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Abstract. Entropy generation minimization has significant importance in fluid flow, heat and mass
transfer in an enclosure to get the maximum efficiency of a system and to reduce the loss of energy.
In the present study, the analysis of mixed convection fluid flow, heat and mass transfer with heat
line and mass line concept and entropy generation due to the effects of fluid flow, heat flow, mass
flow and magnetic field in a trapezoidal enclosure with linearly heated and diffusive left wall,
uniformly heated and diffusive lower wall, cold and nondiffusive right wall, adiabatic and zero
diffusion gradient top wall have been reported. Parametric studies for the wide range of Prandtl
number (Pr = 0.7 for air cooling system and Pr = 1000 for the engines filled with olive or
engine oils), Rayleigh number (Ra = 103−105), aspect ratio (A = 0.5−1.5) and inclination angle
of the cavity (φ = 45 ◦−90 ◦) have been performed, which help to construct the perfect shape of
cavity in many engineering and physical applications so that the entropy is minimum to get the
maximum efficiency of any system. The finite-difference approximation has been used to find out
the numerical solutions. Biconjugate Gradient Stabilized (BiCGStab) method is used to solve the
discretized nonhomogeneous system of linear equations.

Keywords: mixed convection flow, heat transfer, mass transfer, heat line, mass line, entropy
generation, lid driven trapezoidal enclosure, magnetic field, aspect ratio.

1 Introduction

Mixed convection is a combination of forced convection and natural convection, which
exists when a flow is determined simultaneously by both an outer forcing system and
inner volumetric forces. In many engineering applications, engineers often encounter
forced convection to design or analyze heat exchangers, pipe flow, cavity flow, flow over
a flat plate etc. If the natural convection is not much less than the forced convection,
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then the flow is considered as mixed convection flow. In any mixed convection, flow
stream lines, heat lines and mass lines are routinely considered as very efficient method for
the adequate visualization tools of fluid flow, heat transfer and mass transfer, respectively.
The heat function and heat line concept were first introduced by Kimura and Bejan [19] to
visualize the heat transfer phenomena and in the field of mass transfer, mass function and
mass line concept were first discussed by Trevisan and Bejan [35]. Heat and mass transfer
phenomena have received considerable attention due to its various engineering and natural
applications such as air cooling [10, 14], heat exchanger [33], solar plate collector [36],
geothermal system [7] etc. Air cooling is mostly preferable method for the cooling of
computer system and other electronic equipments because of its simplicity and low cost.
Lid-driven cavity flow is also very important due to its applications in crystal growth,
flow and heat transfer in solar ponds [9], dynamics of lakes [18], thermal hydraulics of
nuclear reactors [16], food processing and float glass production [25] etc. One useful
control parameter for convective heat and mass transfer in cavities is magnetic field.
Effect of magnetic field on double diffusive natural convection heat transfer in trapezoidal
enclosure has been discussed by Teamah and Shehata [34]. Sensitivity analysis on MHD
heat transfer and entropy generation in inclined trapezoidal cavity filled with nanofluid has
been discussed by Shirvan et al. [2]. Together with these analyses, it is also very important
to save energy. The second law of thermodynamics analyzes and estimates the efficiency
of a thermal system, which states that when energy is transformed from one state to
another, there is a loss in the amount of available energy, which reduces the efficiency
of the system. In order to minimize the irreversibilities associated with the system, a new
methodology is improved, known as entropy generation minimization. Therefore, it is
important to analyze the entropy generation minimization to increase the efficiency of the
system. Many researches have been done on this topic. Entropy generation minimization
concept was first introduced by Bejan [4–6]. The heat transfer rate and entropy generation
due to heat transfer and fluid friction during natural convection in trapezoidal enclosures
have been discussed by Basak et al. [3]. Ramakrishna et al. [26] analysed the entropy
generation during free convection within trapezoidal cavity. Singh et al. [32] investigated
the role of entropy generation on thermal management during natural convection in tilted
porous square cavities. A numerical analysis of double-diffusive MHD natural convection
and entropy generation inside a tilted sinusoidal corrugated porous enclosure has been
discussed by Hussain [15].

Recently, entropy generation in natural convection of nanofluid inside a square cavity
having hot solid block has been analyzed by Sheremet et al. [30]. Sheremet et al. [31]
also discussed natural convection of nanofluid inside a wavy cavity with a nonuniform
heating. More recently, using Buongiorno’s mathematical model, Sheremet et al. [29]
discussed natural convection and entropy generation in a square cavity with side walls
having variable temperature filled with a nanofluid. The natural convection flow with hot
horizontal wall and an adjacent cold vertical wall has an important application in the heat
transfer analysis of electronic equipment, mainly in slim rack described by Carvalho et
al. [8]. In this case, the power dissipation from the horizontal circuit board is limited by its
temperature. MHD mixed convection in a flexible walled and nanofluids filled lid-driven
cavity with volumetric heat generation has been analyzed by Selimefendigil and Öztop
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[28]. Hasanuzzaman et al. [13] discussed magnetohydrodynamic natural convection in
trapezoidal cavities. Effects of moving lid direction on MHD mixed convection in a
linearly heated cavity have been studied by Al-Salem et al. [1]. Raza et al. [27] examined
the combined effects of thermal radiation and magnetic field on molybdenum disulfide
nanofluid in a channel with changing walls. A numerical model of MHD stability of
natural convection in a cylindrical configuration filled with fluid is studied by Oudina
and Bessaïh [23]. Numerical simulation of the effect of Prandtl number on oscillatory
MHD natural convection in cylindrical annulus is discussed by Oudina and Makinde [24].
Oudina [22] modeled numerically the hydrodynamic stability in vertical annulus having
heat source of different lengths. Recently, Alkasassbeh et al. [2] studied the heat transfer
of convective fin with temperature dependent internal heat generation by hybrid block
method.

In the present study, mixed convection fluid flow, heat and mass transfer with heat
line and mass line concept and entropy generation minimization have been analyzed.
The main objective of the present study is the analysis of entropy generation due to heat
transfer, mass transfer and magnetic field and the total entropy generation in a trapezoidal
enclosure with various aspect ratios in which the upper wall of the cavity is moving with
a constant velocity. Our purpose is to analyze the thermal behavior of the fluid inside
the trapezoidal enclosure under the effect of various parameters in terms of stream line,
isotherm, isoconcentration, heat line, mass line, entropy generation due to heat transfer,
fluid friction, mass transfer and magnetic field. The goal of our study is to achieve
minimum entropy generation in order to enhance the overall efficiency of the system.

2 Problem formulation

A trapezoidal cavity filled with incompressible viscous fluid, with right and left walls
inclined at an angle φ with the positive x-axis and negative x-axis, respectively, has
been considered with uniformly heated and massive bottom wall, adiabatic and of zero
concentration gradient top wall, hot and diffusive side walls. The nondimensional gov-
erning equations for two-dimensional, double-diffusive, steady, mixed convection flow in
the presence of magnetic field can be written from the dimensional governing equations
in [15] with the help of following nondimensional quantities: x = X/L, y = Y/L,
u = UL/α, v = V L/α, θ = (T − Tc)/(Th − Tc), p = PL2/(ρα2), Pr = ν/α,
Le = α/D, Ra = gβT (Th− Tc)L3/να, S = (C −Cc)/(Ch−Cc), Ha = BL

√
(σ/µ),

N = (βS(Ch − Cc))/(βT (Th − Tc)) as follows. Equation of continuity:

∂u

∂x
+
∂v

∂y
= 0,

momentum equations:

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ Pr

[
∂2u

∂x2
+
∂2u

∂y2

]
−Ha2Pr u, (1)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ Pr

[
∂2v

∂x2
+
∂2v

∂y2

]
+ RaPr(θ +NS), (2)
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where X , Y are dimensional distances along the coordinate axes; U , V , T and C are
dimensional velocities along x and y directions, temperature and concentration, respec-
tively; x and y are dimensionless distances along x and y coordinates, respectively;
u, v, θ and S are dimensionless velocities along x and y coordinates, temperature and
concentration, respectively; L is the length of the enclosure, α is the thermal diffusivity,
βT is the coefficient of thermal expansion, βS is the coefficient of solutal expansion, Th
and Tc are the temperature at the hot and cold wall, respectively; Cc and Ch are low and
high concentrations at the wall of the cavity, respectively; ν is the kinematic viscosity,
P is the dimensional pressure, p is the dimensionless pressure, ρ is the fluid density, g is
the acceleration due to gravity, B is the magnetic induction, Pr is the Prandtl number,
Ra is the Rayleigh number, Ha is the Hartmann number, N is buoyancy ratio, D is
mass diffusivity, σ is electrical conductivity. The upper wall of the cavity is moving with
a constant velocity U0 = α/L towards positive x direction.

Using stream function (ψ) and vorticity function (ω), momentum Eqs. (1) and (2)
yield governing equation of vorticity

u
∂ω

∂x
+ v

∂ω

∂y
= Pr

[
∂2ω

∂x2
+
∂2ω

∂y2

]
+ RaPr

[
∂θ

∂x
+N

∂S

∂x

]
+Ha2Pr

∂u

∂y
(3)

and governing equation of stream function

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω. (4)

Eliminating ω from (3) and (4), we get biharmonic equation of ψ as

Pr

[
∂4ψ

∂x4
+ 2

∂4ψ

∂x2∂y2
+
∂4ψ

∂y4

]
+
∂ψ

∂y

[
∂3ψ

∂x3
+

∂3ψ

∂x∂y2

]
− ∂ψ

∂x

[
∂2ψ

∂x2∂y
+
∂3ψ

∂y3

]
− RaPr

[
∂θ

∂x
+N

∂S

∂x

]
−Ha2Pr

∂2ψ

∂y2
= 0. (5)

Temperature equation:

u
∂θ

∂x
+ v

∂θ

∂y
=

[
∂2θ

∂x2
+
∂2θ

∂y2

]
. (6)

Concentration equation:

u
∂S

∂x
+ v

∂S

∂y
=

1

Le

[
∂2S

∂x2
+
∂2S

∂y2

]
. (7)

Equations of heat function:

∂π

∂y
= uθ − ∂θ

∂x
,−∂π

∂x
= vθ − ∂θ

∂y
,

which yield a single equation

∂2π

∂x2
+
∂2π

∂y2
=

∂

∂y
(uθ)− ∂

∂x
(vθ). (8)
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Equations of mass function:

∂τ

∂y
= uS − ∂S

∂x
,−∂τ

∂x
= vS − ∂S

∂y
,

which yield a single equation

∂2τ

∂x2
+
∂2τ

∂y2
=

∂

∂y
(uS)− ∂

∂x
(vS), (9)

where Le is the Lewis number, π is the heat function and τ is the mass function. The
boundary conditions are as follows:

(i) At the top wall: u=1 (lid-driven upper wall), v=0 (no slip condition), ∂θ/∂y=0
(adiabatic condition), ∂S/∂y = 0 (zero concentration gradient), π = 0, τ = 0.

(ii) At the bottom wall: u = v = 0 (no slip conditions), θ = 1 (uniformly heated),
S = 1 (uniformly diffusive), n̂ ·∇π = 0 (uniform heating), n̂ ·∇τ = 0 (uniformly
diffusive),

π =

{
Nul

sinφ (left bottom corner),

−Nur

sinφ (right bottom corner),

τ =


Shl

sinφ (left bottom corner),

− Shr

sinφ (right bottom corner),

where Nu l and Nur, Sh l and Shr are given in Sections 3 and 4.
(iii) At the left wall: u = v = 0 (no slip conditions), θ = 1 − y (linearly heated),

S = 1− y (linearly diffusive), n̂ · ∇π = sinφ, n̂ · ∇τ = sinφ.
(iv) At the right wall: u = v = 0 (no slip conditions), θ = 0 (cold), S = 0

(nondiffusive), n̂ · ∇π = 0, n̂ · ∇τ = 0, where n̂ denotes the unit normal vector to
the wall.

3 Heat transfer

Nusselt number (Nu) is the ratio of heat transferred due to convection and the heat
transferred due to conduction, and so it tells us about how much the heat transfer is
enhanced due to fluid motion. It is a nondimensional heat transfer coefficient, which is
mathematically defined as Nu = −∂θ/∂n, where n denotes normal direction to a plane.
The local Nusselt number at the top, bottom, left and right walls of the cavity are, respec-
tively, defined by

Nut = −
∂θ

∂y

∣∣∣∣
y=A

, Nub =
∂θ

∂y

∣∣∣∣
y=0

,

Nu l =
∂θ

∂x

∣∣∣∣
l

sinφ+
∂θ

∂y

∣∣∣∣
l

cosφ, Nur = −
∂θ

∂x

∣∣∣∣
r

sinφ+
∂θ

∂y

∣∣∣∣
r

cosφ
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and the average Nusselt number at bottom, left, right walls and average Nusselt number
are given by

Nub =

1∫
0

Nub dx, Nu l =
sinφ

A

A/ sinφ∫
0

Nu l dS1,

Nur =
sinφ

A

A/ sinφ∫
0

Nur dS2 and Nu =
Nub +Nu l +Nur

3
,

respectively, where dS1 and dS2 are the small elemental lengths along the left and right
walls, respectively. Here, since top wall is considered to be adiabatic, so Nut = 0.

4 Mass transfer

Sherwood Number (Sh) is the ratio of the convective mass transfer and the diffusive
mass transport, and so it tells us about how much mass transfer is enhanced due to fluid
motion. It is a nondimensional mass transfer coefficient, which is mathematically defined
as Sh = −∂S/∂n, where n and S denote normal direction to a plane and nondimensional
concentration, respectively. The local Sherwood number at the top, bottom, left and right
walls of the cavity are, respectively, given by

Sht = −
∂S

∂y

∣∣∣∣
y=A

, Shb =
∂S

∂y

∣∣∣∣
y=0

,

Sh l = sinφ
∂S

∂x

∣∣∣∣
l

+ cosφ
∂S

∂y

∣∣∣∣
l

, Shr = − sinφ
∂S

∂x

∣∣∣∣
r

+ cosφ
∂S

∂y

∣∣∣∣
r

,

and the average Sherwood number at bottom, left, right walls and average Sherwood
numbers at the corresponding walls of the cavity are given by

Shb =

1∫
0

Shb dx, Sh l =
sinφ

A

A/ sinφ∫
0

Sh l dS1,

Shr =
sinφ

A

A/ sinφ∫
0

Shr dS2 and Sh =
Shb + Sh l + Shr

3
,

respectively, where dS1 and dS2 are the small elemental lengths along the left and right
walls, respectively. Here, since top wall is considered to be of zero diffusive gradient, so
Sht = 0.

5 Entropy generation

Entropy, generated by fluid friction, heat transfer and mass transfer are discussed by
Mourad et al. [21], and the effect of magnetic field on entropy generation has been
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discussed by Hussain [4]. The dimensionless forms of local entropy generations due to
fluid friction (Sψ), thermal gradients (Sθ), diffusion (Sτ ) and magnetic field (SM ) are,
respectively, given by

Sψ = λ1

[
2

((
∂u

∂x

)2
+

(
∂v

∂y

)2)
+

(
∂u

∂y
+
∂v

∂x

)2]
, (10)

Sθ =

(
∂θ

∂x

)2
+

(
∂θ

∂y

)2
, (11)

Sτ = λ2

[(
∂S

∂x

)2
+

(
∂S

∂y

)2]
+ λ3

[
∂θ

∂x

∂S

∂x
+
∂θ

∂y

∂S

∂y

]
, (12)

SM = λ1Ha
2u2, (13)

where λ1, λ2 and λ3 are called irreversibility distribution ratios. In the present study, the
values of λ1, λ2 and λ3 are taken as 10−4, 0.5 and 0.01, respectively.

6 Coordinate transformation and numerical procedure

Application of boundary conditions at various boundaries of an enclosure with complex
geometry is a difficult tusk. In order to reduce the complexity of such situation, we use
transformations to get a simple computational region. In the present study, the physical
domain (trapezoidal domain in x, y-plane) has been transformed into the computational
domain (square in ξ, η-plane) by using the following transformations (see Fig. 1):

ξ =
x+ y cotφ

1 + 2y cotφ
, y = Aη, (14)

where A is the aspect ratio, ξ and η are horizontal and vertical coordinates in a unit
square. Now it becomes very easier to obtain the finite-difference representation of the
governing equations in the computational domain to solve the equations. Using the trans-
formation (14), Eqs. (5)–(9) are transformed as:

PrF 2ψξξξξ + 2PrEFψξξξη + T5ψξξηη + 2
PrE

A2
ψξηηη +

Pr

A4
ψηηηη

+ T1ψξξξ + T2ψξξη + T3ψξηη −
v

A3
ψηηη + T4ψξξ + T6ψξη + T7ψξ

− RaPrGθξ − RaPrGNSξ −Ha2Pr

[
AE

2
uξ +

1

A
uη

]
= 0, (15)

Fθξξ + Eθξη +
1

A2
θηη −BKθξ −

v

A
θη = 0, (16)

FSξξ + ESξη +
1

A2
Sηη −BKcSξ −

v

A
SηLe = 0, (17)

Fπξξ + Eπξη +
1

A2
πηη +Hπξ

=

(
EA

2
u− vG

)
θξ +

u

A
θη +

EA

2
θuξ +

θ

A
uη −Gθvξ, (18)
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Figure 1. Schematic diagram of physical and computational domain for A = 0.5 and φ = 45 ◦.

Fτξξ + Eτξη +
1

A2
τηη +Hτξ

=

(
EA

2
u− vG

)
Sξ +

u

A
Sη +

EA

2
Suξ +

S

A
uη −GSvξ, (19)

and the expressions of entropy generation due to fluid friction (10), heat transfer (11),
mass transfer (12) and magnetic effect (13) can be expressed, respectively, in ξ, η-coordi-
nate system as

Sψ = λ1

[(
2G2 +

A2E2

4

)
u2ξ +

1

A2
u2η

(
A2E2

4
+G2

)
v2ξ +

2

A2
v2η

+ Euξuη + 2Evξvη

]
+ λ1

[
AEGuξvξ +

2G

A
uηvξ

]
,

Sθ =

(
G2 +

A2E2

4

)
θ2ξ +

1

A2
θ2η + Eθξθη,

Sτ = λ2

[(
G2 +

A2E2

4

)
S2
ξ +

1

A2
S2
η + ESξSη

]
+ λ3

[(
G2 +

A2E2

4

)
θξSξ +

E

2

(
θξSη + θηSξ

)
+

1

A2
θηSη

]
and

SM = λ1Ha
2u2,

where expressions for E, F , G, H , T1, T2, T3, T4, T5, T6, T7, BK and BKC are given in
Appendix. The total entropy generation is given by

ST = Sψ + Sθ + Sτ + SM .

Since Eqs. (15)–(19) are highly nonlinear, no analytical method is available to solve
them. So, Eqs. (15)–(19) are solved numerically using finite-difference approximation
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method. Using second-order approximations of different derivatives of stream function,
temperature, concentration, heat function and mass function (see [20]), the discretizations
of Eqs. (15)–(19) can be written in matrix form as

M1ψ = f1(Pr ,Ra,Ha, N,A, u, v, θ, ψξ, ψη, S), (20)
M2θ = 0, M3S = 0, (21)
M4π = f2(u, v, θ, A), M5τ = f3(u, v, S,A), (22)

where M1, M2, M3, M4 and M5 are the coefficient matrices of order mn, ψ, θ, S, π, τ ,
f1, f2 and f3 are mn-component vectors for a grid size m× n. Equations (20)–(22) are
solved by outer–inner iteration technique, which was discussed by Gupta and Kalita [12].
In a typical outer cycle, we solve Eqs. (20)–(22) using biconjugate gradient stabilized
method (BiCGStab) [11], which constitutes inner iterations. Once Eqs. (20)–(22) are
solved, we solve the tridiagonal linear systems arising from fourth-order finite-difference
approximations of (ψξ)ij , (ψη)ij , (θξ)ij , (θη)ij , (Sξ)ij , (Sη)ij , (πη)ij , (πξ)ij , (τξ)ij and
(τη)ij to get the values of (ψξ)ij , (ψη)ij , (θξ)ij , (θη)ij , (Sξ)ij , (Sη)ij , (πη)ij , (πξ)ij ,
(τξ)ij and (τη)ij as discussed by Mahapatra et al. [20]. This constitutes one outer cycle.
We utilize a relaxation parameter λ inside both the inner as well as outer cycles for ψ,
θ, S, π and τ . Then ui,j and vi,j are obtained from the relation of stream function with
velocity components. The process continues till the maximum values of ψerror, θerror,
Serror, πerror and τerror between two iterations are less than 0.5 × 10−6. At last, the
entropy generations (Sψ), (Sθ), (Sτ ) and (SM ) are obtained from the discretized forms of
Eqs. (10)–(13).

7 Results and discussion

The detailed discussion of stream functions, isotherms, isoconcentrations, heat lines, mass
lines and entropy generation minimization for mixed convection flow within a lid-driven
trapezoidal enclosure are illustrated in the present study. Till now entropy generation due
to fluid friction, heat transfer, mass transfer and magnetic field in a lid-driven trapezoidal
enclosure with various aspect ratios have not been discussed in any earlier researches. In
order to check the accuracy of present result, a comparison has been made with the bench
mark numerical solutions given by Basak et al. [3] and Davis [11]. The comparison has
been made by the values of |ψ|max and Nu (Table 1) within a square cavity with hot
left wall, cold right wall, adiabatic top and bottom walls with Pr = 0.71 and Ra =
103, 104, 105. The computation has been done using grid size 81 × 81 and gives an
excellent agreement with the results of Basak et al. [3] and Davis [11]. Also two graphical
comparisons of stream function (ψ) and isotherm (θ) contours with Basak et al. [3] (Fig. 2)
and the entropy generation contours due to fluid friction (Sψ) and heat transfer (Sθ) with
Hussain [15] and Ilis et al. [17] (Fig. 3) have been carried out. The excellent agreement
can be seen. To check the convergence of the solution grid independence tests of |ψ|max,
|π|max and |τ |max with different grid sizes have been performed (Table 2) in which almost
same results have been found for different grid sizes.
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Figure 2. Stream function (ψ) and isotherm (θ) contours within a square cavity with hot left side wall, cold
right sidewall, adiabatic top and bottom walls for Ra = 105 and Pr = 0.7.

Figure 3. Entropy generation due to fluid friction (Sψ) and heat transfer (Sθ) contours within a square cavity
with hot left side wall, cold right side wall, adiabatic top and bottom walls for Ra = 103 and Pr = 0.7.

Table 1. Comparison of the present results with the results of Basak et al. [3]
and Davis [11] for Pr = 0.71, φ = 0, Ha = 0.

Ra |ψ|max Nu |ψ|max Nu |ψ|max Nu

Davis [11] Basak et al. [3] Present
103 – 1.118 1.1746 1.1179 1.1727 1.1183
104 – 2.243 5.0737 2.2482 5.0745 2.2446
105 9.612 4.519 9.6158 4.5640 9.6217 4.5337

Stream lines, isotherms, isoconcentrations, heat lines, mass lines and entropy gen-
eration due to the effects of fluid flow, heat transfer, mass transfer and magnetic field
are illustrated in Figs. 4–8 for different values of the parameters Pr , Ra , Ha , φ, N , Le
and A in a trapezoidal enclosure with linearly heated and diffusive left wall, uniformly
heated and diffusive lower wall, cold and of zero diffusion gradient right wall, adiabatic
top wall having zero diffusion gradient. Due to different boundary conditions, fluid flow
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Table 2. Grid independence test for |ψ|max, |π|max and
|τ |max for A = 0.5, Pr = 0.71, Ra = 103, Ha = 20,
Le = 2N = 1 and φ = 45 ◦.

Grid |ψ|max |π|max |τ |max

21× 21 0.12987 0.25192 0.25179
41× 41 0.13387 0.25386 0.25374
81× 81 0.13329 0.25341 0.25372

represents asymmetric circulations with respect to a vertical line closed to the left wall in
all the figures (Figs. 4–8). It is also observed that the stream line contours towards left
hot and diffusive wall occurs with positive values, i.e., anticlockwise circulations present
near the left wall, whereas stream lines with negative stream function values representing
clockwise circulations occur near the right cold and nondiffusive walls. Since the upper
wall of the cavity is moving with uniform velocity from left to right (lid driven upper
wall), primary circulation cells of ψ-contours occupy a larger right portion of the cavity
with respect to circulation in the left side of the cavity.

Figure 4 represents ψ, θ, S, π, τ , Sψ , Sθ, Sτ , SM and ST contours for Ra = 103,
Ha = 20, N = 1, Pr = 0.7, Le = 2, φ = 45 ◦ with A = 0.5 − 1.5, i.e., the effect of
aspect ratio are depicted in this figure with |ψ|max = 0.1333 (A = 0.5); 0.3986 (A = 1);
0.6548 (A = 1.5), |π|max = 0.2564 (A = 0.5); 0.4799 (A = 1); 0.6892 (A = 1.5),
|τ |max = 0.2577 (A = 0.5); 0.4773 (A = 1); 0.6837 (A = 1.5), |Sψ|max = 1.2421
(A = 0.5); 2.4262 (A = 1); 3.1629 (A = 1.5), |Sθ|max = 111111 (A = 0.5); 27777
(A = 1); 12345 (A = 1.5), |Sτ |max = 56666 (A = 0.5); 14166 (A = 1); 6296 (A = 1.5),
|SM |max = 0.6286 (A = 0.5); 1.0324 (A = 1); 3.9051 (A = 1.5) and |ST |max = 5.0023
(A = 0.5); 4.8293 (A = 1); 5.6873 (A = 1.5). As aspect ratio increases, it is observed
that entropy generation increases due to fluid friction and due to the effect of magnetic
field, but decreases due to heat transfer and mass transfer. The effect of entropy generation
due to heat and mass transfer are much higher than that due to fluid friction and magnetic
field. Therefore, to increase the efficiency of any system, the aspect ratio of the enclosure
should be higher as much as possible, which minimizes the total entropy generation. The
contours of θ and S are smooth and converges to the right bottom corner, the junction of
hot-massive and cold-nonmassive walls. So, the significant entropy generation due to heat
and mass transfer is observed in the right bottom corner with higher values. The contours
of Sψ are dense along the top wall because of high velocity gradient due to adiabatic top
wall, whereas the contours of SM are dense in the right portion of the cavity with multiple
circulation eddies for A = 0.5, 1.0, and for A = 1.5, they are distributed through out
the cavity with small values of SM at left bottom portion of the cavity. Contours of ST
are smoothly distributed for A 6 1 and become complex for high aspect ratio forming
a strong zone of entropy generation at right bottom corner.

Figure 5 represents ψ, θ, S, π, τ , Sψ , Sθ, Sτ , SM and ST contours for Ra = 103,
Ha = 20, N = 1, Pr = 0.7, Le = 1 and A = 0.5 for φ = 45 ◦, 60 ◦ and 90 ◦. It is
observed that ψ contours make two kind of circulations with maximum values 0.1328,
0.1334 and 0.1233 for φ = 45 ◦, 60 ◦ and 90 ◦, respectively, and the maximum values
occur near the center of the circulation cells. The contours of isotherms and isoconcen-
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(a)

(b)

(c)

Figure 4. Stream lines (ψ), isotherms (θ), isoconcentrations (S), heat lines (π), mass lines (τ ), entropy
generations due to fluid friction (Sψ), heat transfer (Sθ), mass transfer (Sτ ) magnetic field (SM ) and total
entropy generation (ST ) for Ra = 103, Ha = 20, N = 1, Pr = 0.7, Le = 2 and φ = 45 ◦ for (a) A = 0.5,
(b) A = 1.0 and (c) A = 1.5.

trations are smoothly distributed from left hot, massive wall to right bottom corner with
θ > 0.9 for φ = 45 ◦ and 60 ◦, but when φ = 90 ◦ the same distribution is observed
with θ > 0.8. Thus more smooth and almost horizontal contours are observed when the
inclination angle of the side walls of the cavity becomes φ = 90 ◦. Heat line and mass line
contours are distributed from bottom to left hot massive walls with positive values, i.e.,
in anticlockwise direction and to right cold, non massive walls with negative values, i.e.,
in clockwise direction with |π|max = |τ |max = 0.2564 (φ = 45 ◦); 0.2859 (φ = 60 ◦);
0.3435 (φ = 90 ◦). Sψ contours are found to be compressed along the lower portion of
the right wall and right portion of the left wall with |Sψ|max = 1.2438 (φ = 45 ◦); 1.1520
(φ = 60 ◦); 0.9204 (φ = 90 ◦). A huge effect of φ on SM contours are observed with
|SM |max = 0.6241 (φ = 45 ◦); 0.3233 (φ = 60 ◦); 6.2528 (φ = 90 ◦). The contours are
compressed with eddies near the right side of the top and bottom walls when φ = 90 ◦

whereas eddies are compressed near the right sidewall together with contours of small
values on the other parts for φ = 45 ◦ and 60 ◦. Moreover total entropy generation ST
increases as φ increases with the values ST = 4.9984 (for φ = 45 ◦), ST = 5.6027 (for
φ = 60 ◦) and ST = 7.1412 (for φ = 90 ◦).
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(a)

(b)

(c)

Figure 5. Stream lines (ψ), isotherms (θ), isoconcentrations (S), heat lines (π), mass lines (τ ), entropy
generations due to fluid friction (Sψ), heat transfer (Sθ), mass transfer (Sτ ) magnetic field (SM ) and total
entropy generation (ST ) for Ra = 103, Ha = 20, N = 1, Pr = 0.7, Le = 1 and A = 0.5 for (a) φ = 45 ◦,
(b) φ = 60 ◦ and (c) φ = 90 ◦.

When momentum diffusivity is much greater than thermal diffusivity, i.e., for large
values of Pr , contours for ψ, θ, S, π, τ , Sψ , Sθ, Sτ , SM and ST when Ha = 20,
N = 1, Le = 2, A = 0.5, φ = 45 ◦ with different values of Ra (103, 104, 105) are
shown in Figs. 6(a)–6(c). The values ψmin = −0.1332 (Ra = 103); −1.2297 (Ra =
104); −5.1695 (Ra = 105) indicate that when Pr is large, clockwise circulations rapidly
increase towards the center of circulations with the increment of Ra . The contours of θ
and S in Fig. 6 are almost similar to the previous observation in Fig. 5 for Ra = 103 and
104, but when Ra = 105, the contours become asymmetric due to high thermal and mass
diffusivity. Heat line and mass line contours also change for large values of Ra (104, 105)
and make two sided heat and mass circulation cells with |π|max = 0.2564 (Ra = 103);
0.7761 (Ra = 104); 3.9372 (Ra = 104), and |τ |max = 0.2577 (Ra = 103); 0.8516
(Ra = 104); 3.7714 (Ra = 104) due to the effect of high convection. As Pr is the ratio of
momentum diffusivity to thermal diffusivity, so large Pr implies momentum diffusivity
is large compared to thermal diffusivity.

Nusselt number determines the quantity of heat exchanged between the fluid and the
boundary, i.e., the ratio of convective to conductive heat transfer across the boundary.
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(a)

(b)

(c)

Figure 6. Stream lines (ψ), isotherms (θ), isoconcentrations (S), heat lines (π), mass lines (τ ), entropy
generations due to fluid friction (Sψ), heat transfer (Sθ), mass transfer (Sτ ) magnetic field (SM ) and total
entropy generation (ST ) for φ = 45 ◦, Ha = 20, N = 1, Pr = 1000, Le = 2 and A = 0.5 for
(a) Ra = 103, (b) Ra = 104 and (c) Ra = 105.

Figure 7 represents the variations of average local Nusselt number at the bottom wall
(Nub), average local Nusselt number at left wall (Nu l), average local Sherwood number
at the bottom wall (Nub) and average local Sherwood number at the left wall (Nu l) with
Rayleigh number (Ra) for different values of φ at Pr = 1000, Le = 2, N = 1. As
Nusselt number, a heat transfer coefficient represents the quality of heat transfer rather
than the quantity at the boundary, it is observed that at the uniformly heated bottom wall
of the cavity the qualitative heat transfer Nub is strictly increasing with respect to Ra
and also increases as inclination angle φ increases. But along the linearly heated left
wall, Nu l is decreasing slowly for φ = 45 ◦ and 60 ◦ and decreasing in a quantitatively
higher rate for φ = 90 ◦. It is also observed that Nu l decreases with the increment of φ.
The same observations as in the case of Nub follow for Shb but it is observed that Sh l
remains almost uniform for the increment of Ra when Ra is large with approximate
values Sh l = 0.2 (for φ = 45 ◦), Sh l = 0.32 (for φ = 60 ◦) and Sh l = 0.6 (for φ = 90 ◦

and Ra > 20000). Therefore, it is clearly depicted in Fig. 7 that heat and mass transfer
in the bottom wall of the cavity are much greater than that along left wall due to uniform
heat and mass transfer at the bottom wall and linear heat and mass transfer at left wall.
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Figure 7. Variation of average local Nusselt number at the bottom wall (Nub), average local Nusselt number at
left wall (Nul), average local Sherwood number at the bottom wall (Nub) and average local Sherwood number
at the left wall (Nul) with Rayleigh number (Ra) for different values of φ at Pr = 1000,Le = 2, N = 1.

(a) (b)

Figure 8. Variation of total entropy generation (ST ) with Ra and Ha for different values of φ and A,
respectively, at Pr = 1000, Le = 2 and N = 1.

Total entropy generation throughout the cavity has huge importance for the efficiency
of any system. In Fig. 8, the variation of total entropy generation is shown with respect
to the change of Rayleigh number and Hartmann number for various values of inclination
angle and aspect ratio of the cavity, respectively. From Fig. 8(a) it is observed that for
a fixed value of φ, ST is increasing very quickly with the increment of Ra and when the
value of φ increases, ST decreases.
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In Fig. 8(b), the variation of ST with Ha for various values of A are shown. It is
clear from the figure that the total entropy generation is decreasing with the increment
of Ha . It is also observed that as A increases, the total entropy generation decreases.
Therefore, when the intensity of magnetic field is very high, cavities of high aspect ratios
are preferable to minimize the total entropy generation.

8 Conclusions

In the present study, the analysis of stream lines, heat lines, mass lines and entropy
generation due to fluid friction, heat transfer, mass transfer and magnetic field within
a trapezoidal enclosure with various inclination angles and various aspect ratios with lid-
driven upper wall has been carried out. From the present study the following conclusions
can be drawn:

• When the aspect ratio is low, higher values of φ leads to an intensification of
total entropy generation. Therefore, in case of air cooling system (specially for
the cooling of electronic components) or any system with low Pr the enclosure of
small φ together with small aspect ratio (A) can be used to reduce the loss of energy
and to get maximum efficiency of the system.

• In the case of large Pr (e.g., ogive or engine oil with Pr = 1000), it is noticed that
the absolute values of stream function, heat function, mass function, entropy due
to fluid friction and magnetic field are highly increasing, whereas entropy genera-
tion due to thermal gradient and mass gradient are uniform with the increment of
Rayleigh number and ultimately the total entropy generation is increasing.

• The effect of magnetic field is observed as follows. As the value of Ha is increasing
total entropy generation is decreasing and the increased value of aspect ratio leads
to decrease of an intensification of total entropy generation. Therefore, the cavity
with high aspect ratio should be used when the intensity of the magnetic field is
high.

• As Ra increases both heat transfer coefficient in terms of average Nusselt number
at bottom wall (Nub) and mass transfer coefficient in terms of average Sherwood
number at the bottom wall (Shb) increase for increased values of φ, which leads to
high heat and mass transfer at the bottom wall but in the left wall Nu l and Sh l are
almost uniform.
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Appendix

E =
2(1− 2ξ) cotφ

A(1 + 2Aη cotφ)
, F =

1 + (1− 2ξ)2 cot2 φ

(1 + 2Aηcotφ)2
, G =

1

(1 + 2Aη cotφ)
,
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H = − 4(1− 2ξ)cot2φ

(1 + 2Aη cotφ)2
, AK = PrH − uG− vAE

2
,

T1 = 3PrH − 4PrAEFG cotφ+AKF,

T2 = 2PrFH + 2PrEH − 8

A
PrFG cotφ+AKE −

vF

A
,

T3 =
3

A2
PrH − 4

A
PrEG cotφ+

AK
A2
− vF

A
,

T4 = 48PrFG2 cot2 φ+ 8PrEG2 cot2 φ+ 8A2PrE2G2 cot2 φ

+ 2AKH −
v

A
H,

T5 =
2

A2
PrF + PrE2,

T6 = 8PrA2E2G cot2 φ+ 8PrEG2 cot2 φ+ 24PrEG cot2 φ

+AKH − 2
v

A
H,

T7 = −32PrEAG3 cot3 φ+ 24PrHG2 cot2 φ+ 8AKG
2 cot2 φ

− 8AEGv cot2 φ,

BK = uG+
AE

2
−H, BKc = LeuG+

AEv

2
Le −H.
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