The Naval Ship Research and Development Center is a U.S. Navy center for laboratory effort directed at achieving improved sea and air vehicles. It was formed in March 1967 by merging the David Taylor Model Basin at Carderock, Maryland and the Marine Engineering Laboratory at Annapolis, Maryland. The Mine Defense Laboratory, Panama City, Florida became part of the Center in November 1967.

Naval Ship Research and Development Center
Washington, D.C. 20007

DEPARTMENT OF THE NAVY
 NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

GENERAL PRESSURE DISTRIBUTION FOR AN OSCILLATING SPHERE FLOATING IN A FLUID OF FINITE DEPTH

by

Erwin L.W. Paul

This document has been approved for public release and sale; its distribution is unlimited.

TABLE OF CONTENTS

Page
ABSTRACT 1
ADMINISTRATIVE INFORMATION 1
INTRODUCTION 1
BASIC ASSUMPTIONS 3
FORCES ACTING ON THE SPHERE 4
LIMITING CASES OF THE SURFACE CONDITION $K \Phi+\partial \Phi / \partial z=0$ 5
PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN THE LIMIT OF VERY LOW FREQUENCY 6
PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN THE LIMIT OF VERY HIGH FREQUENCY 7
PRESSURE AT INTERMEDIATE FREQUENCIES AND THE WEIGHTING FUNCTIONS 8
SOURCE POTENTIAL Φ^{S} 12
DIPOLE POTENTIAL $\Phi^{\text {d }}$ 15
LIMITING CASE OF INFINITE DEPTH $\mathrm{h} \rightarrow \infty$ 16
RESULTS AND DISCUSSION 18
CONCLUSION 19
TABLES 20
FIGURES 23
REFERENCES 32
LIST OF FIGURES
Page
Figure 1 - Pressure on the Bottom as a Function of Frequency 25
Figure 2 - Pressure as a Function of Distance R for Different Depths and Equal Frequency 25
Figure 3 - Pressure as a Function of Angle θ 26
Figure 4 - Comparison of Pressure on the Bottom with Pressure for Infinite Depth 26
Figure 5 - Pressure on the Bottom as a Function of Distance for Various Frequencies 27
Figure 6 - Monopole Weighting Function S and its Components S_{a} and S_{v} on the Bottom Directly below the Sphere as a Function of Frequency 28
Figure 7 - Dipole Weighting Function D and its Components D_{a} and D_{v} on the Bottom Directly below the Sphere as a Function of Frequency29
Figure 8 - Pressure \tilde{p} and its Components p_{a} and p_{v} on the Bottom 30
Figure 9 - Log-Log Representation of Pressure, Plotted againstFrequency for Various Angles31

LIST OF TABLES

Page
Table 1 - Pressure Values Obtained by Force and Exact Methods for $h=z=4$ 21
Table 2 - Pressure Values Obtained by Force and Exact Methods for $h=z=2$ 21
Table 3 - Pressure Directly below Sphere at $z=8$ for Different Frequencies and Depths 22
Table 4 - Pressure Distribution below Sphere at $z=4$ for Different Frequencies and Depths 22

NOTATION

A	$=\int_{0}^{z}\left(u^{2}+R^{2}\right)^{-1 / 2} e^{K u} d u$
a	Radius of the sphere
C_{n}	$=P V \int_{0}^{\infty} \frac{u^{2 n+2} e^{-u} d u}{(K h-u)(K h \cosh u-u \sinh u)}$
D	Dipole weighting function
Ei (x)	Exponential integral
F	Force acting on the sphere
g	Acceleration of gravity
H_{0}	Struve function of order zero
h	Depth of the fluid
h_{0}	Heave amplitude
J_{0}	Bessel function of the first kind of order zero
K	Deep water wave number
K_{0}	Modified Bessel function of the second kind of order zero
$k_{0}, \mathrm{k}_{\mathrm{n}}$	Real and imaginary roots of equation $K=k$ tanh $k h$
P_{n}	Legendre function
$\mathrm{PV} \int$	Principle value integral
p	Hydrodynamic pressure
$\mathrm{p}_{\mathrm{a}}, \mathrm{p}_{\mathrm{v}}$	Pressure components
$\tilde{p}=\left(p_{a}^{2}+p_{v}^{2}\right)$	Pressure amplitude
$R=\left(x^{2}+y^{2}\right)^{1 / 2}$	Horizontal distance from z-axis
\mathbf{r}	Radial distance from origin
S	Monopole weighting function
t	Time
$\mathbf{U}=\dot{\mathrm{z}}$	Velocity of the sphere
Y_{0}	Bessel function of the second kind of order zero
xyz	Rectangular coordinate system

α	Added-mass coefficient
$\beta=\mathrm{Ka}$	Dimensionless wave number
δ	Damping coefficient
θ	Polar angle between $+z$-axis and radius vector $\overrightarrow{\mathbf{r}}$
λ	Wavelength
μ_{0}	Monopole strength
${ }^{\mu} 1$	Dipole strength
$\rho=\frac{\mathbf{r}}{\mathbf{a}}$	Dimensionless radial distance
ρ_{0}	Density of fluid
Φ	Velocity potential
$\Phi_{\mathrm{a}}^{\mathrm{d}}, \Phi_{\mathrm{v}}^{\mathrm{d}}$	Dipole potential functions
$\Phi_{a}^{S}, \Phi_{V}^{S}$	Monopole potential functions

Abstract

The general pressure field caused by a heaving sphere floating half submerged in a fluid of finite depth is calculated. A sphere oscillating in an unbounded fluid develops a dipole pressure field. When oscillating on the free surface of a fluid, however, damping and buoyancy forces change the pressure field which now comes under monopole influence as well. The high- and low-frequency limits of singularities in an infinite fluid define the surface conditions for a bounded fluid. The general intermediate frequency case is considered, whereby the pressure field is related to the forces acting on the sphere.

ADMINISTRATIVE INFORMATION

This work was performed at the Naval Ship Research and Development Center under the General Hydrodynamics Research Program.

INTRODUCTION

The pressure field radiated from a sphere moving in an unbounded fluid is known to be equal to the pressure field radiated from a dipole placed in the center of the sphere. If, however, the fluid is bounded, and the motion occurs on or near the free surface, surface waves are generated which cause damping and, consequently, change the pressure field. The influence of surface waves due to a body heaving near the free surface on the radiated pressure field has often been subject to investigation in recent years, e.g., Ursell ${ }^{1}$ and Porter ${ }^{2}$ of the two-dimensional case of a heaving cylinder, and Havelock, ${ }^{3}$ Barakat, ${ }^{4}$ Franz, ${ }^{5}$ and Wang ${ }^{6}$ of the three-dimensional case of a heaving sphere. All investigations are based on the assumption of an ideal fluid, i.e., a fluid free of vortices; thus, a velocity potential must exist.

Thorne ${ }^{7}$ (1953) treated the problem of generation of surface waves. His paper was fundamental in the development of the potential of two- and three-dimensional multipoles near a free surface. Havelock (1955) considered a heaving sphere half submerged in a fluid of infinite depth. Based

[^0]on the representation by Thorne, he calculated the respective added-mass and damping coefficients and the pressure on the sphere. Barakat (1962) studied the same problem, using a generalization of methods used by Ursell in his solutions for the two-dimensional case of a heaving cylinder. Wang (1966) attacked the problem of a heaving sphere in a fluid of finite depth. He gave values for the added-mass and damping coefficients. These become functions of the heave frequency and the depth of the fluid. He also calculated the pressure on the sphere and on the bottom of the fluid.

None of the mentioned papers discussed calculation of pressure anywhere in the fluid. An extension of the Wang presentation for this purpose is feasible; the performance, however, will be very cumbersome.

It is not intended to repeat all the steps which lead to an "exact" analytical solution, and reference is made to the authors cited, particularly to work by Wang. Instead, preference is given to evaluation of an idea that was evolved in 1965, making it possible to reach final results quicker. Franz found that the theory of classical dipole pressure of a body, such as a sphere oscillating in an infinite fluid, could be extended to include the presence of a free surface. When the sphere is floating half submerged in the fluid, not only does the damping caused by the created surface waves change the pressure field but the existing buoyancy force also requires additional consideration of a monopole pressure field. The lowand high-frequency limits of the fluctuating system characterize the conditions for the presence of a free or a rigid surface, respectively. Using these limiting cases, the general expression for the fluctuating pressure is then derived from the corresponding velocity potential. Franz described this pressure field for intermediate frequencies in terms of the classical high-frequency relation between the fluctuating forces and pressures on the sphere and certain weighting functions which become functions of the space coordinates and the heaving frequency. He calculated the pressure directly under the sphere when the fluid was of infinite depth. The forces exerted by the fluid on the sphere can be described by means of both added-mass and damping coefficients, which in the present report are assumed to be known. To relate the fluctuating pressure to the forces acting on the sphere is of practical significance insofar as measurements of the pressure in the fluid can lead to conclusions about the forces acting on the sphere and vice versa.

In the following, the Franz "force" method is used to investigate the fluctuating pressure anywhere in a fluid of finite depth with the intention of showing the usefulness of this method in obtaining pressure information, compared to that available from the more laborious, exact method presented by Wang. ${ }^{6}$

BASIC ASSUMPTIONS

Assume the origin of an $x y z$-system on the mean free surface of the fluid. The $x y-p l a n e$ coincides with the surface; the z-axis increases with increasing depth. The bottom of the fluid is at $z=h$.

The sphere with radius a, half submerged in the fluid, is performing simple harmonic oscillations with small amplitude h_{o} and angular frequency ω along the z-axis; thus, the position of its center at any time t is

$$
\begin{equation*}
z=h_{o} \cos \omega t \tag{1}
\end{equation*}
$$

The existing velocity potential Φ satisfies the Laplace equation

$$
\nabla^{2} \Phi=0
$$

anywhere in the fluid, and it is understood that the velocity components with respect to the three axes are given by

$$
\dot{x}=v_{x}=-\frac{\partial \Phi}{\partial x} \quad \dot{y}=v_{y}=-\frac{\partial \Phi}{\partial y} \quad \dot{z}=v_{z}=-\frac{\partial \Phi}{\partial z}
$$

In particular, the radial velocity becomes

$$
\begin{equation*}
\dot{\mathbf{r}}=v_{r}=-\frac{\partial \Phi}{\partial r} \tag{2}
\end{equation*}
$$

The boundary condition on the free surface is known to be

$$
\begin{equation*}
K \Phi+\frac{\partial \Phi}{\partial z}=0 \tag{3}
\end{equation*}
$$

where $K=\frac{\omega^{2}}{g}$ is the wave number in deep water, and g is the acceleration of gravity.

The boundary condition on the bottom $z=h$ is

$$
\begin{equation*}
\frac{\partial \Phi}{\partial z}=0 \quad \text { on } \quad z=h \tag{4}
\end{equation*}
$$

Further, the pressure is calculated from the linearized Bernoulli equation, namely,

$$
\begin{equation*}
p=\rho_{0} \frac{\partial \Phi}{\partial t} \tag{5}
\end{equation*}
$$

where ρ_{0} is the density of the fluid.
The length of the radius vector from center sphere to any point in the fluid is r, and the angle between radius vector and positive z-axis is θ 。

FORCES ACTING ON THE SPHERE

To sustain steady-state oscillation (Equation [1]) the following forces are applied on the sphere:

1. The buoyant force of Archimedes F_{b}, which is a hydrostatic force in phase with the displacement. This force is caused by hydrostatic water pressures on the sphere and is equal to the weight of the displaced fluid. For small amplitudes, the volume of the displaced fluid can be taken as $a^{2} \pi z$. Therefore, the buoyant force $F_{. b}$ becomes

$$
F_{b}=a^{2} \pi \rho_{o} g z=a^{2} \pi \rho_{o} g h_{o} \cos \omega t
$$

All other forces are hydrodynamic in nature. They are
2. The inertial force F_{i}, which is the inertial resistance of the mass of the displaced hemisphere of fluid to its acceleration. This force is in phase with the acceleration of the sphere and is given by

$$
F_{i}=\frac{2}{3} \pi a^{3} \rho_{o} \ddot{z}=-\frac{2}{3} \pi a^{3} \rho_{o} h_{o} \omega^{2} \cos \omega t
$$

3. The added-mass force F_{α}, which is the force on the hemisphere due to pressures on the sphere in phase with the acceleration and equals

$$
\mathrm{F}_{\alpha}=\alpha \mathrm{F}_{\mathrm{i}}
$$

where α is the added-mass coefficient.
4. The damping force F_{δ}, which is due to the pressures on the hemisphere in phase with the velocity of the sphere and is given in terms of the damping force coefficient δ by

$$
\mathrm{F}_{\delta}=\frac{2}{3} \pi \mathrm{a}^{3} \rho_{0} \omega \delta \dot{\mathrm{z}}=-\frac{2}{3} \pi \mathrm{a}^{3} \rho_{o} \omega^{2} \delta \mathrm{~h}_{\mathrm{o}} \sin \omega t
$$

Introducing $\beta=\frac{\omega^{2} a}{g}$ and using Equation [1], the total fluctuating force $F(t)$ is then

$$
\begin{equation*}
F(t)=a^{2} \pi \rho_{o} g h_{o}\left\{\left[1-(1+\alpha)\left(\frac{2 \beta}{3}\right)\right] \cos \omega t-\delta\left(\frac{2 \beta}{3}\right) \sin \omega t\right\} \tag{6}
\end{equation*}
$$

with its maximum value

$$
\begin{equation*}
\tilde{\mathrm{F}}=\mathrm{a}^{2} \pi \rho_{o} \operatorname{gh}_{o}\left\{\left[1-(1+\alpha)\left(\frac{2 \beta}{3}\right)\right]^{2}+\left[\frac{2 \beta \delta}{3}\right]^{2}\right\}^{1 / 2} \tag{6a}
\end{equation*}
$$

The added-mass and damping coefficients vary with frequency and depth and are given for a certain range in Reference 6 .

The oscillating hydrostatic buoyant force has a monopole character; the three hydrodynamic forces are of dipole nature.

LIMITING CASES OF THE SURFACE CONDITION $K \Phi+\frac{\partial \Phi}{\partial z}=0$
This surface condition, valid for any frequency, includes two limiting cases.

For very low frequencies $(K \rightarrow 0)$, the condition reduces to

$$
\frac{\partial \Phi}{\partial z}=0 \quad \text { on } \quad z=0
$$

i.e., the vertical velocities vanish; consequently, the surface acts as a solid boundary.

For very high frequencies $(K \rightarrow \infty)$, the condition is

$$
\Phi=0 \quad \text { on } z=0
$$

i.e., the surface becomes a free surface, neglecting gravity in comparison to the forces of inertia:

To avoid the inconvenience of a bounded fluid, the method of images is applied, yielding the following considerations:

The pressure field of a very low frequency monopole near the surface is equal to the pressure field of two monopoles of equal strength in an unbounded fluid. Likewise, a very high frequency monopole near a free surface can be replaced by a dipole in an unbounded fluid. These considerations hold for points of much greater distance from the singularities than the singularities are from the surface. In this case, the sphere can be treated as a mass point.

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN THE LIMIT OF VERY LOW FREQUENCY

The velocity potential Φ in an unbounded fluid caused by a simple source whose strength is given by the time rate of change of the volume $V=V_{o} \cos \omega t$ takes the form

$$
\Phi=\frac{\dot{\mathrm{V}}}{4 \pi r}=-\frac{V_{0} \omega \sin \omega t}{4 \pi r}
$$

where the monopole strength μ_{0} is given by $V_{0} \omega / 4 \pi$. According to Equation [5], the pressure becomes

$$
p=\rho_{o} \frac{\ddot{V}}{4 \pi r}=-\frac{\rho_{0} V_{0} \omega^{2}}{4 \pi r} \cos \omega t
$$

For a sphere oscillating in the free surface with an amplitude that is small compared to the radius of the sphere, the oscillating volume is $v_{0}=a^{2} \pi z$, where $z=h_{o} \cos \omega t$. In the limit of very low frequency, the volume has to be doubled, so that

$$
\mathrm{V}=2 \mathrm{~V}_{\mathrm{o}}=2 \cdot \mathrm{a}^{2} \pi \mathrm{z}=2 \cdot \mathrm{a}^{2} \pi \mathrm{~h}_{\mathrm{o}} \cos \omega \mathrm{t}
$$

and

$$
\frac{\ddot{\mathrm{V}}}{4 \pi}=-\frac{\mathrm{a}^{2}}{2} h_{o} \omega^{2} \cos \omega t=-\frac{\omega^{2} V_{o}}{2 \pi}
$$

Therefore, for low frequency oscillations the monopole pressure changes to

$$
p=\rho_{0} \dot{\Phi}=\rho_{0} \frac{\ddot{V}}{4 \pi r}=-\frac{a^{2}}{2 r} \rho_{0} h_{o} \omega^{2} \cos \omega t=-\rho_{0} \frac{\omega^{2} V_{0}}{2 \pi r}
$$

With $\rho=\frac{r}{a}$ and $\beta=\frac{\omega^{2} a}{g}$ the low frequency monopole pressure becomes

$$
\begin{equation*}
\frac{p^{s}}{\rho_{0} g h_{o}}=-\frac{\beta}{2 \rho} \cos \omega t \tag{7}
\end{equation*}
$$

This pressure, caused by the buoyant force, can also be written as

$$
\begin{equation*}
\frac{p^{s}}{\rho_{0} g h_{o}}=-\frac{\beta}{2 \rho} \frac{F_{b}}{a^{2} \pi \rho_{0} g h_{o}} \tag{7a}
\end{equation*}
$$

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN THE LIMIT OF VERY HIGH FREQUENCY

Since a very high-frequency monopole near a free surface can be replaced by a dipole in an unbounded fluid, we consider the velocity potential of a dipole in the unbounded fluid

$$
\begin{equation*}
\Phi^{\mathrm{d}}=\frac{\mathrm{a}^{3} \mathrm{U}}{2 \mathrm{r}^{2}} \cos \theta \tag{8}
\end{equation*}
$$

where $U=\dot{z}$ is the velocity of the moving sphere (Reference 8, p. 123, Equation [2]). The pressure is

$$
p^{d}=\rho_{0} \dot{\Phi}=\rho_{0} \frac{a^{3 \ddot{z}}}{2 r^{2}} \cos \theta
$$

or, written in dimensionless form

$$
\frac{p^{d}}{\rho_{0} g h_{o}}=\frac{\beta}{2 \rho^{2}} \cos \theta \cos \omega t
$$

Now, for the hemisphere oscillating in the free surface in the limit of very high frequency, the pressure is determined by

$$
\mathrm{p}^{\mathrm{d}}=\frac{\mathrm{F}}{4 \pi r^{2}} \cos \theta
$$

This pressure representation holds in the near field, i.e., for points whose distances r from the sphere are less than the wavelength λ_{a} of the radiated sound.
F is the total hydrodynamic force acting on the full sphere in an unbounded fluid. This force has three components, namely, twice the hydrodynamic forces mentioned before, i.e.,

1. Inertia

$$
F_{i}=m \bar{z}=-\frac{2}{3} \pi a^{3} \rho_{o} h_{o} \omega^{2} \cos \omega t=-\frac{2 \beta}{3} \pi a^{2} \rho_{o} g h_{o} \cos \omega t
$$

2. Added mass

$$
F_{\alpha}=\alpha m \bar{z}=\alpha F_{i}
$$

3. Damping

$$
\mathrm{F}_{\delta}=\delta m \omega \dot{z}=-\frac{2}{3} \pi \mathrm{a}^{3} \rho_{o} h_{o} \omega^{2} \delta \sin \omega t=-\frac{2 \beta}{3} \pi \mathrm{a}^{2} \rho_{o} g h_{o} \delta \sin \omega t
$$

Thus, in the limiting case of very high frequency, the total force to be applied is

$$
\mathrm{F}=2\left(\mathrm{~F}_{\mathrm{i}}+\mathrm{F}_{\mathrm{a}}+\mathrm{F}_{\delta}\right)=2 \mathrm{~F}_{\mathrm{o}}
$$

and the dipole pressure, written in dimensionless form, becomes

$$
\begin{equation*}
\frac{p^{d}}{\rho_{0} g h_{o}}=-\frac{\beta}{3 \rho^{2}} \cos \theta\{(1+\alpha) \cos \omega t+\delta \sin \omega t\} \tag{9}
\end{equation*}
$$

PRESSURE AT INTERMEDIATE FREQUENCIES AND THE WEIGHTING FUNCTIONS

At intermediate frequencies, the velocity potentials of both monopole and dipole must now satisfy the combined surface condition, Equation [3]. Further, considering a finite depth h of the fluid, the bottom condition (Equation [4]) imposes a relationship between frequency ω and depth h, expressed by the equation

$$
\begin{equation*}
K=\frac{\omega^{2}}{g}=k \tanh k h \tag{10}
\end{equation*}
$$

The respective potentials are given by Thorne. ${ }^{7}$
The theory shows that the source potential can be written as

$$
\frac{\Phi^{s}}{\mu_{o}}=-\Phi_{a}^{s} \sin \omega t+\Phi_{v}^{s} \cos \omega t
$$

$\Phi_{\mathrm{a}}^{\mathbf{S}}$ and $\Phi_{\mathrm{V}}^{\mathbf{s}}$ are components of the velocity potential, which become functions of frequency, space coordinates, and depth of the fluid. They are given later in detail.

Introducing the monopole weighting functions by

$$
\begin{equation*}
\mathrm{S}_{\mathrm{a}}=\frac{\mathrm{r}}{2} \Phi_{\mathrm{a}}^{\mathrm{s}} \quad \text { and } \quad \mathrm{S}_{\mathrm{v}}=\frac{\mathrm{r}}{2} \Phi_{\mathrm{v}}^{\mathrm{s}} \tag{11}
\end{equation*}
$$

and remembering that the source strength

$$
\mu_{o}=\frac{V_{0} \omega}{4 \pi}=\frac{a^{2} h_{0} \omega}{4} \text { with } \quad V_{o}=a^{2} \pi h_{o}
$$

the source potential for intermediate frequencies becomes

$$
\Phi^{\mathrm{s}}=\frac{\mathrm{a}^{2} \mathrm{~h}_{0} \omega}{2 \mathrm{r}}\left\{-\mathrm{S}_{\mathrm{a}} \sin \omega \mathrm{t}+\mathrm{S}_{\mathrm{v}} \cos \omega \mathrm{t}\right\}
$$

From this, the pressure is calculated as

$$
p^{s}=\rho_{o} \dot{\Phi}^{s}=\frac{a^{2} h_{o} \rho_{o} \omega^{2}}{2 r}\left\{-S_{a} \cos \omega t-S_{v} \sin \omega t\right\}
$$

so that finally

$$
\begin{equation*}
\frac{p^{s}}{\rho_{0} g h_{o}}=-\frac{\beta}{2 \rho}\left\{S_{a} \cos \omega t+S_{v} \sin \omega t\right\} \tag{12}
\end{equation*}
$$

Again, from the Thorne presentation, the velocity potential of a dipole near the free surface can be written as

$$
\frac{\Phi^{\mathrm{d}}}{\mu_{1}}=-\Phi_{a}^{\mathrm{d}} \sin \omega t+\Phi_{v}^{\mathrm{d}} \cos \omega t
$$

It will be shown later that the dipole potential functions Φ_{a}^{d} and Φ_{v}^{d} are related to the monopole potential functions Φ_{a}^{S} and Φ_{v}^{S} and also to the monopole weighting functions by

$$
\Phi_{a}^{\mathrm{d}}=-K \Phi_{\mathrm{a}}^{\mathrm{s}}=-\frac{2}{\mathrm{r}} \mathrm{KS} \mathrm{a}_{\mathrm{a}} \quad \Phi_{\mathrm{v}}^{\mathrm{d}}=-(\mathrm{k} \tanh \mathrm{kh}) \Phi_{\mathrm{v}}^{\mathrm{s}}=-K \Phi_{\mathrm{v}}^{\mathrm{s}}=-\frac{2}{\mathrm{r}} \mathrm{KS} \mathrm{v}_{\mathrm{v}}
$$

If we introduce dipole weighting functions

$$
\begin{equation*}
D_{a}=-\frac{K r}{\cos \theta} S_{a} \quad D_{v}=-\frac{K r}{\cos \theta} S_{v} \tag{13}
\end{equation*}
$$

and write the dipole strength from Equation [8] as

$$
\mu_{1}=\frac{a^{3}{ }^{\omega h} h_{0}}{2}
$$

the dipole potential becomes

$$
\Phi^{d}=-\frac{a^{3} \omega h_{o} \cos \theta}{r^{2}}\left[D_{a} \sin \omega t-D_{v} \cos \omega t\right]
$$

and the dipole pressure is

$$
\begin{equation*}
\frac{\mathrm{p}^{\mathrm{d}}}{\rho_{\mathrm{o}} \mathrm{gh} \mathrm{o}_{\mathrm{o}}}=-\frac{\beta}{\rho^{2}} \cos \theta\left[\mathrm{D}_{a} \cos \omega t+\mathrm{D}_{\mathrm{v}} \sin \omega t\right] \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{p^{d}}{\rho_{o} g h_{o}}=-\frac{\beta}{\rho^{2}} \cos \theta\left[D_{a} \sin \omega t-D_{v} \cos \omega t\right] \tag{15}
\end{equation*}
$$

depending on whether the exciting forces are in phase with acceleration, such as F_{i} and F_{a}, or in phase with velocity, such as $F_{v} \cdot \Pi S_{a}, S_{v}$, and whether D_{a}, D_{v} are the time independent components of the weighting functions S and D of the source and dipole potential functions, respectively. When applied to the expressions for the low-frequency monopole (Equation [6]) and the high-frequency dipole (Equation [8]) the equation for the general pressure field anywhere in the fluid is obtained. With the help of Equations [10] through [14], the equation becomes

$$
\begin{align*}
\frac{p}{\rho_{o} g h_{o}}= & \left\{-\frac{\beta}{2 \rho} S_{a}-\frac{\beta \cos \theta}{3 \rho^{2}}(1+\alpha) D_{a}+\frac{\beta \cos \theta}{3 \rho^{2}} \delta D_{v}\right\} \cos \omega t \tag{16}\\
& +\left\{-\frac{\beta}{2 \rho} S_{v}-\frac{\beta \cos \theta}{3 \rho^{2}}(1+\alpha) D_{v}-\frac{\beta \cos \theta}{3 \rho^{2}} \delta D_{a}\right\} \sin \omega t
\end{align*}
$$

or

$$
\frac{p}{\rho_{\mathrm{o}} g h_{\mathrm{o}}}=-\mathrm{p}_{\mathrm{a}} \cos \omega t-p_{v} \sin \omega t
$$

where p_{a} and p_{v} are the pressure components in phase with acceleration and velocity.

For the pressure amplitude, we find

$$
\frac{\tilde{p}}{\rho_{o} g h_{o}}=\left(p_{a}^{2}+p_{v}^{2}\right)^{1 / 2}
$$

Introducing

$$
\mathrm{S}=\left(\mathrm{S}_{\mathrm{a}}^{2}+\mathrm{S}_{\mathrm{v}}^{2}\right)^{1 / 2} \quad \mathrm{D}=\left(\mathrm{D}_{\mathrm{a}}^{2}+\mathrm{D}_{\mathrm{v}}^{2}\right)^{1 / 2}
$$

the formula for the pressure amplitude can be written in either form

$$
\frac{\tilde{\mathrm{p}}}{\rho_{0} \mathrm{gh}_{\mathrm{o}}}=\frac{\beta}{2 \rho} \mathrm{~S}\left\{\left[\frac{2 \beta}{3}(1+\alpha)-1\right]^{2}+\left[\frac{2 \beta}{3} \delta\right]^{2}\right\}^{1 / 2}
$$

or

$$
\frac{\tilde{p}}{2 \rho \rho_{o} g h_{o}}=\frac{\beta \cos \theta}{2 \rho^{2}} D\left\{\left[\frac{2 \beta}{3}(1+\alpha)-1\right]^{2}+\left[\frac{2 \beta}{3} \delta\right]^{2}\right\}^{1 / 2}
$$

Both formulas are convenient for computation; however, they no longer show the influence of the monopole and the dipole separately.

After the formula for the pressure is built up, the weighting functions are derived from the potential functions of concern.

$$
\text { SOURCE POTENTIAL } \Phi^{s}
$$

When the source potential is written as

$$
\frac{\Phi^{s}}{\mu_{0}}=-\Phi_{a}^{s} \sin \omega t+\Phi_{v}^{s} \cos \omega t
$$

the components Φ_{a}^{s} and $\Phi_{v}^{\mathbf{S}}$ as given by Reference 7 are as follows
$\Phi_{a}^{s}=\frac{1}{r}+P V \int_{0}^{\infty} \frac{e^{-v h}[K \sinh v z-v \cosh v z]-(K+v) \cosh [v(h-z)]}{K \cosh v h-v \sinh v h} J_{0}(v R) d \nu$
and

$$
\Phi_{v}^{S}=4 \pi k_{o} \frac{\cosh \left(k_{0} h\right) \cosh \left[k_{o}(h-z)\right]}{2 k_{0} h+\sinh \left(2 k_{0} h\right)} J_{o}\left(k_{0} R\right)
$$

Using the relation

$$
\frac{1}{r}=P V \int_{0}^{\infty} e^{-\nu z} J_{0}(\nu R) d \nu
$$

the expression for Φ_{a}^{s} is changed to

$$
\begin{align*}
\Phi_{a}^{s} & =2\left\{\frac{1}{r}+P v \int_{0}^{\infty} \frac{e^{-v h}[K \sinh v z-\nu \cosh v z-K \cosh [v(h-z)]}{K \cosh v h-v \sinh v h} J_{0}(v R) d \nu\right\} \\
& =-2 P v \int_{0}^{\infty} \frac{\nu \cosh [\nu(h-z)]}{K \cosh v h-v \sinh v h} J_{0}(\nu R) d \nu \tag{17}
\end{align*}
$$

The principal value integral can be evaluated and is represented in two different forms that are useful for numerical calculations in the geometrical near and far field, respectively, namely ${ }^{6}$

$$
\begin{aligned}
\Phi_{a}^{s} & =2\left[\frac{1}{r}+K e^{-K z}\left\{\frac{\pi}{2}\left[H_{o}(K R)+Y_{o}(K R)\right]+A\right\}\right] \\
& +2 \sum_{n=0}^{\infty} \frac{C n}{h^{2 n+1}}\left[\frac{r^{2 n}}{(2 n)!} P_{2 n}(\cos \theta)-\frac{K r^{2 n+1}}{(2 n+1)!} P_{2 n+1}(\cos \theta)\right] \\
\Phi_{a_{(f a r)}^{s}}^{s}= & -4 \pi k_{o} \frac{\cosh \left(k_{o} h\right) \cosh \left[k_{o}(h-z)\right]}{2 k_{o} h+\sinh \left(2 k_{o} h\right)} Y_{o}\left(k_{o} R\right) \\
& +2 \sum_{n=1}^{\infty} \frac{4 k_{n} \cos \left(k_{n} h\right) \cos \left[k_{n}(h-z)\right]}{2 k_{n} h-\sin \left(2 k_{n} h\right)} K_{o}\left(k_{n} R\right)
\end{aligned}
$$

where

$$
\begin{gathered}
A=\int_{0}^{2}\left(u^{2}+R^{2}\right)^{-1 / 2} e^{K u} d u \\
\dot{C}_{n}=P V \int_{0}^{\infty} \frac{u^{2 n+2} e^{-u}}{(v-u)(v \cosh u-u \sinh u)} d u \quad ; \quad v=K h
\end{gathered}
$$

k_{o}, k_{n} are the real (k_{o}) and imaginary (k_{n}) roots of the equation

$$
K=k \tanh k h
$$

so that

$$
K=k_{o} \tanh k_{o} h
$$

and

$$
K=-k_{n} \tan k_{n} h(n=1,2, \ldots, \infty)
$$

Using the weighting functions (Equation [11]) the source potential is represented as

$$
\frac{\Phi^{s}}{\mu_{o}}=\frac{2}{r}\left\{-S_{a} \sin \omega t+S_{v} \cos \omega t\right\}
$$

and

$$
\begin{align*}
S_{v} & =\frac{2 \pi k_{0} r \cosh \left(k_{0} h\right) \cosh \left[k_{0}(h-z)\right]}{2 k_{0} h+\sinh \left(2 k_{o} h\right)} J_{0}\left(k_{o} R\right) \tag{18}\\
S_{a_{(n e a r)}}= & 1-K r e^{-K z}\left\{\frac{\pi}{2}\left[H_{o}(K R)+Y_{o}(K R)\right]+A\right\} \tag{19}\\
& +\sum_{n=0}^{\infty} \frac{C_{n}}{(2 n)!}\left(\frac{r}{h}\right)^{2 n+1}\left[P_{2 n}(\cos \theta)-\frac{K r}{2 n+1} P_{2 n+1}(\cos \theta)\right] \\
S_{a_{(f a r)}}= & -2 \pi k_{o} r \frac{\cosh \left(k_{0} h\right) \cosh \left[k_{o}(h-z)\right]}{2 k_{o} h+\sinh \left(2 k_{o} h\right)} Y_{o}\left(k_{o} R\right) \tag{20}\\
& +\sum_{n=1}^{\infty} \frac{4 r k_{n} \cos \left(k_{n} h\right) \cos \left[k_{n}(h-z)\right]}{2 k_{n} h-\sin \left(2 k_{n} h\right)} K_{o}\left(k_{n} R\right)
\end{align*}
$$

For points directly below the sphere $(R=0)$ the formulas for S_{a} as shown previously are not applicable; instead

$$
\left.\mathrm{S}_{\left.\mathrm{a}\right|_{\theta=0}=1-K r e^{-K r} E i(K r)+\sum_{n=0}^{\infty} \frac{C_{n}}{(2 n)!}\left(\frac{r}{h}\right)^{2 n+1}\left[1-\frac{K r}{2 n+1}\right], ~}^{2}\right]
$$

where $\mathrm{Ei}(\mathrm{Kr})$ is the exponential integral and

$$
\begin{gathered}
\left.\mathrm{S}_{\mathrm{v}}\right|_{\theta=0}=\frac{2 \pi \mathrm{k}_{\mathrm{o}} \mathrm{r} \cosh \left(\mathrm{k}_{\mathrm{o}} \mathrm{~h}\right) \cosh \left[\mathrm{k}_{\mathrm{o}}(\mathrm{~h}-\mathrm{r})\right]}{2 \mathrm{k}_{\mathrm{o}} \mathrm{~h}+\sinh \left(2 \mathrm{k}_{\mathrm{o}} \mathrm{~h}\right)} \\
\text { DIPOLE POTENTIAL } \Phi^{\mathrm{d}}
\end{gathered}
$$

The components of the dipole potential

$$
\frac{\Phi^{\mathrm{d}}}{\mu_{1}}=-\Phi_{a}^{\mathrm{d}} \sin \omega t+\Phi_{\mathrm{v}}^{\mathrm{d}} \cos \omega t
$$

are given by Reference 7 as

$$
\begin{gathered}
\Phi_{v}^{d}=-4 \pi \frac{k_{0}^{2} \cosh \left[k_{0}(h-z)\right] \sinh \left(k_{0} h\right)}{2 k_{0} h+\sinh \left(2 k_{o} h\right)} J_{0}\left(k_{0} R\right) \\
\Phi_{a}^{d}=\frac{\cos \theta}{r^{2}}+P V \int_{0}^{\infty} \frac{e^{-v h}[K \sinh v z-v \cosh v z]+(K+\nu) \cosh [\nu(h-z)]^{2}}{K \cosh v h-v \sinh v h}(\nu R) d v
\end{gathered}
$$

Since (Reference 8, p. 431, Equation 17)

$$
\frac{\cos \theta}{r^{2}}=P v \int_{0}^{\infty} v e^{-v z} J_{0}(\nu R) d v
$$

we find

$$
\Phi_{a}^{d}=2 K P v \int_{0}^{\infty} \frac{v \cosh [\nu(h-z)]}{K \cosh v h-v \sinh v h} J_{o}(\nu R) d v
$$

Comparing with Equation [17] and applying Equations [11] and [13] shows that

$$
\Phi_{\mathrm{a}}^{\mathrm{d}}=-\mathrm{K} \Phi_{\mathrm{a}}^{\mathrm{S}}=-\frac{2 \mathrm{~K}}{\mathrm{r}} \mathrm{~S}_{\mathrm{a}}=\frac{2 \cos \theta}{\mathrm{r}^{2}} \mathrm{D}_{\mathrm{a}}
$$

Further, it can be readily seen that

$$
\Phi_{\mathrm{v}}^{\mathrm{d}}=-\left(\mathrm{k}_{\mathrm{o}} \tanh \mathrm{k}_{\mathrm{o}} \mathrm{~h}\right) \Phi_{\mathrm{v}}^{\mathrm{s}}
$$

or

$$
\Phi_{v}^{\mathrm{d}}=-K \Phi_{v}^{\mathrm{S}}=-\frac{2 \mathrm{~K}}{\mathrm{r}} \mathrm{~S}_{\mathrm{v}}=\frac{2 \cos \theta}{\mathrm{r}^{2}} \mathrm{D}_{\mathrm{v}}
$$

Thus, the dipole potential Φ^{d} takes the final form

$$
\frac{\Phi^{d}}{\mu_{1}}=\frac{2 \cos \theta}{r^{2}}\left[-D_{a} \sin \omega t+D_{v} \cos \omega t\right]
$$

which is exactly the same representation as given in Reference 5. Of course, the weighting functions are different. They agree with the representations in Reference 5 for the special case $h \rightarrow \infty, \theta=0$.

LIMITING CASE OF INFINITE DEPTH $h \rightarrow \infty$

For infinite depth, the wave number changes to

$$
k=K
$$

as can be seen from Equation [10]. For the weighting functions, we obtain from Equation [18]

$$
S_{v}=\pi K r e^{-K z} J_{o}(K R)
$$

from Equation [19]

$$
S_{a_{\text {(near) }}}=1-K r e^{-K z}\left\{\frac{\pi}{2}\left[H_{0}(K R)+Y_{0}(K R)+A\right]\right\}
$$

and from Equation [20]

$$
S_{a_{(f a r)}}=-\pi K r e^{-K z} Y_{o}(K R)
$$

For the pressure directly below the sphere ($R=0$) the weighting functions for $h \rightarrow \infty$ become

$$
\begin{array}{ll}
S_{v}=\pi K r e^{-K r} & D_{v}=-K r S_{v} \\
S_{a}=1-K r e^{-K r} E i(K r) & D_{a}=-K r S_{a}
\end{array}
$$

as given in Reference 5.
For large argument x, the exponential integral is approximately

$$
E i(x)-\frac{e^{x}}{x}\left[1+\frac{1}{x}+\frac{2!}{x^{2}}+\ldots\right], \quad|x| \gg 1
$$

Therefore, the limiting cases for large values of K are

$$
\begin{array}{ll}
S_{v} \rightarrow 0 & D_{v} \rightarrow 0 \\
S_{a} \rightarrow-\left[\frac{1}{K r}+\frac{2}{(K r)^{2}}+\frac{3!}{(K r)} 3 \cdots\right] & D_{a} \rightarrow 1+\frac{2}{K r}+\frac{3!}{(K r)^{2}} \cdots
\end{array}
$$

For K being very small, we obtain in the limit $K \rightarrow 0$

$$
\begin{array}{ll}
S_{v} \rightarrow 0 & D_{v} \rightarrow 0 \\
S_{a} \rightarrow 1 & D_{a} \rightarrow 0
\end{array}
$$

In the case of finite depth for very low frequencies $K \rightarrow 0$ for any angle θ, the limiting cases become

$$
\begin{array}{ll}
S_{a} \text { undecided } & D_{a} \rightarrow 0 \\
S_{v}=-\frac{\pi}{2} \frac{r}{h} & D_{v} \rightarrow 0
\end{array}
$$

and for vely large frequencies $K \rightarrow \infty$

```
\(S_{a}\) and \(D_{a}\) approach zero asymptotically
\(S_{v}\) and \(D_{v} \rightarrow 0\)
```


RESULTS AND DISCUSSION

Before presenting any numerical results, some general remarks abóut the computations should be made.

The basic assumption that the fluid is of finite depth makes the numerical treatment of the problem much more difficult, compared to the calculations in the case of infinite depth. Further, the difficulties are increased, when computations are made for a point anywhere in the fluid and not necessarily on the bottom of the fluid or directly below the sphere. However, it pays to perform a series of such calculations insofar as some relations in the pressure distributions then become apparent, which are not quite obvious but can be helpful in pressure predictions. They are presented subsequently.

We do not intend to make quantitative statements about the accuracy of the obtained numerical values. They may be affected by truncation errors, by the particular choice of programming, or whatever might contribute when performing high-speed computations. These are well known facts, and often computations of this kind should merely be taken as approximations.

We are content with the fact that results obtained here are in satisfactory agreement with those presented in Reference 6, where the more exact method is applied.

In the following, we refer to the dimensionless pressure amplitude \tilde{p} simply as pressure, hoping that no misunderstanding will occur.

The computed results obtained by applying the force method are in satisfactory agreement with those given from the exact method, as can be seen from the tables. Not too much emphasis should be given to the numerical data; it is more important that the general trend of the pressure curves obtained from both methods be similar and perhaps close to that in reality. Subsequent experimental work could confirm what at present can only be judged as supposition. This also applies to the pecularities mentioned in the figures.

The calculations performed with the help of the force method are quite simple, compared to those using the exact method. The theory on which the force method is based does not require the laborious calculations of an unlimited set of expansion coefficients as is required in using the exact method.

Tables 1 and 2 show pressure values obtained from the force method, compared with those obtained from the exact method, for different angles and frequencies. The values of the latter are taken from Reference 6, where values are given for the pressures on the bottom for $h=z=4$ and $h=z=2$, respectively.

Table 3 gives the pressure directly below the sphere ($\theta=0$) at $z=8$ for fluids of different depths. It is recognized that $h=10$ cannot be considered as a case of infinite depth. The last column of the table gives the calculated ratio of the pressure on the bottom to the pressure for the case of infinite depth, which should be 2:1.

Table 4 treats the same case as that previously mentioned for $z=4$. Again, the pressure ratio is about 2:1.

TABLE 1
Pressure Values Obtained by Force and Exact Methods for $h=z=4$

Degrees	R/h	$\mathrm{k}=0.5$	$\mathrm{k}=1$	k=2	k=3	$\mathrm{k}=4$	k=6
0	0	0.047	0.020	0.073	0.130	0.187	0.303
	0	0.052	0.032	0.061	0.119	0.176	0.290
5	0.087	0.047	0.019	0.071	0.128	0.185	0.300
5	0.085	0.051	0.031	0.067	0.117	0.175	0.285
10	0.176	0.046	0.019	0.067	0.122	0.177	0.289
10	0.175	0.051	0.030	0.057	0.113	0.168	0.275
20	0.364	0.043	0.016	0.053	0.100	0.148	0.244
	0.365	0.047	0.024	0.048	0.090	0.145	0.238
30	0.577	0.038	0.012	0.035	0.072	0.109	0.183
	0.575	0.041	0.015	0.036	0.074	0.113	0.184
40	0.84	0.032	0.007	0.021	0.044	0.069	0.117
	0.84	0.034	0.008	0.022	0.045	0.069	0.117
50	1.19	0.025	0.003	0.012	0.028	0.031	0.061
	1.19	0.027	0.005	0.010	0.023	0.035	0.061
60	1.732	0.019	0.003	0.003	0.006	0.011	0.020
63.5	2.00	0.020	0.006	0.002	0.005	0.008	0.014
70	2.7147	0.015	0.002	0.001	0.001	0.002	0.003
71.5	3.00	0.016	0.004	0.000	0.001	0.001	0.003
80	5.671	0.010	0.002	0.000	0.000	0.000	0.000
none	none						
First row for each degree refers to force method. Second row for each degree refers to exact method (Reference 6).							

TABLE 2
Pressure Values Obtained by Force and Exact Methods for $\mathrm{h}=\mathrm{z}=2$

Degrees	R/h	$\mathrm{k}=0.5$	$\mathrm{k}=1$	$k=2$	k=3	k=4	k=6
0	0	0.113	0.080	0.446	0.767	0.985	1.41
	0	0.147	0.183	0.328	0.558	0.802	1.276
5	0.087	0.112	0.072	0.400	0.725	0.956	1.385
- 5	0.085	0.147	0.181	0.322	0.550	0.790	1.258
10	0.176	0.111	0.071	0.386	0.689	0.903	1.319
-10	0.175	0.144	0.174	0.302	0.525	0.754	1.205
20	0.364	0.106	0.066	0.334	0.557	0.711	1.082
	0.365	0.132	0.149	0.241	0.433	0.629	1.014
30	0.577	0.097	0.059	0.252	0.347	0.466	0.783
	0.575	0.116	0.114	0.162	0.313	0.464	0.772
40	0.84	0.086	0.049	0.146	0.142	0.277	0.481
	0.84	0.099	0.082	0.081	0.189	0.291	0.489
50	1.19	0.061	0.038	0.060	0.081	0.168	0.300
	1.19	0.084	0.062	0.034	0.092	0.143	0.247
60	1.732	0.060	0.029	0.060	0.035	0.041	0.070
63.5	2.00	0.065	0.049	0.013	0.014	0.025	0.046
70	2.747	0.048	0.023	0.048	0.026	0.012	0.010
71.5	3.00	0.054	0.041	0.008	0.002	0.003	0.006
80	5.671	0.034	0.016	0.034	0.018	0.006	0.000
none	none						
First row for each degree refers to force method. Second row for each degree refers to exact method.							

TABLE 3
Pressure Directly below Sphere at $z=8$ for Different Frequencies and Depths

Ka	$\mathrm{h}=8$	$\mathrm{~h}=10$	$\mathrm{~h} \rightarrow \infty$	Ratio
0.02	0.0028	0.0022	0.0014	$2.0: 1$
0.04	0.0049	0.0039	0.0030	$1.6: 1$
0.06	0.0068	0.0055	0.0041	$1.7: 1$
0.08	0.0085	0.0069	0.0057	$1.5: 1$
0.10	0.0101	0.0081	0.0067	$1.5: 1$
0.2	0.0158	0.0126	0.0098	$1.6: 1$
0.3	0.0176	0.0132	0.0100	$1.8: 1$
0.4	0.0164	0.0117	0.0090	$1.8: 1$
0.5	0.0139	0.0095	0.0074	$1.9: 1$
0.6	0.0111	0.0076	0.0059	$1.8: 1$
0.7	0.0085	0.0062	0.0045	$1.9: 1$
0.8	0.0065	0.0043	0.0033	$2.0: 1$
0.9	0.0046	0.0030	0.0026	$1.8: 1$
1.0	0.0036	0.0025	0.0019	$1.9: 1$
1.5	0.0075	0.0053	0.0039	$1.9: 1$
2.0	0.0143	0.0103	0.0076	$2.0: 1$
3.0	0.0286	0.0207	0.0151	$1.9: 1$
4.0	0.0432	0.0312	0.0227	$1.9: 1$
6.0	0.0714	0.0522	0.0392	$1.8: 1$

TABLE 4
Pressure Distribution below Sphere at $z=4$ for Different Frequencies and

Depths

$K a$	$h=4$	$h=8$	$h \rightarrow \infty$	Ratio
0.02	0.0061	0.0035	0.0028	$2.2: 1$
0.04	0.0108	0.0063	-0.0058	$1.9: 1$
0.06	0.0148	0.0089	0.0087	$1.7: 1$
0.08	0.0185	0.0114	0.0115	$1.6: 1$
0.10	0.0219	0.014	0.0140	$1.6: 1$
0.20	0.0354	0.0232	0.0236	$1.5: 1$
0.3	0.0437	0.0286	0.0282	$1.5: 1$
0.4	0.0475	0.0300	0.0290	$1.6: 1$
0.5	0.0472	0.0285	0.0278	$1.7: 1$
0.6	0.0436	0.0254	0.0247	$1.8: 1$
0.7	0.0377	0.0215	0.0209	$1.8: 1$
0.8	0.0307	0.0173	0.0168	$1.8: 1$
0.9	0.0242	0.0135	0.0130	$1.9: 1$
1.0	0.0197	0.0110	0.0106	$1.9: 1$
1.5	0.0414	0.0232	0.0223	$1.9: 1$
2.0	0.0725	0.0411	0.0392	$1.8: 1$
3.0	0.1298	0.0743	0.0706	$1.8: 1$
6.0	0.303	0.174	0.165	$1.8: 1$

FIGURES

In the figures, the points where the pressure is observed is fixed, and the sphere is moved on the free surface to different horizontal distances from the point of observation. Imagine that the sphere on the surface is approaching an observation point at a certain level (z) in the fluid. The angle θ becomes the azimuth angle between the upward vertical through point P of observation and the radius vector from point P to the position R of the sphere.

Figure 1 shows the pressure on the bottom of the fluid as a function of frequency for different positions of the sphere. Observe that

1. With respect to frequency, the pressure is fluctuating with a maximum value for $\mathrm{Ka}<0.5$ and with a minimum value for about $\mathrm{Ka} \sim 1$. For higher frequencies, the pressure increases almost linearly with increasing frequency. This behaviour is observed for any position of the sphere and leads to the remarkable conclusion that the sphere radiates the same pressure amplitude to a point of observation at three different frequencies for a given heaving amplitude.
2. With respect to distance, the pressure decreases with increasing distance of the sphere. The maximum occurs directly under the sphere $(\theta=0)$.

Figure 2 shows the pressure at a fixed point for different locations of the sphere, oscillating at the frequency $K a=0.1$. The depth of the fluid is varied. Observe that the pressure decreases with increasing depth of the fluid.

Figure 3 shows the pressure for the same frequency, plotted against the azimuth angle θ. This presentation shows clearly the decrease of the pressure to zero, when the angle approaches 90 degrees, i.e., when the sphere is very far distant from the point of observation ($R \rightarrow \infty$).

Figure 4 is a particular case taken from Figure 2. The pressure directly under the sphere $(\theta=0)$ is calculated as a function of frequency (1) on the bottom ($h=z=8$), and (2) at the same level ($z=8$), when the fluid is of infinite depth $(h \rightarrow \infty)$. Observe that the pressure on the bottom is almost doubled, compared to the pressure at the same point in the case of infinite depth. This can be explained as the reflection effect from the bottom. The plot does not show exactly the ratio of 2 to 1 . The doubled value is plotted as a broken line.

Figure 5 gives the pressure on the bottom $(z=h=4)$ as a function of the horizontal distance of the sphere for various values of the frequency parameters Ka . Intersections of curves indicate equal pressure for different frequencies at the same position of the sphere. Observe also the pressure fluctuations in the lower frequency range as described in Figure 1.

Figure 6 is a plot of the monopole weighting function S and its components S_{a} and S_{v}, versus frequency, for $h=z=8, \theta=0$. Limiting values for S_{V} can be obtained from Equation [18] as

$$
S_{v}=\frac{\pi}{2} \frac{z}{h} \text { for } K=0
$$

and

$$
S_{v}=0 \quad \text { for } K \rightarrow \infty
$$

Limiting values for S_{a} could not be obtained by analysis.
Figure 7 is the plot of the corresponding dipole weighting function and its components. The limiting values for $K=0$ are zero.

Figure 8 shows for $h=z=8, \theta=0$ the pressure \tilde{p} and the corresponding components in phase with acceleration (p_{a}) and velocity (p_{v}). For higher frequencies, the contribution of p_{v} decreases, whereas the influence of p_{a} increases. For lower frequencies, p_{v} dominates.

Figure 9 gives the pressure for $h=10$ and $z=4$ for different azimuth angles θ. The log-log representation permits plotting a wider range of frequencies.

Figure 1 - Pressure on the Bottom as a Function of Frequency The sphere is at different horizontal distances (R) from $\tan \theta=R / h$

Figure 2 - Pressure as a Function of Distance R for Different Depths and Equal Frequency

Figure 3 - Pressure as a Function of Angle θ

Figure 4 - Comparison of Pressure on the Bottom with Pressure for Infinite Depth

Figure 5 - Pressure on the Bottom as a Function of Distance for Various Frequencies

Figure 6 - Monopole Weighting Function S and its Components S_{a} and S_{v} on the Bottom Directly below the Sphere as a Function of Frequency

Figure 7 - Dipole Weighting Function D and its Components D_{a} and D_{v} on the Bottom Directly below the Sphere as a Function of Frequency

Figure 8 - Pressure \tilde{p} and its Components p_{a} and p_{v} on the Bottom

Figure 9 - Log-Log Representation of Pressure, Plotted against Frequency for Various Angles

REFERENCES

1. Ursell, F., "On the Heaving Motion of a Circular Cylinder on the Surface of a Fluid (U)," Quarterly Journal of Mechanics Applied Mathematics, Vol 2, Part 2 (1949).
2. Porter, W.R., "Pressure Distributions, Added Mass, and Damping Coefficients for Cylinders Oscillating in a Free Surface (U)," University of California, Berkley, Series 82-16 (1960).
3. Havelock, T.H., 'Waves Due a Floating Sphere Making Periodic Heaving Oscillations (U)," Procedure of the Royal Society, Vol. A231, pp. 1-7 (1955).
4. Barakat, R., "Vertical Motion of a Floating Sphere in a SineWave Sea (U)," Journal of Fluid Mechanics, Vol. 13, pp. 540-556 (1962).
5. Franz, G.J., "The Pressure Fields below Low-Frequency Monopoles and Vertical Dipoles Near a Free Surface (U)," Cinquieme Congres International D'Acoustique, Liege, Belgium, pp. 7-14 (Sep 1965).
6. Wang, S., "The Hydrodynamic Forces and Pressure Distributions for an Oscillating Sphere in a Fluid of Finite Depth (U)," Massachusetts Institute of Technology, Department of Naval Architecture and Marine Engineering, Contract 3963 (01) (1966).
7. Thorne, R.C., "Multipole Expansions in the Theory of Surface Waves (U)," Procedure Cambridge Philosophical Society, Vol. 49, pp. 707-716. (1953) .
8. Lamb, H., "Hydrodynamics (U)," Sixth Edition, Dover Publications, New York (1932).

INITIAL DISTRIBUTION

Copies
1 NAVSHIPYD BSN Attn: Tech Lib
3 NAVSHIPYD SFRANBAY VJO
Code 250 Code 130Ll

1 NAVSHIPYD CHASN, Tech Lib
1 NAVSHIPYD LBEACH, Tech Lib
1 NAVSHIPYD NORVA, Tech Lib
1 NAVSHIPYD PEARL
1 NAVSHIPYD PTSMH, Tech Lib
1 NAVSHIPYD BREM, Eng Lib
1 AFFDL (FDDS' - Mr. J. O1sen) Wright-Patterson AFB, Ohio 45433

NASA Sci \& Tech Info Facility P.O. Box 33 College Park, Md. 20740

AFORSR (SREM)
1400 Wilson Blvd Arlington, Va. 22209

1 Lib of Congress Sci \& Technology Div Washington, D.C. 20540
1 COGARD, Attn: Div of Merchant Marine Safety

1 BUSTAND, Attn: Dr. G.B. Schubauer, Chief, Fluid Mechanics Br

Dir of Res, NASA
Dir, Waterways Experiment Sta Box 631, Vicksburg, Miss 39180 Attn: Research Cen Lib

1 NAVORDSYSCOM, Code ORD-035
1 Univ of Bridgeport Bridgeport, Conn 06602 Attn: Prof. Earl Uram Mechanical Engr Dept

1
Brown Univ, Providence, R.I. 02912 Attn: Div of Applied Math

Copies
Rm 5-226
1 Prof. P. Mandel,
Rm 5-325
l Prof. J.R. Kerwin, Rm 5-23
1 Prof. P. Leehey, Rm 5-222
1 Prof. M. Abkowitz
1 Prof. F.M. Lewis
1 Dr. J.N. Newman
2 Univ of Michigan Dept of Naval Arch ξ Marine Engineering Ann Arbor, Michigan 48104 Attn: l Dr. T.F. Ogilvie 1 Prof. H. Benford

St. Anthony Falls Hydraulic Lab Univ of Minnesota Mississippi River at 3rd Ave S.E. Minneapolis, Minn 55414 Attn: 1 Dir

1 Dr. C.S. Song
$1 \mathrm{Mr} . \mathrm{J} . \mathrm{M}$. Killen
1 Mr . F. Schiebe
$1 \mathrm{Mr} . \mathrm{J} . \mathrm{M}$. Wctzel
2 U.S.N.A., Annapolis
Attn: l Lib
l Prof. Bruce Johnson
2 NAVPGSCOL, Monterey
Attn: l Lib
1 Prof. J. Miller
1 New York Univ, Univ Heights Bronx, N.Y. 10453
Attn: Prof. W.J. Pierson, Jr.

$\underset{2}{\text { Copies }}$		$\underset{2}{\text { Copies }}$	Webb Inst of Naval Arch
	New York Univ, Courant Inst of Mathematical Sciences		Crescent Beach Road
	251 Mercier Street		Glen Cove, L.I., N.Y. 11542
	New York, N.Y. 10012		Attn: 1 Prof. E.V. Lewis
	Attn: 1 Prof. A.S. Peters		1 Prof. L.W. Ward
	1 Prof. J.J. Stoker	1	Worcester Polytechnic Inst
1	Univ of Notre Dame		Alden Research Labs
	Notre Dame, Indiana +6556		Worcester, Mass 01609
	Attn: Dr. A.F. Strandhagen		Attn: Dir
2	The Pennsylvania State Univ	1	Aerojet-General Corp
	Ordnance Research Lab		1100 W. Hollyvale Street
	Univ Park, Pa 16801		Azusa, Calif 91702
	Attn: 1 Dir		Attn: Mr. J. Levy
	1 Dr. G. Wislicenus		Bldg 160, Dept 4223
1	Princeton Univ, Aerodynamics Lab	1	Bethlehem Steel Corp
	Dept of Aerospace $\xi^{\text {c }}$		Central Technical Div
	Mechanical Sciences		Sparrows Point Yard
	The James Forrestal		Sparrows Point, Md 21219
	Research Center		Attn: Mr. A.D. Haff
	Princeton, New Jersey 08540		Techn Manager
	Attn: Prof. G.L. Mellor	1	Bethlehem Steel Corp
2	Scripps Inst of Oceanography		25 Broadway
	Univ of Calif		New York, N.Y. 10004
	La Jolla, Calif 92038		Attn: Mr. H. de Luce
	$\begin{aligned} \text { Attn: } & 1 \mathrm{~J} . \text { Pollock } \\ & 1 \mathrm{M} . \text { Silverman } \end{aligned}$	1	Bolt Beranek \& Newman, Inc
3	Stanford Univ, Stanford,		Arlington, Va 22209
	Calif 94305		Attn: Dr. F.J. Jackson
	Attn: l Prof. H. Ashley	1	Cornell Aeronautical Lab
	Dept of Aeronautics		Applied Mechanics Dept
	1 Prof. R.L. Street		P.O. Box 235
	Dept of Civil Engr		Buffalo, N.Y. 14221
	1 Prof. B. Perry		Attn: Dr. I.C. Statler
	Dept of Civil Engr	1	Electric Boat Division
3	SIT, Davidson Laboratory		General Dynamics Corp
	Attn: 3 Dr. J. Breslin		Groton, Connecticut 06340 Attn: Mr. V.T. Boatwright, Jr
1	Univ of Texas	1	
	Defense Research Lab		Esso International 15 West 5lst Street
	P.O. Box 8029		New York, N.Y. 10019
	Austin, Texas 78712 Attn: Dir		Attn: Mr. R.J. Taylor,
			Manager, R \& D Tanker
1	Univ of Washington		Dept
	Applied Physics Lab		
	1013 N.E. 40th St		
	Seattle, Washington 98105		
	Attn: Dir		


```
Copies
    1 Mr. W.M. Lee, Director
                Contract Research Dept
            Pennalt Chemicals Corp
                900 First Avenue
                King of Prussia, Penna 10406
    1 TRG/A Division of Control Data Corp
    5 3 5 \text { Broad Hollow Road (Rt 110)}
        Melville, L.I., N.Y. 11746
    L Long Island University
        Graduate Dept of Marine Science
        40 Merrick Avenue
            East Meadow, N.Y. 11554
                Attn: Prof. David Price
1 NELC, Attn: Lib
1 CDR, NUWC, Attn: Dr. Jack Hoyt
1 Litton Industries, Inc.
    992 W. Jefferson Blvd
        Culver, Calif 90231
            Attn: Dr. S. Wang
```

DOCUMENT CONTROL DATA - R \& D (Security classification of titte, body of abstract and indexing annotation must be entered when the overall report is classified)	
Naval Ship Research \& Development Center Washington, D.C. 20007	2e. REPRRT SECURITY LIASSIFICATION UNCLASSIFIED 2b. GROUP
general pressure distribution for an oscillating sphere floating in a fluid OF FINITE DEPTH	
4. DESCRIPTIVE NOTES (Type of report and inclusive datios)	
5 aUTHOR(S) (First namo, middle initial, iesit name) Erwin L.W. Paul	
6. REPORT DATE March 1969	
8a. CONTRACT OR GRANT NO. b. PROJECTNO	90. Originator's report numberis)
	9b. OTHER REPORT NO(S) (Any other numbers thet may be cestigred
This document has been approved for public release and sale; its distribution is unlimited.	
11. SUPPLEMENTARY NOTES	Naval Ship Research \& Development Center Washington, D.C. 20007
The general pressure field caused by a heaving sphere floating half submerged in a fluid of finite depth is calculated. A sphere oscillating in an unbounded fluid develops a dipole pressure field. When oscillating on the free surface of a fluid, however, damping and buoyancy forces change the pressure field which now comes under monopole influence as well. The high- and low-frequency limits of singularities in an infinite fluid define the surface conditions for a bounded fluid. The general intermediate frequency case is considered, whereby the pressure field is related to the forces acting on the sphere.	

$$
\text { SEP } 301977
$$

[^0]: $1_{\text {References }}$ are listed on page 32 .

