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Abstract: Numerical electromagnetic models, such as the finite difference time domain (FDTD)
method, have many applications. The authors focus on the non-orthogonal FDTD method, which
offers an improved geometric flexibility compared to other standard techniques. Results from
numerical electromagnetic analysis methods, such as the FDTD method, are often degraded by an
error known as numerical dispersion. For metallic structures this dispersion error is often higher
than expected from theoretical considerations. The source of this additional error is due to the
reciprocal field interpolation scheme used in the non-orthogonal FDTD algorithm. The error is
illustrated by means of a microstrip waveguide and a microstrip antenna. Techniques for reducing
this error are evaluated; careful construction of the mesh at the metallic boundary being the most
reliable solution.

1 Introduction

The finite difference time domain (FDTD) method has been
widely used in the solution of electromagnetic problems.
This method was originally put forward by Yee [1] and
implemented in cartesian coordinates. However, if the
structure being modelled does not align to the orthogonal
cartesian grid, staircasing errors are introduced. To resolve
this problem, a number of conformal mesh-based FDTD
methods have been developed, such as contour path FDTD
(CPFDTD) [2], non-orthogonal FDTD [3, 4] and the
discrete surface integral (DSI) [5] method.

This particular contribution focuses on the non-ortho-
gonal FDTD method. This method is based on a
discretisation of Maxwell’s curl equations in local curvi-
linear coordinates on a structured mesh employing
covariant and contravariant field components. When the
mesh is non-orthogonal, errors (notably dispersion and
spurious reflection) arise which have been described in [6].
Importantly, however, at metallic boundaries the reciprocal
interpolation scheme needed for stability introduces addi-
tional errors.

These additional errors have received little attention in
the literature. [7] and [8] discuss the effect in terms of the
error introduced in the resonant frequencies of simple
closed cavities, as opposed to the microstrip structures
considered herein, which shows some additional findings
related to this problem. Analysis of this error based on a
limited number of resonant frequencies will not show the
true nature of these errors, since it is frequency dependent:
as shown in this contribution. However, resonance in closed
cavities involves wave propagation in many different
directions and unless the mesh is carefully constructed, the
error will be a combination of all these different effects. In

[7], a non-orthogonal FDTD algorithm, different to the one
analysed here was considered that has some late time
stability problems. In [8], two approaches were suggested to
reduce these errors, in the first approach a locally
asymmetric scheme was proposed and in the second a
more physical approach where the actual field behaviour
near metal boundaries was employed to compensate the
errors. The first approach was considered and found to be
less than ideal in practice and an alternative technique
(which was also considered in [7]) is considered. The second
approach mentioned in [8] is outside the scope of this
contribution.

2 Modelling metal boundaries with non-orthogo-
nal coordinates

Non-orthogonal FDTD is formulated on a structured grid,
described by a local non-orthogonal coordinate system,
which is characterised by covariant unit vectors U1, U2 and
U3 (tangential to the unit cell edges) as shown by Fig. 1, and
contravariant unit vectors U1, U2 and U3 (lying normal to
the cell faces).
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Fig. 1 Location of a metallic boundary in a unit cell
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The non-orthogonal algorithm may be described by
a system of matrix-vector equations [9], an iteration
step (where new values of the contravariant fields are
calculated):

Dnþ1 �Dn

Dt
¼ ChHnþ1=2

� Bnþ1=2 � Bn�1=2

Dt
¼ C eEn

ð1Þ

and an interpolation step (yielding covariant components):

Ei ¼
X

j

U i �U j

e
ffiffiffi
g
p Dj ) E ¼M eD ð2Þ

and, similarly:

H ¼MmB ð3Þ

where E and H are vectors consisting of all the covariant
field values in the algorithm, B and D are the contravariant
components and Ce and Ch are matrices that implement the
curl operation. Me and Mm are matrices that describe both
material properties and the interpolation that yields the
necessary covariant components.

ffiffiffi
g
p

represents the volume
of the cell.

Considering the covariant component E17i+0.5,j,k in
Fig. 1, the interpolation step (2), yields:
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where, g must be calculated using the local unit vectors
associated with that perticular component. i.e. in

U1ji;j;k�U3ji;j;k
4e
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g must be calculated using U1ji;j;k and U3ji;j;k.

Whereas for E37i,j,k+0.5, the interpolation gives:
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For stability [9] the material matrices Me and Mm must be
symmetric, this is achieved as a result of the coupling
between components E17i+0.5,j,k and E37i,j,k+0.5, given by (4)
and (5), being reciprocal, since:

U3ji;j;k�U1ji;j;k
4e
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g
p ¼

U1ji;j;k�U3ji;j;k
4e

ffiffiffi
g
p

However, at a metallic boundary, such as that shown in
Fig. 1, the tangential electric field E17i+0.5,j,k must be zero,
and hence the contribution to this component from
E37i,j,k+0.5 (D

37i,j,k+0.5) in (4), must be set to zero. However,
as a necessary consequence of reciprocity, the contribution
from E17i+0.5,j,k (D17i+0.5,j,k) to E37i,j,k+0.5 in (5) must also
then be zero (if this is ignored, instability will result).

In effect therefore it appears to the model as if
U3ji;j;k�U1ji;j;k¼ 0, which is not true unless the mesh is

orthogonal at the boundary. This is an undesirable
approximation, which gives rise to additional error in
non-orthogonal FDTD; this error is examined in the
following Section.

Schumann et al. [8] suggested that these errors in
resonant cavity problems can be compensated by simply
increasing the weight of the remaining terms in the
interpolation formula, (5), while maintaing the symmetry
criteria. i.e. the:
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terms in (5) can be multiplied by an appropriate factor and
the same value is then used in the calculation of the fields
such as E27i,j+0.5,k+1 to ensure stability. This muliplying
factor can be determined by considering the number of field
vectors that are available for interpolation. In general four
electric fields are considered for interpolation for a single
field, but due to the stability criteria at the metal boundaries
the contribution from some electric fields is neglected, hence
this factor is determined depending on the available fields
(i.e. if three fields are available then 4/3, but it can also be
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further improved for better results). This suggestion is
considered in the following Section, along with an
alternative technique.

3 Numerical Results

3.1 Microstrip line
Figure 2 shows an air-spaced (non-dispersive) microstrip
line which is used here to demonstrate the metallic
boundary effect through an analysis of the numerical
dispersion in the model [6].

A Gaussian pulse with a 300ps width was used to excite
the problem and the electric fields were observed at four
different locations. The microstrip line was made sufficiently
long to avoid any problems from absorbing boundary
conditions [10]. Mur’s first-order conditions were employed
with the following provisos to avoid complexities arising
due to non-orthogonal unit cells: (i) orthogonal cells are
employed at the absorbing boundaries parallel to the
microstrip line, and (ii) the interpolation step is ignored at
the absorbing boundaries truncating the microstrip line.
The problem space was uniformly discretised into
140� 25� 20 unit cells each with a dimension of 6.5mm
in the longitudinal direction. As shown in Fig. 2, the unit
cells were distorted with either two or three angles of skew
(y1, y2 and y3), which in all cases were 601. The problem
space was limited by using absorbing boundaries and an
electric wall to represent the ground plane.

The dispersion suffered by the pulse as it propagates
through the model was calculated as described in [6], and
compared with meshes that incorporated orthogonal grids
in the vicinity of the metallic surfaces (i.e. the microstrip and
the ground plane, Figs. 3 and 4) and with the theoretical 601
dispersion curve from the numerical dispersion relation
(NDR) [11]. The incorporation of orthogonal grids at the
metallic boundaries did not introduce any instabilities, since
the stability criteria for the non-orthogonal FDTD method
is still maintained. The dispersion from the modified-
weighting technique [8] is also considered (with multiplying
factors of 4/3.5 and 4/3.0). Figures 5 and 6 show the
normalised wave numbers for meshes with two and three
equal angles of skew respectively [6].

These results clearly show that the non-orthogonal
meshes introduce errors leading to additional dispersion
over that expected from the NDR, and it can be seen that
these errors persist even when the mesh size is reduced to a
very small fraction of a wavelength. It is believed that this
additional error is due to problems at the metallic

boundaries described in the preceeding Section; evidence
for this is that if the mesh is forced to be orthogonal or if
modified weightings [8] are incorporated at the metallic
surface, then the dispersion error is dramatically reduced.
Since the same conditions (i.e. mesh size, probe location,
and strip width) were maintained with these numerical
experiments, this clearly demonstrates the effects of having
non-orthogonal meshes at metallic surfaces.

3.2 Microstrip Patch Antenna
Figure 7 shows a second test structure, this time an air-
spaced microstrip patch antenna (50� 40mm, lying 3.2mm
above the ground plane); a dielectric substrate was not
included in this structure in order to simplify the problem
and to separate the errors due to the metallic boundary. As
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before, Mur’s first-order absorbing condition was employed
to limit the problem space. For simplicity, a feed is not
included, the fields being excited and recorded directly on
the antenna. Analyses were conducted with four different
test mesh configurations for six numerical experiments:

� Mesh 1: Fine orthogonal mesh (42� 34� 8 cells across
the patch), which provides a reference result.

� Mesh 2: Orthogonal mesh (20� 16� 5 cells across the
patch).

� Mesh 3: Uniformly skewed mesh with one angle of skew
(a worst case of 451) but otherwise with the same cell sizes
and number of cells as mesh 2 (Fig. 3).

� Mesh 4: As mesh 3 but with orthogonal cells at the
metallic surfaces (Fig. 4).

� Correction 1: As mesh 3 but using a modified weighting
factor of 4/3.5.

� Correction 2: As mesh 3 but using a modified weighting
factor of 4/3.75.

Mesh 1 was used to obtain an accurate frequency
response of the patch whereas meshes 2, 3 and 4 were
chosen to give results from different mesh configurations. It
should be noted that meshes 2, 3 and 4 were carefully
chosen so that they had similar cell sizes in all directions.

Figure 8 shows a discrete Fourier transform (DFT) of the
response of the patch. As expected, of the two non-
orthogonal meshes, mesh 4 outperforms mesh 3, very
closely following the fine orthogonal mesh result, since it

eliminates the problems with modelling metallic boundaries.
Applying the modified weighting technique only produced
good results with a multiplying factor of 4/3.75.

It should be noted that mesh 4 even performs slightly
better than the orthogonal mesh with the same density
(mesh 2). This is probably because mesh 4 has a mixture of
orthogonal cells at the metal (in which the fields travel
slightly too slowly [5]) and skewed cells (in which the fields
travel too fast); these dispersion errors oppose each other,
and so may well cancel each other to some extent. On the
other hand the entirely orthogonal mesh (mesh 2) gives a
lower estimated frequency due to the speed of propagation
being everywhere too slow.

The numerical results from the two test structures in this
Section confirm that significant dispersive errors are indeed
introduced if, at a metallic boundaries on a non-orthogonal
mesh, it is assumed that the covariant tangential electric
field components and the couplings from their contra-
variant components are zero (e.g. U3ji;j;k�U1ji;j;k¼ 0). As

can be seen in Figs 5 and 6, the normalised wave numbers
remain around 0.95 and 0.97 respectively even for very fine
meshes.

Applying modified weights in the interpolation, as
suggested in [8], generally improved the results, but the
correct choice of interpolation weights seems to be rather
arbitrary, and strongly dependent on the problem being
considered (ranging from 4/3.0 to 4/3.75 in the cases
considered herein). The alternative, suggested herein, is to
employ orthogonal meshes at metal surfaces; this gives
much improved results in all cases (even though it results in
a more distorted mesh).

4 Conclusions

The modelling of metallic boundaries using a non-
orthogonal FDTD method has been presented. The
difficulties in representing metallic boundaries have been
described and the errors associated with the modelling of
metal objects have been illustrated by means of test cases
including a microstrip line and a patch antenna.

The modelling of metal surfaces using non-orthogonal
meshes by assuming that the covariant tangential electric
field components, and the coupling from their contravariant
components, is zero, results in significant errors leading to
numerical dispersion. This effect has been clarified by
comparing the results with the theoretical estimations and
with meshes where the mesh reverts to an orthogonal
configuration at the boundaries of metal structures.

The dispersive behaviour was further analysed through
the analysis of a patch antenna. As expected, a mesh which
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employs orthogonal cells in the vicinity of the metal surfaces
gave a much improved estimation of the resonant
frequency. Applying modified weights in the non-orthogo-
nal algorithm’s interpolation process also yielded improved
results but the choice of weights is problem dependent and
it seems unlikely that the correct values can be determined a
priori.

In conclusion, while non-orthogonal meshes offer a
solution to staircasing problems in FDTD, the mesh should
be as close to orthogonal as possible at any metallic surfaces
unless suitable correction techniques are employed.
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