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ABSTRACT

The general pressure field caused by a heaving sphere

floating half submerged in a fluid of finite depth is calcu-
lated. A sphere oscillating in an unbounded fluid develops a
dipole pressure field. When oscillating on the free surface
of a fluid, however, damping and buoyancy forces change the

pressure field which now comes under monopole influence as
well. The high- and low-frequency limits of singularities

in an infinite fluid define the surface conditions for a
bounded fluid. The general intermediate frequency case is
considered, whereby the pressure field is related to the

forces acting on the sphere.

ADMINISTRATIVE INFORMATION

This work was performed at the Naval Ship Research and Development

Center under the General Hydrodynamics Research Program.

INTRODUCTION

The pressure field radiated from a sphere moving in an unbounded

fluid is known to be equal to the pressure field radiated from a dipole

placed in the center of the sphere. If, however, the fluid is bounded, and

the motion occurs on or near the free surface, surface waves are generated

which cause damping and, consequently, change the pressure field. The in-

fluence of surface waves due to a body heaving near the free surface on the

radiated pressure field has often been subject to investigation in recent

years, e.g., Ursell1 and Porter 2 of the two-dimensional case of a heaving

cylinder, and Havelock, 3 Barakat,4 Franz,5 and Wang6 of the three-dimensional

case of a heaving sphere. All investigations are based on the assumption

of an ideal fluid, i.e., a fluid free of vortices; thus, a velocity po-

tential must exist.

Thorne7 (1953) treated the problem of generation of surface waves.

His paper was fundamental in the development of the potential of two- and

three-dimensional multipoles near a free surface. Havelock (1955) con-

sidered a heaving sphere half submerged in a fluid of infinite depth. Based

References are listed on page 32.
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on the representation by Thorne, he calculated the respective 
added-mass

and damping coefficients and the pressure on the sphere. Barakat (1962)

studied the same problem, using a generalization of methods used by Ursell

in his solutions for the two-dimensional case of a heaving cylinder.

Wang (1966) attacked the problem of a heaving sphere in a fluid of finite

depth. He gave values for the added-mass and damping coefficients. These

become functions of the heave frequency and the depth of the fluid. He also

calculated the pressure on the sphere and on the bottom of the fluid.

None of the mentioned papers discussed calculation of pressure any-

where in the fluid. An extension of the Wang presentation for this purpose

is feasible; the performance, however, will be very cumbersome.

It is not intended to repeat all the steps which lead to an "exact"

analytical solution, and reference is made to the authors cited, particularly

to work by Wang. Instead, preference is given to evaluation of an idea

that was evolved in 1965, making it possible to reach final results quicker.

Franz found that the theory of classical dipole pressure of a body, such

as a sphere oscillating in an infinite fluid, could be extended to include

the presence of a free surface. When the sphere is floating half sub-

merged in the fluid, not only does the damping caused by the created sur-

face waves change the pressure field but the existing buoyancy force also

requires additional consideration of a monopole pressure field. The low-

and high-frequency limits of the fluctuating system characterize the con-

ditions for the presence of a free or a rigid surface, respectively. Using

these limiting cases, the general expression for the fluctuating pressure

is then derived from the corresponding velocity potential. Franz described

this pressure field for intermediate frequencies in terms of the classical

high-frequency relation between the fluctuating forces and pressures on the

sphere and certain weighting functions which become functions of the space

coordinates and the heaving frequency. He calculated the pressure directly

under the sphere when the fluid was of infinite depth. The forces exerted

by the fluid on the sphere can be described by means of both added-mass

and damping coefficients, which in the present report are assumed to be

known. To relate the fluctuating pressure to the forces acting on the

sphere is of practical significance insofar as measurements of the pressure

in the fluid can lead to conclusions about the forces acting on the sphere

and vice versa.
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In the following, the Franz "force" method is used to investigate

the fluctuating pressure anywhere in a fluid of finite depth with the in-

tention of showing the usefulness of this method in obtaining pressure in-

formation, compared to that available from the more laborious, exact

method presented by Wang.6

BASIC ASSUMPTIONS

Assume the origin of an xyz-system on the mean free surface of the

fluid. The xy-plane coincides with the surface; the z-axis increases with

increasing depth. The bottom of the fluid is at z = h.

The sphere with radius a, half submerged in the fluid, is performing

simple harmonic oscillations with small amplitude ho and angular frequency

w along the z-axis; thus, the position of its center at any time t is

z = h cos wt [1]

The existing velocity potential 0 satisfies the Laplace equation

V2D = 0

anywhere in the fluid, and it is understood that the velocity components

with respect to the three axes are given by

X=Vx y = v=-- z v =
x x y y z 8z

In particular, the radial velocity becomes

r = v - [2]
r Dr

The boundary condition on the free surface is known to be

K@ + t = 0 [3]
Dz

2
where K =- is the wave number in deep water, and g is the acceleration

g
of gravity.

The boundary condition on the bottom z = h is
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o on z = h [4]
az

Further, the pressure is calculated from the linearized Bernoulli equation,

namely,

P = P [5]
o t

where po is the density of the fluid.

The length of the radius vector from center sphere to any point in

the fluid is r, and the angle between radius vector and positive z-axis is

8.

FORCES ACTING ON THE SPHERE

To sustain steady-state oscillation (Equation [1]) the following

forces are applied on the sphere:

1. The buoyant force of Archimedes Fb, which is a hydrostatic force

in phase with the displacement. This force is caused by hydrostatic water

pressures on the sphere and is equal to the weight of the displaced fluid.

For small amplitudes, the volume of the displaced fluid can be taken as
2
a 2z. Therefore, the buoyant force Fb becomes

2 2
Fb= a 2 Pogz = a 'r pogho cos wt

All other forces are hydrodynamic in nature. They are

2. The inertial force F.i, which is the inertial resistance of the

mass of the displaced hemisphere of fluid to its acceleration. This force

is in phase with the acceleration of the sphere and is given by

2 3 2 3 2
F. =--a p z = ra p h w cos wt
1 3 o 3 0oo

3. The added-mass force Fa, which is the force on the hemisphere

due to pressures on the sphere in phase with the acceleration and equals

F = aF.
w 1

where a is the added-mass coefficient.
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4. The damping force F,, which is due to the pressures on the hemi-

sphere in phase with the velocity of the sphere and is given in terms of

the damping force coefficient 6 by

2 3 z 2 3 2
F 6  = -- ra p w6z ra p w 6 h sin wt

6 3 o 5 o o

2
Introducing B - a and using Equation [1], the total fluctuating force

g
F(t) is then

F(t) =.a2 Po gho 1 - (1 + a)( ) cos wt - 6 sin wt [6]

with its maximum value

F = a2 To gh - (1 + a) ( + 2 2 1/2 [6a]

The added-mass and damping coefficients vary with frequency and depth and

are given for a certain range in Reference 6.

The oscillating hydrostatic buoyant force has a monopole character;

the three hydrodynamic forces are of dipole nature.

LIMITING CASES OF THE SURFACE CONDITION K@ + - o

This surface condition, valid for any frequency, includes two

limiting cases.

For very low frequencies (K - 0), the condition reduces to

- 0 on z = 0
3z

i.e., the vertical velocities vanish; consequently, the surface acts as a

solid boundary.

For very high frequencies (K -), the condition is

S=0 onz=0

i.e., the surface becomes a free surface, neglecting gravity in comparison

to the forces of inertia:

- - dL a ~ .Ar~~- i~ .riF~n~aLk m~~r 1k~M~ ihh ~--rn Bd I



To avoid the inconvenience of a bounded fluid, the method of images

is applied, yielding the following considerations:

The pressure field of a very low frequency monopole near the surface

is equal to the pressure field of two monopoles of equal strength in an

unbounded fluid. Likewise, a very high frequency monopole near a free

surface can be replaced by a dipole in an unbounded fluid. These con-

siderations hold for points of much greater distance from the singularities

than the singularities are from the surface. In this case, the sphere can

be treated as a mass point.

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN
THE LIMIT OF VERY LOW FREQUENCY

The velocity potential D in an unbounded fluid caused by a simple

source whose strength is given by the time rate of change of the volume

V = V cos wt takes the form

V w sin wt
- -- 0

4irr 4Trr

where the monopole strength vo is given by Vow/4f. According to Equation

[5], the pressure becomes

pV w 2

V oo
= p4r - 4r cos wt

o 4ffr 4wr

For a sphere oscillating in the free surface with an amplitude that is

small compared to the radius of the sphere, the oscillating volume is

V = a 2z, where z = h cos wt. In the -limit of very low frequency, the
o o

volume has to be doubled, so that

2 2
V = 2V = 2-a 2z = 2*a 2h cos wt

o o

and

2 w2V
V a 2  o

- -h cos t -
4Tl oo 2n

Therefore, for low frequency oscillations the monopole pressure changes to



" 2 o2VV a 2 o
p = P P P h w cos wt = -p

o o 4Tr 2r o o o 2r

2
r wa

With p = and S = the low frequency monopole pressure becomes
a g

p - cos wt [7]
p gho 2p

This pressure, caused by the buoyant force, can also be written as

s F
p b [7a]

p gh o 2p 2 gh oo a rpogho

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN
THE LIMIT OF VERY HIGH FREQUENCY

Since a very high-frequency monopole near a free surface can be

replaced by a dipole in an unbounded fluid, we consider the velocity po-

tential of a dipole in the unbounded fluid

3
d aU= - cos e [8]

2r 2

where U = z is the velocity of the moving sphere (Reference 8, p. 123,

Equation [2]). The pressure is

3"
d a z

o o 2o 2r2

or, written in dimensionless form

d
P = cos 6 cos wt

Now, for the hemisphere oscillating in the free surface in the limit of

very high frequency, the pressure is determined by

d F
p 2cos 0

7
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This pressure representation holds in the near field, i.e., for points

whose distances r from the sphere are less than the wavelength Xa of the

radiated sound.

F is the total hydrodynamic force acting on the full sphere in an

unbounded fluid. This force has three components, namely, twice the hydro-

dynamic forces mentioned before, i.e.,

1. Inertia

2 3 2 28 2
F. mz =- -ra p0 h w cos wt - ra po gh cos wt

1 3 o

2. Added mass

F = amz = aF.
01 1

3. Damping

* 2 3 2 2 2
F = 6mw2z = -V - a p h w 6 sin wt = -- a p gh 6 sin wt

6  3 o o 3 o o

Thus, in the limiting case of very high frequency, the total force to be

applied is

F = 2(Fi + F + F ) = 2F

and the dipole pressure, written in dimensionless form, becomes

d
P- = B  cos 0 ((1 + a) cos wt + 6 sin wt} [9]
ogh 3p2

PRESSURE AT INTERMEDIATE FREQUENCIES
AND THE WEIGHTING FUNCTIONS

At intermediate frequencies, the velocity potentials of both monopole

and dipole must now satisfy the combined surface condition, Equation [3].

Futther, considering a finite depth h of the fluid, the bottom condition

(Equation [4]) imposes a relationship between frequency w and depth h, ex-

pressed by the equation



K =- k tanh kh
g

The respective potentials are given by Thorne.
7

The theory shows that the source potential can-be written as

- _ -s sin wt + 0s cos Wt
O a v

[10]

Ds and (s are components of the velocity potential, which become functionsa v
of frequency, space coordinates, and depth of the fluid.

later in detail.

Introducing the monopole weighting functions by

S r )s
a 2 a

They are given

and S r s
v 2 v

[11]

and remembering that the source strength

V a2hw
0 0 with

o = 4r 4
V = a2 h

the source potential for intermediate frequencies becomes

a2h w
s _ 2 r {- S sin wt + S cos wt

2r a v

From this, the pressure is calculated as

a2h P 
W 2

p =p a = -S cos Wt - S sin wt
P Po 2r a v

so that finally
s

p -s = S
P gh_ 2p Sa

cos wt + S sin
V

t [12]

ilir'



Again, from the Thorne presentation, the velocity potential of a

dipole near the free surface can be written as

d
d = - d sin wt + d cos wt

a v

d d
It will be shown later that the dipole potential functions d and d are

a v
related to the monopole potential functions Ds and Ds and also to the

a v
monopole weighting functions by

d = KS 2 KS
a a r aKS
a a r a

d s s 2d = -(k tanh kh) s = -K(P - KS
v v v r v

If we introduce dipole weighting functions

Kr Kr
D - S D - S
a cos 6 a v cos O v

and write the dipole strength from Equation [8] as

a-wh
1 20

2

the dipole potential becones

a wh cos 0
d o [D sin wt - D cos wt]

2 a v
r

and the dipole pressure is

d
h - 2 cos 0 [D cos wt + D sin at]

p gho p2 a v

or
d
h -P cos e [D sin wt - D cos wt]

Pogho p a v

[13]

[14]

[15]

I 3



depending on whether the exciting forces are in phase with acceleration,

such as F. and Fa, or in phase with velocity, such as F S a, Sv , and

whether Da, D are the time independent components of the weighting

functions S and D of the source and dipole potential functions, respectively.

When applied to the expressions for the low-frequency monopole (Equation

[6]) and the high-frequency dipole (Equation [8]) the equation for the

general pressure field anywhere in the fluid is obtained. With the help of

Equations [10] through [14], the equation becomes

p = S cos a (1 + a) D + B cos 6 6 D cos Wt
ogh p a 3p2 a 3p2 v)

[16]

+ S - cos 2 (1 + a) D cos 6 D sin wt
2p v3 2 v- 2 a3p 3p

or

P = -p cos wt - p sin wt
Pogho a v

where pa and pv are the pressure components in phase with acceleration and

velocity.

For the pressure amplitude, we find

1/2
p 

2  21

Pogh

Introducing

1/2 1/2
S = (S + S2) D = (D + D2)

a v a v

the formula for the pressure amplitude can be written in either form

p gh S -- (1 + a) - 12 + - 6 2 1/2

or

11
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2 1/2
Cos 2 1 2

2Pogho  
2 D 

1 +

Both formulas are convenient for computation; however, they no longer show

the influence of the monopole and the dipole separately.

After the formula for the pressure is built up, the weighting

functions are derived from the potential functions of concern.

SOURCE POTENTIAL (s

When the source potential is written as

- = -4s sin wt + Ds cos wt
Po a v

the components Ds and (s as given by Reference 7 are as followsa v

(D e -vh[K sinh vz - v cosh vz] - (K + v) cosh[v(h - z)
a rV K cosh vh - v sinh vh J o R) d

and

s cosh(koh) cosh[ko(h - z)]
v o 2k h + sinh(2k h) o(koR)

o o

Using the relation

1 { (R)-vz
= PV e J (vR) dvr o

the expression for s is changed to
a

I



s 21 P r e hK sinh vz - v cosh vz - K cosh [v(h - z)]
a r+ PV K cosh vh - v sinh v) d

0 v cosh[v(h - z)]
-2PV f K cosh vh - v sinh (vR) dv

O

[17]

The principal value integral can be evaluated and is represented in

two different forms that are useful for numerical calculations in the geo-

metrical near and far field, respectively, namely
6

s(near
a(near)

= 2 r + Ke- K [Ho(KR) + Yo(KR)] + A
Ir I2 I I

Cn r P2
n ) -+ 2 P (cos 6) -n=O h2n+l (2n)! 2n

n=0 h

Kr2n+l P)

(2n + 1)! 2n+l j

cosh (koh) cosh[k (h - z)]

o 2k h + sinh (2koh)
o 0

0 4k
+ 2 C n

n=l

cos (k h) cos[kn(h

2k h - sin(2k nh)

- z)]
K (k R)

C = PVn Jo

r z 2 2 K12 u
A = (u 2 + R2 ) e du

2n+2 -u
u e du

(v - u) (v cosh u - u sinh u)
v = Kh

ko, kn are the real (ko) and imaginary (kn) roots of the equation

K = k tanh kh

13

a(far)
= -4-k Y (k R)00o

where
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so that

K = k tanh k h
o o

and

K = -k tan k h (n = 1, 2, ... , C)n n

Using the weighting functions (Equation [11]) the source potential

is represented as

S 2- f-S sin wt + S cos wt}

0

and

2rrk r cosh(k h) cosh [k (h -

2k h + sinh(2k h)

z)]
- Jo (koR)

00o

= 1 - Kre [1(KR) + Yo(KR)] + Al
2 oo

C
n

(2n)!

2n+1+l ]P2n (COs 0) Kr (cos 6)
c 2n 2n + 1 2n+1 1

cosh(k h) cosh[k (h -

2k h + sinh(2k h)o o

)] Y (k R)
00o

4rk cos(k nh) cos[kn(h - z)]
+ n n n K (k R)
n=i 2k h - sin(2k h) 0 n
n=I n n

For points directly below the sphere (R = 0) the formulas for S as shown

previously are not applicable; instead

S1 - re-Kr Ei(KC () 2n+l 2nKr 1
= 1 - Kre - Kr Ei(Kr) + : n 1

a16=0 n=0 (2n)! h 2n + 1

S
v

S
a (near)

[18]

n=

n=U

[19]

a(far)
= -2k r

o
[20]



where Ei(Kr) is the exponential integral and

Sv Ie=O
27Tk r cosh (k h) cosh[k (h - r)]

2k h + sinh (2k h)

DIPOLE POTENTIAL Pd

The components of the dipole potential

-) - d sin wt + Dd cos t
Pl a , v

are given by Reference 7 as

d k2 cosh [k (h - z)] sinh (k h)
d = -4T o
v 2k h + sinh (2koh) Jo (k R)

00o

d cos 0
= +

a 2
r

Se-vh[K sinh vz - v cosh vz] + (K + v) cosh [v(h-z)] (R)d
vf K cosh vh - v sinh vh oo

Since (Reference 8, p. 431, Equation 17)

cos = PV veZ J (vR)dv
2 f 0

r o

we find

d v cosh [v(h - z)]
d = 2K PV K cosh vh - v sinh vh Jo(vR)d

Comparing with Equation [17] and applying Equations [11] and [13] shows

that



d s 2K 2 cos e
S= -K = - S = D

a a r a 2 ar

Further, it can be readily seen that

Dd = -(k tanh k h)D
s

V O O V

d = _KS 2K 2 cos D
v= -Kr S D
v v r v 2 vr

Thus, the dipole potential Od takes the final form

d 2 cos e D sin wt + D cos t]

S r2  a v
1 r

which is exactly the same representation as given in Reference 5. Of

course, the weighting functions are different. They agree with the repre-

sentations in Reference 5 for the special case h 0 , = 0.

LIMITING CASE OF INFINITE DEPTH h -

For infinite depth, the wave number changes to

k = K

as can be seen from Equation [10]. For the weighting functions, we obtain

from Equation [18]

-Kz
S = wKre J (KR)

V 0

from Equation [19]

= 1 - KreSa(near)
-Kz ( [H(KR) + Y (KR) + A



and from Equation [20]

a(far)

-Kz= -7Kre Y (KR)O

For the pressure directly below the sphere (R = 0) the weighting functions

for h - - become

S = 7KreKr
v

S = 1 - Kre- KrEi(Kr)
a

D = -KrS
v v

D = -KrS
a a

as given in Reference 5.

For large argument x, the exponential integral is approximately

x x 2 + xl >> 1

Therefore, the limiting cases for large values of K are

S - 0 D - 0
V v

-[1 2 3!
Sa - + + (Kr) 3
a Kr (Kr) (Kr)

2 3!
D - +1 + -
a Kr (Kr)2(Kr)

For K being very small, we obtain in the limit K -+ 0

S 0
v

S - 1
a

D - 0
v

D 0
a

In the case of finite depth for very low frequencies K - 0 for any angle 8,

the limiting cases become

S undecided
a

Sv 2h
v 2h

D -0
a

D 0
v
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and for vey large frequencies K - m

Sa and Da approach zero asymptotically

S and D - 0
v v

RESULTS AND DISCUSSION

Before presenting any numerical results, some general remarks about

the computations should be made.

The basic assumption that the fluid is of finite depth makes the

numerical treatment of the problem much more difficult, compared to the

calculations in the case of infinite depth. Further, the difficulties are

increased, when computations are made for a point anywhere in the fluid and

not necessarily on the bottom of the fluid or directly below the sphere.

However, it pays to perform a series of such calculations insofar as some

relations in the pressure distributions then become apparent, which are

not quite obvious but can be helpful in pressure predictions. They are

presented subsequently.

We do not intend to make quantitative statements about the accuracy

of the obtained numerical values. They may be affected by truncation errors,

by the particular choice of programming, or whatever might contribute when

performing high-speed computations. These are well known facts, and often

computations of this kind should merely be taken as approximations.

We are content with the fact that results obtained here are in

satisfactory agreement with those presented in Reference 6, where the more

exact method is applied.

In the following, we refer to the dimensionless pressure amplitude

p simply as pressure, hoping that no misunderstanding will occur.
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CONCLUSION

The computed results obtained by applying the force method are in

satisfactory agreement with those given from the exact method, as can be

seen from the tables. Not too much emphasis should be given to the

numerical data; it is more important that the general trend of the pressure

curves obtained from both methods be similar and perhaps close to that in

reality. Subsequent experimental work could confirm what at present can

only be judged as supposition. This also applies to the pecularities

mentioned in the figures.

The calculations performed with the help of the force method are

quite simple, compared to those using the exact method. The theory on

which the force method is based does not require the laborious calculations

of an unlimited set of expansion coefficients as is required in using the

exact method.
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TABLES

Tables 1 and 2 show pressure values obtained from the force method,

compared with those obtained from the exact method, for different angles

and frequencies. The values of the latter are taken from Reference 6,

where values are given for the pressures on the bottom for h = z = 4 and

h = z = 2, respectively.

Table 3 gives the pressure directly below the sphere (0=0) at z = 8

for fluids of different depths. It is recognized that h = 10 cannot be

considered as a case of infinite depth. The last column of the table

gives the calculated ratio of the pressure on the bottom to the pressure

for the case of infinite depth, which should be 2:1.

Table 4 treats the same case as that previously mentioned for z = 4.

Again, the pressure ratio is about 2:1.



TABLE 1

Pressure Values Obtained by
Methods for h=z=4

Force and Exact

egrees R/h k=0.5 k=1 k=2 k=3 k=4 k=6Degrees

0 0 0.047 0.020 0.073 0.130 0.187 0.303

0 0.052 0.032 0.061 0.119 0.176 0.290

5 0.087 0.047 0.019 0.071 0.128 0.185 0.300

5 0.085 0.051 0.031 0.067 0.117 0.175 0.285

10 0.176 0.046 0.019 0.067 0.122 0.177 0.289

10 0.175 0.051 0.030 0.057 0.113 0.168 0.275

20 0.364 0.043 0.016 0.053 0.100 0.148 0.244

0.365 0.047 0.024 0.048 0.090 0.145 0.238

30 0.577 0.038 0.012 0.035 0.072 0.109 0.183

0.575 0.041 0.015 0.036 0.074 0.113 0.184

40 0.84 0.032 0.007 0.021 0.044 0.069 0.117

0.84 0.034 0.008 0.022 0.045 0.069 0.117

1.19 0.025 0.003 0.012 0.028 0.031 0.061

1.19 0.027 0.005 0.010 0.023 0.035 0.061

60 1.732 0.019 0.003 0.003 0.006 0.011 0.020

63.5 2.00 0.020 0.006 0.002 0.005 0.008 0.014

70 2.7147 0.015 0.002 0.001 0.001 0.002 0.003

71.5 3.00 0.016 0.004 0.000 0.001 0.001 0.003

80 5.671 0.010 0.002 0.000 0.000 0.000 0.000

none none

First row for each degree refers to force method.

Second row for each degree refers to exact method
(Reference 6).

TABLE 2

Pressure Values Obtained by Force and Exact
Methods for h=z=2

e R/h k=0.5 k=1 k=2 k=3 k=4 k=6
Degrees

0 0.113 0.080 0.446 0.767 0.985 1.41

0 0.147 0.183 0.328 0.558 0.802 1.276

5 0.087 0.112 0.072 0.400 0.725 0.956 1.385

- 5 0.085 0.147 0.181 0.322 0.550 0.790 1.258

10 0.176 0.111 0.071 0.386 0.689 0.903 1.319

-10 0.175 0.144 0.174 0.302 0.525 0.754 1.205

20 0.364 0.106 0.066 0.334 0.557 0.711 1.082

0.365 0.132 0.149 Q.241 0.433 0.629 1.014

30 0.577 0.097 0.059 0.252 0.347 0.466 0.783

0.575 0.116 0.114 0.162 0.313 0.464 0.772

40 0.84 0.086 0.049 0.146 0.142 0.277 0.481

0.84 0.099 0.082 0.081 0.189 0.291 0.489

50 1.19 0.061 0.038 0.060 0.081 0.168 0.300

1.19 0.084 0.062 0.034 0.092 0.143 0.247

60 1.732 0.060 0.029 0.060 0.035 0.041 0.070

63.5 2.00 0.065 0.049 0.013 0.014 0.025 0.046

70 2.747 0.048 0.023 0.048 0.026 0.012 0.010

71.5 3.00 0.054 0.041 0.008 0.002 0.003 0.006

80 5.671 0.034 0.016 0.034 0.018 0.006 0.000

none none

First row for each degree refers to force method.

Second row for each degree refers to exact method.



TABLE 3

Pressure Directly below Sphere at
z=8 for Different Frequencies and

Depths

Ka h=8 h=10 h - - Ratio

0.02 0.0028 0.0022 0.0014 2.0:1

0.04 0.0049 0.0039 0.0030 1.6:1

0.06 0.0068 0.0055 0.0041 1.7:1

0.08 0.0085 0.0069 0.0057 1.5:1

0.10 0.0101 0.0081 0.0067 1.5:1

0.2 0.0158 0.0126 0.0098 1.6:1

0.3 0.0176 0.0132 0.0100 1.8:1

0.4 0.0164 0.0117 0.0090 1.8:1

0.5 0.0139 0.0095 0.0074 1.9:1

0.6 0.0111 0.0076 0.0059 1.8:1

0.7 0.0085 0.0062 0.0045 1.9:1

0.8 0.0065 0.0043 0.0033 2.0:1

0.9 0.0046 0.0030 0.0026 1.8:1

1.0 0.0036 0.0025 0.0019 1.9:1

1.5 0.0075 0.0053 0.0039 1.9:1

2.0 0.0143 0.0103 0.0076 2.U:1

3.0 0.0286 0.0207 0.0151 1.9:1

4.0 0.0432 0.0312 0.0227 1.9:1

6.0 0.0714 0.0522 0.0392 1.8:1

TABLE 4

Pressure Distribution below Sphere at
z=4 for Different Frequencies and

Depths

Ka h=4 h=8 h - - Ratio

0.02 0.0061 0.0035 0.0028 2.2:1

0.04 0.0108 0.0063 '0.0058 1.9:1

0.06 0.0148 0.0089 0.0087 1.7:1

0.08 0.0185 0.0114 0.0115 1.6:1

0.10 0.0219 0.014 0.0140 1.6:1

0.20 0.0354 0.0232 0.0236 1.5:1

0.3 0.0437 0.0286 0.0282 1.5:1

0.4 0.0475 0.0300 0.0290 1.6:1

0.5 0.0472 0.0285 0.0278 1.7:1

0.6 0.0436 0.0254 0.0247 1.8:1

0.7 0.0377 0.0215 0.0209 1.8:1

0.8 0.0307 0.0173 0.0168 1.8:1

0.9 0.0242 0.0135 0.0130 1.9:1

1.0 0.0197 0.0110 0.0106 1.9:1

1.5 0.0414 0.0232 0.0223 1.9:1

2.0 0.0725 0.0411 0.0392 1.8:1

3.0 0.1298 0.0743 0.0706 1.8:1

6.0 0.303 0.174 0.165 1.8:1



FIGURES

In the figures, the points where the pressure is observed is fixed,

and the sphere is moved on the free surface to different horizontal dis-

tances from the point of observation. Imagine that the sphere on the sur-

face is approaching an observation point at a certain level (z) in the

fluid. The angle 6 becomes the azimuth angle between the upward vertical

through point P of observation and the radius vector from point P to the

position R of the sphere.

Figure 1 shows the pressure on the bottom of the fluid as a function

of frequency for different positions of the sphere. Observe that

1. With respect to frequency, the pressure is fluctuating with a

maximum value for Ka<0.5 and with a minimum value for about Ka i1. For

higher frequencies, the pressure increases almost linearly with increasing

frequency. This behaviour is observed for any position of the sphere and

leads to the remarkable conclusion that the sphere radiates the same

pressure amplitude to a point of observation at three different frequencies

for a given heaving amplitude.

2. With respect to distance, the pressure decreases with increasing

distance of the sphere. The maximum occurs directly under the sphere (0=0).

Figure 2 shows the pressure at a fixed point for different locations

of the sphere, oscillating at the frequency Ka = 0.1. The depth of the

fluid is varied. Observe that the pressure decreases with increasing depth

of the fluid.

Figure 3 shows the pressure for the same frequency, plotted against

the azimuth angle 0. This presentation shows clearly the decrease of the

pressure to zero, when the angle approaches 90 degrees, i.e., when the

sphere is very far distant from the point of observation (R -+ o).

Figure 4 is a particular case taken from Figure 2. The pressure

directly under the sphere (0=0) is calculated as a function of frequency

(1) on the bottom (h = z = 8), and (2) at the same level (z = 8), when the

fluid is of infinite depth (h + -). Observe that the pressure on the bottom

is almost doubled, compared to the pressure at the same point in the case

of infinite depth. This can be explained as the reflection effect from the

bottom. The plot does not show exactly the ratio of 2 to 1. The doubled

value is plotted as a broken line.
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Figure 5 gives the pressure on the bottom (z = h = 4) as a function

of the horizontal distance of the sphere for various values of the fre-

quency parameters Ka. Intersections of curves indicate equal pressure for

different frequencies at the same position of the sphere. Observe also

the pressure fluctuations in the lower frequency range as described in

Figure 1.

Figure 6 is a plot of the monopole weighting function S and its

components S and S , versus frequency, for h = z = 8, e=0. Limiting
a v

values for Sv can be obtained from Equation [18] as

Z

S - for K = 0
v 2h

and

S = 0 for K -
v

Limiting values for S could not be obtained by analysis.a
Figure 7 is the plot of the corresponding dipole weighting function

and its components. The limiting values for K = 0 are zero.

Figure 8 shows for h = z = 8, 6 = 0 the pressure p and the correspond-

ing components in phase with acceleration (pa) and velocity (p v). For

higher frequencies, the contribution of pv decreases, whereas the influence

of Pa increases. For lower frequencies, pv dominates.

Figure 9 gives the pressure for h = 10 and z = 4 for different

azimuth angles 0. The log-log representation permits plotting a wider

range of frequencies.

i



Figure 1 - Pressure on the Bottom as a Function of Frequency

The sphere is at different horizontal distances (R) from
tan 0 = R/h
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Figure 2 - Press'ure as a Function of Distance R for Different
Depths and Equal Frequency
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Figure 3 - Pressure as a Function of Angle 0

Figure 4 - Comparison of Pressure on the Bottom with Pressure
for Infinite Depth
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Figure 6 - Monopole Weighting Function S and its Components Sa and S

on the Bottom Directly below the Sphere as a Function
of Frequency
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Figure 7 - Dipole Weighting Function D and its Components Da
and D on the Bottom Directly below the Sphere as a

Function of Frequency
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Figure 8 - Pressure p and its Components pa and pv on the Bottom
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