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Abstract: Numerical electromagnetic models such as FDTD are widely used for the design and 
analysis of structures, including antennas. Numerical dispersion is one of the main sources of error 
that degrade the accuracy of the results-for each structure of interest, the users of the model must 
attempt to generate a mesh that will avoid introducing high levels of dispersion. This is, however, 
especially difficult for non-orthogonal meshes since little information is available on the dispersion 
properties of the non-orthogonal FDTD algorithm on complex meshes. For the first time, the 
dispersion in realistic non-orthogonal FDTD models of microstrip structures is quantified directly 
through numerical simulations. A test structure is considered, discretised using a number of non- 
orthogonal mesh configurations, including single and multiple skew angles. A numerical analysis of 
reflections generated at the transition between two mesh regions with different skew angles is also 
presented. These results give a practical guide to mesh generation for users of the algorithm. 

1 Introduction 

Finite-difference time-domain (FDTD) methods, originally 
proposed by Yee [ 11, have proved efficient numerical 
algorithms for the design and analysis of broadband 
antenna structures. However, the main limitation of the 
classical FDTD method is its restriction to orthogonal 
grids-this restriction makes it very difficult to model 
curved surfaces and edges accurately (such as might be 
found in a conformal array, for example). 

A number of FDTD-based methods have been proposed 
that are suitable for curved structures. These include the 
contour path FDTD (CPFDTD) [2], non-orthogonal 
FDTD [3], and discrete surface integral (DSI) [4j methods. 

This contribution focuses on the non-orthogonal FDTD 
method. This method is based upon a discretisation of 
Maxwell's curl equations in local curvilinear co-ordinates 
on a structured mesh. When this mesh is non-orthogonal, 
however, additional errors (notably dispersion and spurious 
reflection) are introduced into the results-consideration of 
these errors for realistically complex non-orthogonal meshes 
has received little attention in the literature. 

The aim of this contribution is to quantify these errors 
for realistic meshes in order to guide users of the algorithm 
in their choice of mesh resolution and geometry. In this 
paper, therefore, for the first time the dispersion in the Non- 
Orthogonal FDTD method is determined directly through 
simulation of a microstrip line (the results are compared 
with theoretical predictions for plane wave propagation, in 
the simple cases where these exist [5-7j). A numerical 
analysis of spurious numerical reflections generated at the 
transition between two mesh regions with different skew 
angles is also presented. 
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2 Closed-form numerical dispersion relation 

In a numerical solution of Maxwell's equations, the number 
of mesh cells per wavelength generally affects the propaga- 
tion velocity of waves in the structure of interest. This 
phenomenon is known as numerical dispersion and may be 
characterised by deriving a numerical dispersion relation 
(NDR) for the algorithm. The NDR for Yee's orthogonal 
FDTD algorithm was derived analytically by TaAove [8], 
and yields the minimum grid resolutions that will give 
reasonably accurate results (commonly ten cells per 
wavelength is considered sufficient in free space). 

A closed-form NDR for the non-orthogonal FDTD 
algorithm is, however, considerably more difficult to derive, 
since the algorithm includes additional complexities such as 
interpolation/averaging [9j. The NDR for the non-ortho- 
gonal FDTD algorithm is therefore only available for 
plane-wave propagation in a uniformly skewed mesh with a 
single skew angle 6 [5-71. Considering a uniformly-skewed 
mesh as shown in Fig. 1, this NDR is: 
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where w is the temporal frequency (in rad s-'), 4 is the wave 
propagation angle measured from the x-axis, Ax and dz are 
the mesh dimensions (see Fig. l), and k is the spatial wave 
number. 

For a given value of w and 4, the resulting wave number 
for the numerical solution can be found by numerically 
solving this implicit relationship for k. The non-physical 
dependance of k on 6, 6, A x  and Az is the numerical 
dispersion. For practical problems, however, the non- 
orthogonal meshes used are much more complex and 
cannot be characterised by a single, uniform skew 
angle-for these meshes a closed-form NDR is not 
available and the numerical dispersion must instead be 
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Table 1: Test cases 
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Fig. 1 Skewedmesh geometry 

determined directly through numerical experiment, as 
described in Section 3. 

3 Non-orthogonal FDTD analysis 

Fig. 2 shows an air-spaced (non-dispersive) microstrip line 
used to analyse the numerical dispersion characteristics. The 
problem space was limited by employing absorbing 
boundaries and an electric wall to represent the ground 
plane. A Gaussian pulse of 300ps width was used to excite 
the problem and the electric fields were observed at four 
different probe locations. The microstrip line was made 
sufficiently long to avoid any influences from the absorbing 
boundary conditions. The problem space was discretised 
into 140 x 25 x 20 unit cells with cell dimension 
Ax = 8.5 mm in the longitudinal direction. 

observation / y \  points 
exicitation 

Fig. 2 Microstrip line and description of skewed cells 

Once the FDTD temporal response has been obtained at 
four observation points located along the axis of propaga- 
tion, the wave number k was calculated using DFTs of the 
response [lo]. An average value of k was then calculated 
using all possible pairs of observation points, in order to 
improve accuracy. T h s  procedure was repeated for three 
basic test cases (one, two and three angles of skew) and for 
each given test case the angles of skew were altered 
(Table 1). 

Test case 1 consisted of a mesh with a single, uniform 
skew angle, in order that an initial comparison with the 
available closed-form NDR (1) could be accomplished. 
Fig. 3 shows the normalised wave number for case 1 against 
the mesh cell sizes (normalised with respect to the 
wavelength). The analytical estimations for this simple case, 
calculated using (1) (with 0" propagation angle) are also 
presented in this figure. 
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Case 1 (skewed fixed: 90' 
with respect to 
1 axis) 

Case 2 (skewed varied: 
with respect to 0=70", 60". 
2 axes) 50" 

Case 3 (skewed varied: 
with respect to 0=70", 60". 
3 axes) 50" 
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Dispersion curves for varying 0, with Q1 = Q3 = 90" case I Fig. 3 

Good agreement is seen between the analytical and the 
FDTD results for grid resolutions around ten cells per 
wavelength, although there is a persistent discrepancy for 
small skew angles at grid resolutions better than ten cells/ 
wavelength (ths discrepancy is discussed in Section 5). It 
can be observed that the normalised wave number on 
moderately skewed meshes is closer to unity than it is for 
orthogonal meshes (for 0" propagation), and then rapidly 
decreases with the skew angle. 

The observed dispersive behaviour of the non-orthogonal 
mesh places restrictions on the usable angles that would 
yield reasonably accurate results. Talung a standard, 
Cartesian FDTD as a guide (Q2=900 in case l), a grid 
resolution of better than ten cells/wavelength is usually 
recommended for accurate results-this guideline (as 
shown in Fig. 3)  corresponds to approximately 2% 
dispersion error. If the same level of accuracy is required 
from the non-orthogonal method, Fig. 3 implies that the 
skew angle (0,) should be in the range 55" to 90" if a grid 
resolution of ten cells/wavelength is retained. 

As described above, the non-orthogonal FDTD algo- 
rithm includes an interpolation/averaging procedure that 
transforms the available contravariant field components to 
covariant components in the correct position. It is 
interesting to note the effect of omitting ths  procedure 
-the resulting dispersion for Q2 = 55" is included in Fig. 3 
and is particularly severe. This result shows the importance 
of the interpolation scheme in controlling dispersion in non- 
orthogonal meshes. 
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Figs. 4 and 5 show the dispersion on meshes with 
multiple skew angles (cases 2 and 3), whch is shown here 
for the first time using the non-orthogonal FDTD 
simulations. Dispersion becomes noticeably more pro- 
nounced as the grid becomes less orthogonal in all 
directions-as seen in Figs. 4 and 5,  the normalised wave 
number remains less than 0.9 for angles smaller than 60" for 
even very fine meshes. 
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Fig. 4 Dispersion curves for varying 0 ( = 02 = 0,) with O1 = 90": 
case 2 
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It is interesting to note that the dispersive behaviour is 
worse for 6' = 50" for the mesh with two skew angles (case 2, 
Fig. 4) than for the mesh with all three skew angles (case 3, 
Fig. 5); this behaviour may be due to the asymmetrical 
geometry of the cells. Apart from this behaviour, similar 
dispersion is seen for angles between 90" and 60". 

It can be concluded that mesh skew angles smaller than 
70" result in significantly higher dispersion, making it 
difficult to employ them in non-orthogonal meshes with 
two and three skew angles. Considering propagation along 
one axis in a mesh with two or three skew angles, 6' should 
be in the region between 70" and 90" for grid resolutions of 
ten cells/wavelength to give dispersion similar to the 
orthogonal FDTD method. 

In practice, non-orthogonal FDTD meshes are likely to 
contain cells with a range of angles, rather than being 
uniformly skewed. It would be expected, however, that the 
dispersion data provided for the uniformly skewed case is a 
good guide to the behaviour of a mesh containing a variety 
of cell angles. This may be confirmed by considering a mesh 
gradually skewed from 90" to a worst-case angle of 45" half 
way along the microstrip line as shown in Fig. 6. In this case 
the dispersion is naturally a function of position on the line. 
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Fig. 7 shows dispersion curves calculated using observation 
points 2 and 3 and also the average dispersion that is 
observed along the microstrip line. 
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Fig. 6 Microstrip line with non-uniformly skewed mesh 
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Dispersion curves for propagation in non-uniformly skewed 

These results indicate that the local dispersive behaviour 
is dominated by the worst-case skew angle in each region 
and is similar to the dispersion from a uniformly skewed 
mesh (also included in Fig. 7). The average dispersion for 
the line is, however, as expected, less severe than the worst- 
case. 

In a mesh containing a range of cell geometries, therefore, 
the studies of uniformly-skewed meshes presented herein are 
a good guide to local dispersion in each part of the mesh. 
The overall dispersion properties of such mesh will be 
bounded by (less severe than) the dispersion properties of 
the most distorted portion of the mesh. 

4 Reflections 

Since signals travel at different numerical velocities in 
different skew regions, reflections can be expected at the 
interface between these regions. These unwanted reflections 
are another potential source of error in non-orthogonal 
FDTD computations. Wave reflections associated with 
non-orthogonal meshes have been theoretically analysed by 
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other authors [Ill, but their results ignored the interpola- 
tion/averaging step in the algorithm. In this Section, 
reflections from interfaces between different skew regions 
are analysed with a full non-orthogonal FDTD simulation, 
incorporating the interpolation step, which, as discussed in 
Section 3, is an important element in the algorithm. 

These reflections were again estimated using a microstrip 
line with a skewed mesh that includes a sudden change in 
angle (90' to an angle 0). This sudden change avoids 
multiple reflections that can arise in a mesh with gradually 
changing angle. As shown in Fig. 8, this change in the angle 
requires different cell sizes at the interface and in the skewed 
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Fig. 8 Microstrip line for rejection estimation 

region. Numerical investigations were carried out with both 
horizontally and vertically skewed meshes. 

The source of reflection in this particular mesh is due to 
both the skew angles and to the different cell sizes inside the 
microstrip region. Reflections due to the change in cell sizes 
can be estimated using an orthogonal mesh with the same 
cell sizes. The reflection coefficients were calculated using 
Fourier transformation of the incident and reflected pulses 
at the observation location, and are shown in Fig. 9 
(horizontal skew) and Fig. 10 (vertical skew) against the 
larger cell size (1 3.24 mm normalised by the wavelength). 
Calculations were performed for skew angles of 9 = 60" and 
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Rejections from skew regions with horizontally skewed grid 
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Fig. 10 Rejections from skew regions with vertically skewed grid 

45", and the results were compared with an orthogonal 
mesh with the same cell sizes. 

Fig. 9 shows the reflections from the horizontally skewed 
interface are less than -35dB for grid resolutions smaller 
than ten cells/wavelength for both orthogonal and non- 
orthogonal FDTD algorithms. Furthermore, it can be 
observed from Fig. 9 that the reflections from different skew 
regions increase with skew angles, in line with Fig. 3. The 
differences between the orthogonal mesh and the skew mesh 
have a maximum of 2dB for the 60" mesh and 6dB for the 
worst case 45" mesh (from the previous Section, only 0> 55" 
gives reasonably accurate results for this type of mesh). It 
should also be noted that these maximum differences occur 
at very small cell sizes, which in any case give a reflection 
less than -40dB. At grid resolutions around ten cells/ 
wavelength the differences are minimal. 

The results for the vertically-skewed mesh in Fig. 10 show 
higher reflections from the skewed regions (e.g. -25 dB for 
the 60" mesh with ten cells/wavelength), and indicate that 
skewing the mesh across a microstrip line in this fashon 
should be avoided. 

5 Conclusions 

This contribution has presented a detailed consideration of 
the dispersion in a non-orthogonal FDTD analysis of a 
microstrip line. Rather than employing a theoretical NDR, 
as in previous contributions (whch limits the analysis to 
very simple meshes), dispersion was measured directly from 
the algorithm. 

Dispersion in a mesh with a single skew angle compared 
well with the available closed-form NDR. Further analyses 
were carried out with multiple skew angles, and it has been 
observed that in order to keep the errors in the numerical 
phase velocity under a reasonable limit with a grid 
resolution of ten cells/wavelength, the mesh should be 
designed with cell angles 0 in the range 55'<0190" for 
meshes skewed in a single plane, and 70"<0<90" for 
meshes skewed in several planes. 

Analyses with a non-uniformly skewed mesh confirm 
that the local dispersion is mainly governed by the worst 
skew angle in that region. Hence, the ranges above may be 
employed to guide the generation of each part of a more 
complex mesh. 

Analyses without the interpolation step in the non- 
orthogonal algorithm showed a significant increase in 
numerical dispersion. This demonstrates that while the 
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interpolation step is responsible for a large amount of the 
computational overheads in the non-orthogonal FDTD 
algorithm, it plays an important part in controlling 
numerical dispersion. 

It is interesting to note that the closed-form NDR (which 
assumes plane wave propagation) does not give an entirely 
accurate estimate of the dispersion encountered in the non- 
orthogonal model of the microstrip line-this is evident in 
the differences between the two sets of curves in Fig. 3.  It is 
believed that this small difference is because at metal edges 
and surfaces (such as in the microstrip example presented 
herein), the interpolation step in the non-orthogonal 
algorithm introduces a number of small additional errors. 
This phenomenon results in slightly increased dispersion 
compared to the plane wave case and is being investigated 
by the authors at the time of writing. 

Furthermore, reflections from the interface between two 
skew regions have been estimated. Reflections from such 
interfaces were compared with results from an orthogonal 
mesh in order to estimate the effects of different cell sizes. It 
has been observed that the reflections from a horizontally 
skewed non-orthogonal mesh are slightly higher than for an 
orthogonal mesh with the same cell sizes; however, the 
increase did not exceed 2dB for the transition from a 90” 
mesh to a 60” skewed mesh. With a vertically skewed mesh 
there is a significant increase in reflection, even for an angle 
of 60”. 
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