circuit geometry can be changed
at this level. At the second level the array of cells are
created and the circuit outputs are determined. Finally the
third level represents the structure of each cell in the
circuit. This data consists of the number of inputs, the
input connections and the functional gene. The number of
inputs in the cell depends on the type of cell and is defined
when the value of functional gene is known (i.e. a
multiplexer has three inputs while all others have only two
inputs). Note that the number of inputs as well as the
number of outputs are allowed to be variable, but in this
paper we consider only 2 or 3 input 1 output gates.

An example of the chromosome representation with the
actual circuit structure is given in Fig. 2. Let us examine a
possible circuit representing a 1-bit adder with carry. This

 Circuit Outputs
Gate connectivity

Circuit connectivityInputs Outputs

���

���

[
�

[
�

[
�

\
�

\
�

Circuit size

columns
rows

8

9

11 14

12 15

10 13 16

Gate structure

Gate type
Gate inputs

L
�

L
�

Fig. 1. Schematic of chromosome structure

function has 3-inputs and 2-outputs and is implemented
here on a combinational network with 3x3 circuit
geometry (Ncolumn x Nrow). The circuit inputs are labelled as
follows: 0 and 1, which represent the logical constants 0
and 1 respectively, labels 2, 3 and 4 correspond to the
input variables x0, x1 and x2 respectively. The inverted
inputs !x0, !x1, !x2 are represented as 5, 6 and 7. In this
example the functional gene (shown in bold) represents
one of the 13 possible gates (AND, OR, EXOR with
primary and inverted inputs or multiplexer). The functional
gene may be a positive or negative integer. If positive then
the function is a multiplexer and the integer represents the
control connection. If functional gene is negative, we use
an encoding table to define the type of gate (Table 1).

The output of each cell is assigned an individual address.
Thus the output of the cell located in the 0th column and in
the 0th row is labelled as 8. The output of logic cell in the
2nd column and 2nd row is labelled as 16. The number of
circuit outputs is defined by the number of outputs in the
logic function implemented. The logic cell label
determines each of these outputs. Let us examine the
encoding of the 12th logic cell in genotype <-12 7 8>. We
refer to this representation of gate as gate genotype. The
functional gene defining the type of this gate is -12. This
value corresponds to the EXOR gate with inverted inputs
in the gate-encoding table (Table 1).

The examined cell has two inputs. The first input is
connected to the input !x2 and second to the output of the
8th cell. The cell 8 depends on two variables: !x0 and !x1.
So, in this case the logic function that describes the 12th

cell depends on three variables: !x0, !x1 and !x2. Let us
consider the 16th gate, with genotype <10 9 13>. Since the
functional gene is positive, the gate is multiplexer and the
functional gene with value 10 corresponds to the control
input. The inputs of this multiplexer are connected to the
outputs of gates 9 and 13. The outputs of circuit are

connected to the outputs of the 16th and 12th logic gates.
The fitness F of a chromosome is defined as follows:

=+=
<=

=
0.100,

0.100,

2

1

cifcF

cifcF
F

γ
where c is the percentage of the circuit output bits that

are correct, γ is the number of gates that are not involved
in the circuit.

Table 1. Cell gate functionality according to the
negative gene value in chromosome

Functional gene Gate function

-1 x1 AND x2

-2 x1 AND !x2

-3 !x1 AND x2

-4 !x1 AND !x2

-5 x1 OR x2

-6 x1 OR !x2

-7 !x1 OR x2

-8 !x1 OR !x2

-9 x1 EXOR x2

-10 x1 EXOR !x2

-11 !x1 EXOR x2

-12 !x1 EXOR !x2

The maximum F2 is equal to (100.0+ max
rowsN * max

columnsN) in

this case no gates are used. The fitness function for one-bit
adder with carry the fitness is 103.0 for the circuit shown
in Fig. 2. This means that this circuit represents a 100%
functional one-bit adder with carry and there are 3 logic
gates that are not involved in the combinational
implementation of this circuit. In other words, there are 6
gates, which are actually used to synthesise the one-bit
adder with carry, because max

2F =100.0+3*3=109.0.

Circuit geometry: 3 x 3

Fitness: 103.0

-10 5 6

-6 1 7

-12 3 4

-3 10 3

-12 7 8

-12 6 8

-12 11 12

10 9 13
Circuit outputs: 16 12

Gate 15:

Functional gene: -9
Input1: 13
Input2: 11
Type of cell: 2-input

Gate 16:

Functional gene: 10
Input1: 9
Input2: 13
Control input: 10
Type of cell:
multiplexer

Circuit inputs:

0: 0
1: 1
2: x1
3: x2
4: x3

 5: !x1
 6: !x2
 7: !x3

Chromosome:

-9 13 11

8
!x0
!x1

12
!x2
8

Y1

14
11
12

15
13
11

11
10
x1

9
1
!x2

13
!x1
810

x1
x2

0

0

1 2

1

2
9

13

10

16
Y0

Fig. 2. An example of the phenotype and corresponding genotype of a chromosome with 3x3 circuit geometry

1.2 Objective Function and Fitness

One of the objectives of combinational circuit design is
to construct a circuit utilising the minimum number of
gates from the behavioural specification of the circuit
given by the truth table. The evaluation process consists of
the two main steps. First we are trying to find the circuits
with 100% functionality (F1 fitness) and second we are
trying to minimise the number of active gates in 100%
functional circuits (F2 fitness). An active gate is a gate,
which is proved to be not redundant. We use two strategies
in our GA: 1) F1; 2) F1+F2. In the first strategy, the
chromosome is evaluated using F1 fitness only and once
the 100% functional circuit evolved, the evolution process
is terminated. In the case of F1+F2 strategy, F2 fitness is
activated as soon as F1=100.0 and the number of inactive
gates in circuit is estimated. When flexible circuit
geometry is employed, F2 is calculated based on the
maximum available circuit layout.

1.3 Initialisation procedure

The initialisation procedure contains several steps:
1. Define circuit geometry of chromosomes in population;

2. Initialise the genotype of cells;

3. Generate the circuit outputs for each chromosome.
The first step defines the circuit geometry for the

chromosomes. In flexible circuit layout, any circuit
geometry may be used up to the maximum number of rows
and columns. In fixed circuit layout all chromosomes have
the same circuit geometry. We say that we have
homogeneous circuit layout during initialisation process
when the circuit layout for all chromosomes is the same.
The heterogeneous circuit layout occurs when the
chromosomes are initialised with different circuit layouts.
During the second and third step the initialisation of cell
inputs and circuit outputs is performed in accordance with
the levels-back constraint and the type of variables which
are able to be present throughout all circuit. Thus if the
logic constants are allowed as input connections
throughout the circuit, then during initialisation procedure
the inputs of gates can be chosen from the set of inputs
constrained by levels-back or from the set of logical
constants. The same procedure is true for the primary and
inverted primary inputs.

1.4 Mutation

We use two types of mutation: circuit mutation and
geometry mutation. The circuit mutation allows us to
change the type of genes in a chromosome but excludes
the number of columns and rows. The geometry mutation
changes the numbers of rows or columns in the rectangular
array. The maximum numbers of rows and columns are

predefined. In both cases the mutation rate has to be
chosen carefully, since it can dramatically affect the GA
performance.

Circuit Mutation: The circuit mutation allows us to
change the following three features of the circuit: 1) Cell
input 2) Cell type and 3) Circuit output. Each of these
parameters is considered as an elementary unit of the
genotype. The circuit mutation rate defines how many
genes in the population are involved in mutation. The
chromosome contains 3 different types of genes, whose
number is :

∑
=

+⋅=
sizepop

i
outputs

i
gatesgenes NNN

_

1

)3(

where Noutputs is the number of outputs in the circuit, Ni

gates

is the number of gates in the i-th chromosome.

Geometry Mutation: Geometry mutation allows us to
change the number of rows and columns in a chromosome.
Geometry mutation is applied to each chromosome with a
given probability. In this case the numbers of rows and
columns are treated as an elementary unit of the genotype.
Either the number of rows or the number of columns is
changed with equal probability. The geometry mutation
consists of the two main steps: 1) Gene mutation 2) Repair
algorithm. In the first step the new number of columns or
rows of the chromosome is randomly defined. At the
second step the repair algorithm is applied to ensure that a
chromosome with a new geometry represents a valid
genotype.
Let us consider geometry mutation process for
chromosome with 3x3 circuit geometry. Let Ncolumns and Nrows

be the number of columns and rows of chromosome
assigned to be mutated and new_value is the new value of
mutated genes chosen randomly. The gene mutation
procedure is the following:
1. Define the circuit mutation rate Pmg.
2. Generate random number for each chromosome,

rand1∈[0, 1].
3. If (rand1 < Pmg) the geometry mutation is applied to the

current chromosome.
4. Generate random number rand2∈[0, 1].
5. If (rand2 < 0.5) the number of columns in chromosome

is chosen to be mutated and the new number of columns

 (new_value) is generated from the range [1, max
columnsN].

Else the number of rows is considered as mutated gene
and the new number of rows (new_value) is generated
from the range [1, max

rowsN].

Let Ncurrent be the number of rows or columns in
chromosome in which the gene is assigned to be mutated
and Nmax is the maximum number of rows or columns
which is allowed to be in circuit structure. Then the new

value of the mutated genes can be defined using one of the
following three strategies:
1. Global geometry mutation (GGM),

new_value ∈ [1, Nmax];
2. Bounded geometry mutation (BGM),

new_value ∈ [1, Ncurrent];
3. Local geometry mutation (LGM),

new_values = Ncurrent±1.
The first strategy allows us to generate new circuit

geometry. The number of columns and rows is randomly
defined in the ranges [1, max

columnsN] and [1, max
rowsN]

respectively. The new number of columns and rows is not
related to the current circuit geometry. The second strategy
is used to reduce the circuit geometry used in
chromosome. The idea of this strategy came from
observing that using the global geometry mutation tended
to produce circuits with larger circuit geometry. The third
strategy is assigned based on the idea of local search of
circuit geometry. This strategy guarantees to produce
comparatively small numbers of new cells in the
chromosome in comparison with the first one.

After new_value is defined, the geometry mutation is
performed in the following manner. First, consider the case
when the mutated gene is the number of columns. In this
case the new circuit structures, shown in Fig. 3 (structures
A and B), can be synthesised. If (new_value > Ncolumns), we
have to add new columns in the chromosome
representation (Fig. 3 (structure A)). The gates in new
columns are initialised using the initialisation procedure. It
is possible, however, that the circuit output disobeys the
levels-back constraint. Thus, the chromosome may need to
be repaired. The repair algorithm checks whether the
circuit outputs obey the levels-back constraint, and
whether all the cell inputs are valid. If the circuit output
does not satisfy this condition a new circuit output is
initialised. If (new_value < Ncolumns) we have to remove
some columns in the circuit structure (Fig. 3 (structure B)).
After the new structure is obtained, a repair algorithm is

applied to the circuit output, because the circuit output can
refer to a gate, which no longer exists in the circuit. In the
case when the mutated gene is the number of rows, the
structures C and D given in Fig. 3 can be synthesised. If
(new_value > Nrows) the new rows of gates are added to the
circuit structure (Fig. 3 (structure C)). Again, these gates
are initialised. There is no need to apply repair algorithm
to the circuit outputs in this case because all connections
are not changed and the circuit outputs will still refer to
the correct logic cells in the circuit structure. If
(new_value < Nrows) the last (Nrows - new_value) rows are
removed from the circuit structure (Fig. 3 (structure D)).
In this case the inputs of the remaining gates as well as
circuit outputs can refer to gates which are no longer
present. Therefore each gate genotype and the circuit
outputs have to be repaired.

1.5 Recombination

Recombination is implemented with uniform crossover.
For two chromosomes, the uniform crossover generates
two new chromosomes by swapping two genes in
chromosomes. Because our chromosome structure contains
three levels, on each level the components of chromosome
can be examined like a “gene” or “swapping block”. Thus
we have three different crossover operators: 1. Gene
uniform crossover; 2. Cell uniform crossover; 3. Geometry
uniform crossover. The number of chromosomes selected
for breeding is defined by the crossover rate, which is
carried out on a cellular level. In order to preserve the
interconnection conditions, the repair algorithm checks the
inputs of the logic gates for correctness. When two
chromosomes with different geometries undergo crossover
it is very likely that merely swapping genes to produce the
offspring, will generate invalid genomes. These would
have to be repaired (randomly initialised), and this would
introduce a considerable amount of randomness into the
recombination process. Therefore, the selection of the
correct crossover rate and its type is very important.

g1,1

g1,2

g1,3

g2,1

g2,2

g2,3

%��&KURPRVRPH� 3x2

\
�

\
�

g1,1

g1,2

g1,3

g2,1

g2,2

g2,3

g3,1

g3,2

g3,3

$��&KURPRVRPH� 3x4

\
�

\
�

g4,1

g4,2

g4,3

g1,1

g1,2

g1,3

g2,1

g2,2

g2,3

g3,1

g3,2

g3,3

&��&KURPRVRPH� 4x3

\
�

\
�

g1,4 g2,4 g3,4check for
correctness

initialise new
gate

'��&KURPRVRPH� 2x3
\
�

\
�

g1,1

g1,2

g2,1

g2,2

g3,1

g3,2

Fig. 3. The geometry mutation process for a chromosome with geometry 3x3

When we refer to the gene uniform crossover, we mean
that any gene of logic cell as well as the circuit outputs can
be exchanged. In case of cell uniform crossover the data,
describing the behaviour of a logic gate such as functional
gene, inputs, control input, are swapped. In geometry
uniform crossover, the columns or rows of logic cells in
addition to circuit outputs are involved in the crossover
process. In this case whole column or row of logic gates is
swapped and connections are restored if necessary.

Let us consider the “restoring process” in the case when
the cells to be swapped belong to chromosomes with
different circuit layouts. In this case the cell will refer to
different cells in the circuit because of the specific features
of encoding. In order to avoid it we correct the cell data in
such a way that they refer to the cells positionally located
in the same place as with the parents’ chromosome. In the
case when the cell contains a connection to a non-existent
cell, a new connection is randomly generated such that it is
valid. Let us consider the case mentioned above with an
example of cell uniform crossover with parent
chromosomes with 3x2 and 3x3 circuit geometry and
assume the cell to be swapped is located in 2nd row and 3nd

column (Fig. 4). Let us consider the case where the cell
from parent 2 is exchanged with cell in parent 1. This cell
has connection to the 10th and 11th cells in circuit.
Positionally it corresponds to the cells located in 2nd

column and 1st and 2nd (10 and 11) rows. When we
exchange this cell in the chromosome with 3x3 circuit
geometry, this cell now represents the connections with
cells located in 1st column and 3rd row and in 2nd column
and 1st row. Thus the positional connection is broken. In
order to restore it we have to reassign the inputs for this
cell according to the labelling process in chromosome.
Thus this cell now will be described to <-4 11 12>. The
same process is applied to the cell in parent 1. But in this
case the input refers to the cell located in 2nd column and
3rd row. Because the chromosome where this cell is going
to be allocated has only 2 rows (parent 2 has only 2 rows),
this input has to be initialised. Thus the “restoring process”
allows us to preserve the positional connections of cells
and provides a less destructive process.

8 10

9

8

16

15

14

13

12

11

10

9 13

12

11

Parent 1

Gate 15:
-2 13 12

Gate 13:
-4 10 11

Parent 2

Fig. 4. Parents for cell uniform crossover

2 Experimental Results

In this section we will consider some experimental
results obtained for the one-bit adder with carry and two-
bit multiplier. We perform two main types of experiments:
1) Fitness function; 2) Crossover and Mutation strategies.

The main idea of these experiments is to define which of
the GA strategies allows us to determine whether circuit
geometry evolution brings some advantages or not. The
initial data for the experiments is given in Table 2.

2.1 Experiment 1: Two fitness function strategies

The following experiment shows us how using different
fitness evaluation strategies affects the GA performance
and the quality of circuits evolved. For this purpose the
same experiments were performed for fixed and flexible
circuit geometry with and without the F2 fitness function.
The experimental results obtained are summarised in the
Table 3. Comparing the best average F1 finesses and the
number of 100% functional cases for 3 mutation strategies,
we find that the global geometry mutation is the most
effective. But in terms of the number of active gates in the
circuit evolved the best results were obtained in Table 3. It
is interesting to note that when we evolve functions during
1000 (add1c.pla) or 3000 (mult2.pla) generations, we do
not achieve significant improvements in terms of the
number of active gates in circuit. When we increase the
number of generations to 50000 it is clear that the average
best F2 fitness is improved. Thus, in the case of add1c.pla
function we can notice improvements for 2-3 gates, but in
case of mult2.pla it is improved only slightly. One of the
reasons why we can see only small improvements for the
mult2.pla function is that the first GA with F1 only
achieves a sufficient number of 100% functional circuits
when the number of generations is this large. Therefore the
optimising fitness function F1+F2 does not have long
enough to make a significant difference. It is interesting to
note that when we use a fixed geometry, the average best
F1 fitness is higher in comparison with the same
experiments for flexible circuit layout. However the
average best F2 fitness for this case is the lowest one and
this does not provide good solutions in terms of the
number of active gates. If we consider the GA
performance in terms of the number of 100% functional
circuits evolved, it is best to use the fixed circuit geometry
but if we use the flexible one we should employ global
geometry mutation. Thus, we can conclude that fixed
geometry is useful only in terms of 100% functional
circuits evolved but that using a flexible circuit geometry
provides better quality circuits. Note that using (F1+F2)
fitness strategy allows us to improve the quality of circuits
evolved as well.

Table 2. Initial data
Experiment 1 Experiment 2Target function

Add1c.pla Mult2.pla Add1c.pla Mult2.pla
Population size 15 15 15 15
of generations 1000 / 50000 3000 / 50000 1000 4000

of GA runs 100 100 100 100
Crossover type Cell Uniform Cell Uniform Gene Uniform

Cell Uniform
Geometry Uniform

Gene Uniform
Cell Uniform

Geometry
Uniform

Crossover rate 0.6 0.6 0.6 0.6
Selection type Tournament Tournament Tournament Tournament

Selection pressure 1.0 1.0 1.0 1.0
Mutation type Cell

Geometry
 Cell

Geometry
 Cell

Geometry
 Cell

Geometry
Circuit mutation rate 1.2 1.2 1.2 1.2

Geometry mutation rate 5.0 5.0 5.0 5.0
Fitness type1 F1 / F1+F2 F1 / F1+F2 F1+F2 F1+F2

Type of geometry
mutation strategy2

GGM
BGM
LGM

GGM
BGM
LGM

GGM
BGM
LGM

GGM
BGM
LGM

Gate distribution Proportional Proportional Proportional Proportional
Geometry Flexible

Fixed
Flexible

Fixed
Flexible
Fixed

Flexible
Fixed

Max # of rows 5 5 5 5
Max # of columns 5 5 5 5

Levels-back 2 2 2 2

Table 3. Experiment 1: Strategy of fitness function
Add1c.pla Mult2.plaGeometry

Type
Geometry
Mutation

Type

#
generations

Fitness
Type Average

best fitness1
(F1)

Average best
fitness2 (F2)

100%
cases

Average
best fitness1

(F1)

Average best
fitness2 (F2)

100%
cases

1000 / 3000 F1 98.6875 114.696 79 94.0938 110.750 4
1000 / 3000 F1+F2 97.6875 114.712 66 94.2500 111.000 7

Fixed -

50000 F1+F2 99.8750 117.418 98 98.3594 111.152 46
1000 / 3000 F1 94.7500 117.206 34 92.6719 111.400 5
1000 / 3000 F1+F2 94.0625 117.483 29 91.0300 114.000 2

Global

50000 F1+F2 99.4375 118.923 91 96.0781 115.115 26
1000 / 3000 F1 92.1875 116.909 22 90.0312 100.000 0
1000 / 3000 F1+F2 91.0000 116.793 29 90.5000 115.000 1

Boundary

50000 F1+F2 96.9375 119.369 65 94.6562 115.273 22
1000 / 3000 F1 94.5625 117.816 38 91.4219 104.000 1
1000 / 3000 F1+F2 93.4375 117.345 29 88.5300 116.000 2

Flexible

Local

50000 F1+F2 98.8125 119.244 82 95.5312 115.227 22

1 F1 and (F1+F2) are the fitness without and with estimation of the number of active gates in circuit
2 GGM, BGM and LGM are the global, boundary and local geometry mutations

2.2 Experiment 2: Crossover and Mutation
strategies

In this series of experiments we have tried to define the
best mutation and crossover strategy as well as the best
overall GA strategy. We investigate the GA performance
for three types of crossover (gene, cell and geometry
uniform crossovers), two types of mutation (circuit and
geometry mutations) and three types of geometry mutation
(global, boundary and local). We define two main
strategies for evolution and initialisation processes. Each
of these strategies is defined by the homogeneous or
heterogeneous circuit layout. The results obtained are
shown in Table 4 – Table 7. The tables are organised
according to the GA strategies used.

The first results were obtained for the case when during
initialisation and evolution processes the heterogeneous
circuit layout is produced (Table 4). So, chromosomes
with different circuit layouts are produced at each stage of
the GA. The circuit and geometry mutations have been
used together. Observing the results according to geometry

mutation type we find that global geometry mutation is
better in terms of the best average F1 fitness and the
number of 100% functional circuits evolved. It is
interesting to note that the local geometry mutation
produces the second best results after global mutation.
However in terms of the quality of circuits evolved
(estimated by the average best F2 fitness) we find that
boundary or local geometry mutation is more
advantageous. We can not make any conclusions as to
which is the best crossover.

In the next series of experiments (Table 5) the condition
were the same as before except that only geometry
mutation is used. Firstly, it is interesting to note that we
obtain very poor results in terms of the number of 100%
cases evolved and no 100% functional two-bit multiplier
was obtained. Furthermore, we only evolved a few one-bit
adders. We see that the worst crossover operator is the cell
uniform type. The highest best average F1 fitness was
obtained for geometry uniform crossover. We conclude
that using circuit mutation and geometry mutation together
is more effective.

Table 4. Experiment 2: Using circuit mutation (pm=1.2) and geometry mutation (pm=5.0)
Add1c.pla Mult2.plaCrossover

Type
Geometry

Mutation Type Average best
fitness1

Average best
fitness2

100%
cases

Average best
fitness1

Average best
fitness2

100%
cases

Initialisation Heterogeneous circuit layout
Evolution Heterogeneous circuit layout

Global 94.875 117.263 38 92.7188 115.000 4
Boundary 90.8750 116.542 24 90.1875 115.000 3

Gene
Uniform

Local 93.6875 117.964 28 91.5156 114.667 3
Global 95.0625 116.950 40 91.9062 115.500 2

Boundary 92.5625 117.500 28 92.2656 111.667 3
Cell

Uniform
Local 93.6875 117.733 30 91.9375 115.000 1
Global 94.8125 116.944 36 93.3750 111.833 6

Boundary 91.4375 117.500 20 91.6406 114.000 5
Geometry
Uniform

Local 94.9375 117.303 33 92.5781 113.000 2

Table 5. Experiment 2: Using geometry mutation (pm=5.0), flexible geometry
Add1c.pla Mult2.plaCrossover

Type
Geometry

Mutation Type Average best
fitness1

Average best
fitness2

100%
cases

Average best
fitness1

Average best
fitness2

100%
cases

Initialisation Heterogeneous circuit layout
Evolution Heterogeneous circuit layout

Global 79.0000 100.0 0 82.0625 100.0 0
Boundary 76.1250 114.5 2 79.6406 100.0 0

Gene
Uniform

Local 81.0000 119.0 2 81.4531 100.0 0
Global 80.7500 100.0 0 82.6562 100.0 0

Boundary 73.3125 100.0 0 80.1406 100.0 0
Cell

Uniform
Local 76.2500 100.0 0 82.0156 100.0 0
Global 83.0000 118.0 4 84.4688 100.0 0

Boundary 76.9375 115.0 1 81.8750 100.0 0
Geometry
Uniform

Local 81.7500 116.0 4 83.3594 100.0 0

Table 6. Experiment 2: Using circuit mutation (pm=1.2), fixed geometry 4x4 (add1c.pla) and 5x5 (mult2.pla)
Add1c.pla Mult2.plaCrossover Type

Average best
fitness1

Average best
fitness2

100%
cases

Average best
fitness1

Average best
fitness2

100%
cases

Initialisation Homogeneous circuit layout
Evolution Homogeneous circuit layout

Gene Uniform 95.3125 113.9763 42 94.2500 110.333 3
Cell Uniform 93.0625 115.6361 22 95.1094 110.100 10

Geometry Uniform 94.8750 114.0001 36 95.7969 110.857 14

Table 7. Experiment 2: Using circuit mutation (pm=1.2), flexible geometry at the initialisation stage
Add1c.pla Mult2.plaCrossover Type

Average best
fitness1

Average best
fitness2

100%
cases

Average best
fitness1

Average best
fitness2

100%
cases

Initialisation Heterogeneous circuit layout
Evolution Homogeneous circuit layout

Gene Uniform 92.3125 116.708 24 92.1250 117.000 1
Cell Uniform 94.3750 116.366 41 91.3438 113.667 3

Geometry Uniform 91.5625 116.786 28 92.2031 113.000 1

3 * F2 is normalised for 5x5 circuit geometry, thus this value is comparable with other.

The next series of experiments (Table 6) show us the GA
performance with circuit mutation only. In this case the
homogeneous circuit layout is retained for both stages of
initialisation and evolution. In this case we are using an
entirely fixed geometry. We find that geometry uniform
crossover works best for mult2.pla and gene uniform
crossover for add1c.pla. In terms of the best average F2

fitness the best performance is obtained with cell uniform
crossover for add1c.pla and with geometry uniform
crossover for mult2.pla. This could be explained because
of the different complexity associated with the landscapes
of these two functions: mult2.pla is considerably more
difficult to evolve than add1c.pla. We always find that the
geometry uniform crossover is the best for mult2.pla. It is
interesting to note that using gene uniform crossover
produces the better results in terms of the best average F1

fitness and the number of 100% cases. Comparing the
obtained results with the best results discussed above we
can conclude that the pure fixed geometry works perfectly
well in comparison with flexible one when we need to
obtain the maximum number of 100% functional circuits.
But in terms of the best average F2 fitness we find that we
evolve poorer circuits. Thus we find one of the
disadvantages of using the fixed geometry: evolving a
large number of 100% cases does not provide us with the
best solution in terms of the number of active gates used in
circuit.

Table 7 shows results of some interesting experiments.
We have tried to combine using fixed and flexible circuit
geometry at the different stages of GA performance. Thus
we have a heterogeneous circuit layout at the initialisation

stage and homogeneous circuit layout during evolution.
This means that the different circuit layout can be defined
only at the initialisation. It is interesting to note that in this
case cell uniform crossover delivers the best performance.
In both cases of add1c.pla and mult2.pla functions we
obtain better results in terms of the number of 100% cases.
The best average F2 fitness has been significantly
improved and increased by more then 2 gates in
comparison with results obtained for the previous
experiment (Table 5). This improvement was probably
caused by the fact that a variety of circuit geometries were
available so that by selection we can arrive at a more
optimal solution. However we should note that the best
level F2 fitness was obtained using heterogeneous circuit
layout at both stages of initialisation and evolution with
geometry mutation.

3 Conclusions and Further Work

This paper has described the evolutionary design of
combinational logic circuits. The distinctive feature of
proposed algorithm is that it allows us to evolve the circuit
layout in addition to the circuit structure. We have defined
a fitness function, which allows us estimate not only the
functionality of circuit but to define how good the evolved
100% functional circuit is. These two aspects allow us to
improve the quality of evolved circuits in terms of the
number of active gates in circuit. We investigated several
strategies of GA with and without flexible circuit layout.
Analysis of experimental results allows us to make the
following conclusions:

1. The fixed circuit geometry is very good when we need
to evolve as many 100% functional circuits as possible.

2. Using flexible geometry permits us to decrease the
number of gates in a circuit in comparison with using a
fixed circuit layout.

3. Utilizing geometry mutation without circuit mutation
leads to poor results in terms of the number of 100%
functional circuits evolved.

4. Applying the (F1+F2) strategy with a large number of
generations allows us to obtain better results in terms
of the number of active gates in circuit.

5. Suitable crossover operators depend on the choice of
GA strategy.

6. The global geometry mutation produces the best results
in terms of the average best F1 fitness and the number
of 100% functionality circuits evolved.

7. The boundary and local geometry mutations are very
good in terms of obtaining the circuits with smaller
numbers of active gates in circuit.

So, we can conclude that using flexible circuit geometry
is more beneficial to the quality of the evolved circuits.

A great deal of further work could be done in the area.
Other multi-objective approaches such as the Pareto
technique, with weight aggregation could be experimented
with, and further investigation of using multi-input multi-
output gates could be carried out.

References

1. Coello Coello, C. A., A. D. Christiansen and A. H. Aguirre
(1997). Automated Design of Combinational Logic Circuits
using Genetic Algorithms in Proc. of the Int. Conf. on Artificial
Neural Nets and Genetic Algorithm (ICANNGA’97) Eds.: D.G.
Smith, et al. Publisher: Springer-Verlag, pp. 335-338.

2. Iba H., Iwata M., and Higuchi T. (1997). Machine Learning
Approach to Gate-Level Evolvable Hardware in Proc. of The 1st

Int. Conf. on Evolvable Systems: From Biology to Hardware
(ICES96), Lecture Notes in Computer Science, Eds.: Higuchi T.
et al, Vol. 1259, Publisher: Springer-Verlag, Heidelberg, pp.
327 – 343.

3. Miller J. F., Thomson P., and Fogarty T. C. (1997). Designing
Electronic Circuits Using Evolutionary Algorithms. Arithmetic
Circuits: A Case Study. in Genetic Algorithms and Evolution
Strategies in Engineering and Computer Science, Eds.: D.
Quagliarella, et al, Publisher: Wiley.

4. Miller J. F., and Thomson P. (1998). Evolving Digital
Electronic Circuits for Real-Valued Function Generation using
a Genetic Algorithm in Genetic Programming: Proc. of the 3rd

Annual Conf., Eds.: Koza, J. R. et al. San Francisco, Publisher:
CA: Morgan Kaufmann , pp. 863-868.

5. Thompson A. (1997). An evolved circuit, intrinsic in silicon,
entwined with physics, in Proc. of The 1st Int. Conf. on
Evolvable Systems: From Biology to Hardware (ICES96),

Lecture Notes in Computer Science, Eds.: Higuchi T., et al Vol.
1259, Publisher: Springer-Verlag, Heidelberg, pp.390 – 405.

6. Thompson A. (1998). On the Automatic Design of Robust
Electronics Through Artificial Evolution in Proceedings of The
1st Int. Conf. on Evolvable Systems: From Biology to Hardware
(ICES98), Lecture Notes in Computer Science, Eds.: Sipper M.,
et al Vol. 1478, Publisher: Springer-Verlag, Heidelberg, pp. 13-
24.

7. Layzell P. (1998). A New Research Tool for Intrinsic Hardware
Evolution. in Proceedings of The 1st Int. Conf. on Evolvable
Systems: From Biology to Hardware (ICES98), Lecture Notes
in Computer Science, Eds.: Sipper M., et al Vol. 1478,
Springer-Verlag, Heidelberg, pp. 47-56.

8. Sipper M., Sanchez E., Mange D., Tomassini M., Perez-Uribe
A., and Stauffer A. (1997). A Phylogenetic, Ontogenetic, and
Epigenetic View of Bio-Inspired Hardware Systems, in IEEE
Trans. on Evolutionary Computation, Vol. 1, No 1., pp. 83-97.

9. Miller J. F., Thomson P. (1998). Aspects of Digital Evolution:
Geometry and Learning, in Proceedings of The 1st Int. Conf. on
Evolvable Systems: From Biology to Hardware (ICES98),
Lecture Notes in Computer Science, Eds.: Sipper M., et al Vol.
1478, Publisher: Springer-Verlag, Heidelberg, pp. 25-35.

10. Miller J. F., Thomson P. (1998). Aspects of Digital
Evolution: Evolvability and Architecture, in Proceedings of
The 5th Int. Conf. on Parallel Problem Solving from Nature
(PPSNV), Lecture Notes in Computer Science, Vol. 1498,
Publisher: Springer-Verlag, Heidelberg, pp.927-936.

11. Miller J., T. Kalganova, N. Lipnitskaya and D. Job (1999).
The Genetic Algorithm as a Discovery Engine: Strange Circuits
and New Principles in Proc. Of AISB Symposium on Creative
Evolutionary Systems (CES’99), Edinburgh, UK.

12. Kalganova, T., J. Miller and T. Fogarty (1998). Some
Aspects of an Evolvable Hardware Approach for Multiple-
Valued Combinational Circuit Design in Proc. Of the 2nd Int.
Conf. on Evolvable Systems (ICES'98). Lausanne, Switzerland,
Eds.: M. Sipper, et al. Publisher: Springer-Verlag, pp. 78-89.

13. Kalganova, T., J. Miller and N. Lipnitskaya (1998).
Multiple-Valued Combinational Circuits Synthesized using
Evolvable Hardware Approach in Proc. of the 7th Workshop on
Post-Binary Ultra Large Scale Integration Systems (ULSI'98)
in association with ISMVL'98, Fukuoka, Japan. Publisher: IEEE
Press.

14. Kalganova T., J. Miller and T. Fogarty (1999). Evolution of
the digital circuits with variable layouts in Proc. of the Genetic
and Evolutionary Computation Conference (GECCO’99),
Orlando, Florida, USA.

15. Kalganova T. (1999). A New Evolutionary Hardware
Approach for Logic Design in Proc. of GECCO Student
Workshop in association with GECCO’99, Orlando, USA.

