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NOTATION

yA
A _ j (uz . R2)—1/2 el(udg
o
a Radius of the sphere
< 2n+2 -u
C - PV u e du
n (kh - u) (Kh cosh u - u sinh u)
o}
D Dipole weighting function
Ei(x) Exponential integral
F Force acting on the sphere
Acceleration of gravity
H0 Struve function of order zero
h Depth of the fluid
ho Heave amplitude
Jo Bessel function of the first kind of. order zero
Deep water wave number
Ko Modified Bessel function of the second kind of order zero
ko’ kn Real and imaginary roots of equation K = k tanh kh
Pn Legendre function
PV./~ Principle value integral
P Hydrodynamic pressure
P.> P Pressure components
a v 1/2
ﬁ=(paz+pvz) Pressure amplitude
2 2.1/2
R = (x"+y") Horizontal distance from z-axis
T Radial distance from origin
S Monopole weighting function
t Time
U=z Velocity of the sphere
Yo Bessel function of the second kind of order zero
Xyz Rectangular coordinate system

iv



a
B = Ka
8
9
A
HO
M1
p =X
a
pO
®
q)d’ <I>d
a v
Qs, S
a Vv

Added-mass coefficient
Dimensionless wave number
L]
Damping coefficient
. . ->
Polar angle between +z-axis and radius vector r
Wavelength
Monopole strength

Dipole strength

Dimensionless radial distance

Density of fluid
Velocity potential
Dipole potential functions

Monopole potential functions






ABSTRACT

The general pressure field caused by a heaving sphere
floating half submerged in a fluid of finite depth is calcu-
lated. A sphere oscillating in an unbounded fluid develops a
dipole pressure field.. When oscillating on the free surface
of a fluid, however, damping and buoyancy forces change the
pressure field which now comes under monopole influence as
well, The high- and low-frequency limits of singularities
in an infinite fluid define the surface conditions for a
bounded fluid. The general intermediate frequency case is
considered, whereby the pressure field is related to the
forces acting on the sphere.

ADMINISTRATIVE INFORMATION

This work was performed at the Naval Ship Research and Development

Center under the General Hydrodynamics Research Program.
INTRODUCTION

The pressure field radiated from a sphere moving in an unbounded
fluid is known to be equal to the pressure field radiated from a dipole
placed in the center of the sphere. If, however, the fluid is bounded, and
the motion occurs on or near the free surface, surface waves are generated
which cause damping and, consequently, change the pressure field. The in-
fluence of surface waves due to a body heaving near the free surface on the
radiated pressure field has often been subject to investigation in recent
years, €.g., Ursell1 and Porter2 of the two-dimensional case of a heaving
cylinder, and Havelock,3 Barakat,4 Franz,5 and Wang6 of the three-dimensional
case of a heaving sphere. All investigations are based on the assumption
of an ideal fluid, i.e., a fluid free of vortices; thus, a velocity po-
tential must exist.

Thorne7 (1953) treated the problem of generation of surface waves.
His paper was fundamental in the development of the potential of two- and
three-dimensional multipoles near a free surface. Havelock (1955) con-

sidered a heaving sphere half submerged in a fluid of infinite depth. Based

1References are listed on page 32,



on the representation by Thorne, he calculated the respective added-mass

and damping coefficients and the pressure on the sphere. Barakat (1962)
studied the same problem, using a generalization of methods used by Ursell
in his solutions for the two-dimensional case of a heaving cylinder.

Wang (1966) attacked the problem of a heaving sphere in a fluid of finite
depth. He gave values for the added-mass and damping coefficients. These
become functions of the heave frequency and the depth of the fluid. He also
calculated the pressure on the sphere and on the bottom of the fluid.

None of the mentioned papers discussed calculation of pressure any-
where in the fluid. An extension of the Wang presentation for this purpose
is feasible; the performance, however, will be very cumbersome.

It is not intended to repeat all the steps which lead to an '"exact"
analytical solution, and reference is made to the authors cited, particularly
to work by Wang. Instead, preference is given to evaluation of an idea
that was evolved in 1965, making it possible to reach final results quicker.
Franz found that the theory of classical dipole pressure of a body, such
as a sphere oscillating in an infinite fluid, could be extended to include
the presence of a free surface. When the sphere is floating half sub-
merged in the fluid, not only does the damping caused by the created sur-
face waves change the pressure field but the existing buoyancy force also
requires additional consideration of a monopole pressure field. The low-
and high-frequency limits of the fluctuating system characterize the con-
ditions for the presence of a free or a rigid surface, respectively. Using
these limiting cases, the general expression for the fluctuating pressure
is then derived from the corresponding velocity potential. Franz described
this pressure field for intermediate frequencies in terms of the classical
high-frequency relation between the fluctuating forces and pressures on the
sphere and certain weighting functions which become functions of the space
coordinates and the heaving frequency. He calculated the pressure directly
under the sphere when the fluid was of infinite depth. The forces exerted
by the fluid on the sphere can be described by means of both added-mass
and damping coefficients, which in the present report are assumed to be
known. To relate the fluctuating pressure to the forces acting on the
sphere is of practical significance insofar as measurements of the pressure
in the fluid can lead to conclusions about the forces acting on the sphere

and vice versa. 2



In the following, the Franz 'force' method is used to investigate
the fluctuating pressure anywhere in a fluid of finite depth with the in-
tention of showing the usefulness of this method in obtaining pressure in-
formation, compared to that available from the more laborious, exact

method presented by Wang.6
BASIC ASSUMPTIONS

Assume the origin of an xyz-system on the mean free surface of the
fluid. The xy-plane coincides with the surface; the z-axis increases with
increasing depth. The bottom of the fluid is at z = h.

The sphere with radius a, half submerged in the fluid, is performing
simple harmonic oscillations with small amplitude hO and angular frequency

w along the z-axis; thus, the position of its center at any time t is
z = hO cos wt [1]

The existing velocity potential ¢ satisfies the Laplace equation

V2® =0

anywhere in the fluid, and it is understood that the velocity components

with respect to the three axes are given by

. 0d . 09 . 99
X =V == m—— y— = — Z V ==—
X X y oy z z
In particular, the radial velocity becomes
Po v =2
ro= v =- o (2]

The boundary condition on the free surface is known to be

99

Ko + 7

=0 [3]
2
w

where K = z is the wave number in deep water, and g is the acceleration
of gravity.

The boundary condition on the bottom z = h is



Further, the pressure is calculated from the linearized Bernoulli equation,

namely,

Pp=p_ = [5]

where Py is the density of the fluid.
The length of the radius vector from center sphere to any point in
the fluid is r, and the angle between radius vector and positive z-axis is

6.
FORCES ACTING ON THE SPHERE

To sustain steady-state oscillation (Equation [1]) the following
forces are applied on the sphere:

1. The buoyant force of Archimedes Fb’ which is a hydrostatic force
in phase with the displacement. This force is caused by hydrostatic water
pressures on the sphere and is equal to the weight of the displaced fluid.
For small amplitudes, the volume of the displaced fluid can be taken as

aznz. Therefore, the buoyant force Fb becomes

2 2
Fb =amop gz =am oogho cos wt

All other forces are hydrodynamic in nature. They are
2. The inertial force Fi’ which is the inertial resistance of the
mass of the displaced hemisphere of fluid to its acceleration. This force

is in phase with the acceleration of the sphere and is given by

_2_3 _ 23 2
Fi =3 ma poz = -3 ma poho w- cos wt

3. The added-mass force Fa, which is the force on the HemiSphere

due to pressures on the sphere in phase with the acceleration and equals

where o is the added-mass coefficient.



4. The damping force F ., which is due to the pressures on the hemi-

(S,
sphere in phase with the velocity of the sphere and is given in terms of

the damping force coefficient § by

3 . 2 3 2 .
mas e, wéz = -gTa pw § h0 sin wt

11
It
NN

Introducing B8 = and using Equation [1], the total fluctuating force

F(t) is then

F(t) = a’ ™™, gho{[l - (1 + ) (%—E)}cos wt - & (%B-) sin wt} [6]

with its maximum value
1/2

F=a mo gho{[ 1-(1+a (éﬁ)]z " [%‘E]Zl [6a]

The added-mass and damping coefficients vary with frequency and depth and
are given for a certain range in Reference 6.
The oscillating hydrostatic buoyant force has a monopole character;

the three hydrodynamic forces are of dipole nature.

ad

LIMITING CASES OF THE SURFACE CONDITION K¢ + = - 0

This surface condition, valid for any frequency, includes two
limiting cases.

For very low frequencies (K > 0), the condition reduces to

[s%)

¢

37 = 0 on z =0

i.e., the vertical velocities vanish; consequently, the surface acts as a
solid boundary.

For very high frequencies (K > =), the condition is

d =0 on z =0

i.e., the surface becomes a free surface, neglecting gravity in comparison
]
to the forces of inertia:



To avoid the inconvenience of a bounded fluid, the method of images
is applied, yielding the following considerations:

The pressure field of a very low frequency monopole near the surface
is equal to the pressure field of two monopoles of equal strength in an
unbounded fluid. Likewise, a very high frequency monopole near a free
surface can be replaced by a dipole in an unbounded fluid. These con-
siderations hold for points of much greater distance from the singularities
than the singularities are from the surface. In this case, the sphere can

be treated as a mass point.

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN
THE LIMIT OF VERY LOW FREQUENCY

The velocity potential ¢ in an unbounded fluid caused by a simple
source whose strength is given by the time rate of change of the volume
vV = V0 cos wt takes the form

. SL _ Vow sin wt
T 4nr T 4nr
where the monopole strength My is given by Vow/4n. According to Equation
[S], the pressure becomes
. v w2
' ?0"0

P=P, yr =~ “amp  COS ut

For a sphere oscillating in the free surface with an amplitude that is
small compared to the radius of the sphere, the oscillating volume is

V0 = aznz, where z = h0 cos wt. In the -limit of very low frequency, the
volume has to be doubled, so that

V=2V = 2-a2nz = 2-a2nh cos wt
o} o

and

2 w2V
o

G _ a 2
"En——T-hou) cos wt = - 7

Therefore, for low frequency oscillations the monopole pressure changes to



.- 2
= ¢ = v = -jﬁi h wz c wt = - ® Vo
pPp=o0 =P 7T po o os = o]

o 2nr

With o =-§-and B = Egg-the low frequency monopole pressure becomes

p° B
= - 5 cos wt [7]
0 0gho 2p

This pressure, caused by the buoyant force, can also be written as

[ F
p __8& __ b [7a]

20 2
o a npogho

PRESSURE OF THE MONOPOLE NEAR A FREE SURFACE IN
THE LIMIT OF VERY HIGH FREQUENCY

Since a very high-frequency monopole near a free surface can be
replaced by a dipole in an unbounded fluid, we consider the velocity po-

tential of a dipole in the unbounded fluid

3

@d = E—g—cos ¢ (8]
2r

where U = z is the velocity of the moving sphere (Reference 8, p. 123,

Equation [2]). The pressure is

d .
P = po¢ = po-g—%-cos ]
2r
or, written in dimensionless form
d B
-Jij;- = ——§~cos 6 cos wt
pog o] 20

Now, for the hemisphere oscillating in the free surface in the limit of
very high frequency, the pressure is determined by

pd =—jiécos 0

4rmr

7



This pressure representation holds in the near field, i.e., for points
whose distances r from the sphere are less than the wavelength Aa of the
radiated sound.

F is the total hydrodynamic force acting on the full sphere in an
unbounded fluid. This force has three components, namely, twice the hydro-
dynamic forces mentioned before, i.e.,

1. Inertia

oo 2.3 2 _ 2B 2
Fi =mz = -—5ma o h0 w" cos wt = - x—ma p gho cos wt

2. Added mass

a
3. Damping
_ 23 2 . _ 28 _ 2 .
Fg = Smwz = - P, hO w” 8 sin wt = - 3= ma o gho § sin wt

Thus, in the limiting case of very high frequency, the total force to be

applied is
F = Z(Fi + Fa + FG) = ZFO

and the dipole pressure, written in dimensionless form, becomes

p _ _ B .
o gh " 5 COs 8 {(1 + a) cos wt + § sin wt} [9]
0~ o 3p

PRESSURE AT INTERMEDIATE FREQUENCIES
AND THE WEIGHTING FUNCTIONS

At intermediate frequencies, the velocity potentials of both monopole
and dipole must now satisfy the combined surface coﬂdition, Equation [3].
Futther, considering a finite depth h of the fluid, the bottom condition
(Equation [4]) imposes a relationship between frequency w and depth h, ex-

pressed by the equation



2
K = -‘;’— = k tanh kh [10]

The respective potentials are given by Thorne.7

The theory shows that the source potential can-be written as

S

(o] .

—_— = —@s sin wt + @S cos wt
uo a v

@Z and ¢3 are components of the velocity potential, which become functions
of frequency, space coordinates, and depth of the fluid. They are given
later in detail.

Introducing the monopole weighting functions by

T .S Tr .S
Sa = —2— ‘Da and SV = —2- (DV [11]
and remembering that the source strength
Vow azhow 2
]Jo = z_n_— = 2 with VO = a 7Tho
the source potential for intermediate frequencies becomes
azh w
s o .
?” = {—S sin wt + §_ cos wt‘
2r a v
From this, the pressure is calculated as
s :S azhopow2
p = p0¢ = ——7;————-{~Sa cos wt - SV sin wt}
so that finally
S B
P = - 5—{S cos wt + S_ sin wt} [12]
0 gh0 2p |"a v



Again, from the Thorne presentation, the velocity potential of a

dipole near the free surface can be written as

d
2-—-—= -¢d sin wt + @d cos wt
1 a Vv

It will be shown later that the dipole potential functions ¢g and @3 are

related to the monopole potential functions ¢Z and @3 and also to the

monopole weighting functions by

od - ko= -2xs  o% - _(k tanh kh)e® = -Ko> = - 2 ks
a a v % v P
If we introduce dipole weighting functions
a Kr a Kr
by -5 %N -swSy [13]
and write the dipole strength from Equation [8] as
aswh
_ )
M1 2
the dipole potential becontes
d asmh cos 6
o¢ = - —2>— [D_ sin wt - D_ cos wt]
a v
T
and the dipole pressure is
p B
—E—Eﬁ—-= -— Ccos 8 [Da cos wt + DV sin wt] [14]
0% o p
or
pd g
—p—o—g—ﬁ'c—) = "—p—-Z—COS 0 [Da sin wt - DV COosS wt] [15]

10



depending on whether the exciting forces are in phase with acceleration,

such as Fi and Fa’ or in phase with velocity, such as PV-HSa, SV, and
whether Da, DV are the time independent components of the weighting

functions S and D of the source and dipole potential functions, respectively.
When applied to the expressions for the low-frequency monopole (Equation

[6]) and the high-frequency dipole (Equation [8]) the equation for the
general pressure field anywhere in the fluid is obtained. With the help of

Equations [10] through [14], the equation becomes

P . ‘-Ji.s Bcos 8 i + 8BS 8 } cos wt
Dogﬁo 20"a 302 a Sp2 v
[16]
B B cos § B cos 6 .
+ ‘-.ib Sv - X > (1 + a)DV 2 8 Da’ sin wt
o 3p
or
P — = -P, cos wt - pV sin wt
PoB%

where P, and p, are the pressure components in phase with acceleration and

velocity.

For the pressure amplitude, we find

i iy 2 . 2)1/2
p gho Py v
Introducing
1/2 1/2
s=(s?+ 59 D= (0° + D?)
a v a v

the formula for the pressure amplitude can be written in either form

p B 28 2 rog q° e
=g "% s{[Z£a+w-1] +[55] }

(o]

or

11



1/2

S e ][22 ]

Both formulas are convenient for computation; however, they no longer show
the influence of the monopole and the dipole separately.
After the formula for the pressure is built up, the weighting

functions are derived from the potential functions of concern.
SOURCE POTENTIAL ¢°

When the source potential is written as
S
® .
2. = -¢° sin wt + 6> cos wt
My a v

the components @Z and ¢3 as given by Reference 7 are as follows

o -vh .
s _ 1 eV [K sinh vz - v cosh vz] - (K +v) cosh[v(h - zﬁ
Qa =77 PV.[O K cosh vh - v sinh vh Jo(vR) dv
and

cosh(koh) cosh[ko(h - z)]
2koh + sinh(2koh)

8> = 4mk J (k R)
v (o] [o I o)

Using the relation

1oy J e V% J (WR) dv
T o (o]

the expression for QZ is changed to

12



&
i}

o -vh .
s 2'_%_+ PV J' e [K sinh vz - v cosh vz - K cosh [v(h - Zﬂ.JO(vR) dv}

o K cosh vh - v sinh vh

* v cosh[v(h - z)]
-2PV J.o K cosh vh - v sinh vh Jo(vR) dv [17]

The principal value integral can be evaluated and is represented in
two different forms that are useful for numerical calculations in the geo-

metrical near and far field, respectively, namely6

s _ o1 -Kz[m ’ ]
o = 2[r + Ke fz [HO(KR) + YO(RR)] + A}
(near)
> ¢ [ krp2n*l
v 2 EO Zns1 [(Zn)! Ponleos 8) - = Ty1 Popep(cos e)]

cosh (k_h) cosh[ko(h - 2)]

s
¢ = -4nk : - Y (k R)
a(far) o ZkOh + sinh (2koh) 0" o0
o 4k cos (k h) cos{k (h - z
+2 X (k) cosliy )] K_(k_R)
2k h - sin(2k_h) o' n
n=1 n n
where
z -1/2
A = .[ w? + rY eXUdu
o
. o u2n+2 o U
Cn =PV jo (v - u) (v cosh u - u sinh u) du ; v = Kh

ko’ kn are the real (ko) and imaginary (kn) roots of the eguation

K = k tanh kh

13 -



so that

K=k _ tanh k h
0 0

and

K=-k tankh (n-=1, 2, ..., =)
n n

Using the weighting functions (Equation [11]) the source potential

is represented as

- = 2z -S sin wt + S cos wt]
T a v
and

2nkor cosh(koh) cosh [ko(h - z)]

Sv = 2koh + sinh(Zkoh) Jo(koR) [18]
Kz [m .
s, =1 - Kre ‘3 [H,(KR) + Y_(KR)] + Al [19]
(near)
o Cn r 2n+1 Kp
* nZ~:u (2n) ! (Tf) [pzn(cos 8) - s+ T Ponsp(c0s e)]
cosh(koh) cosh[ko(h - 2)]
Sa = =21k Y T SR (2K W) Yo kR [20]
(far) o o
. ii 4rk cos(knh).cos[kn(h - z)]K .
el 2knh - s1n(2knh) o' n

For points directly below the sphere (R = 0) the formulas for S, as shown

previously are not applicable; instead

S

Kr © Cn r 2n+1 Ky
a|6=0 = 1 - Kre Ei(Kr) + 3;0 Iy (TT) [1 - T ]

14



where Ei(Kr) is the exponential integral and

2wkor cosh (koh) cosh[ko(h - Iﬂ]
2koh + sinh (2koh)

6=0

DIPOLE POTENTIAL @d

The components of the dipole potential

d
E—-= -@d sin wt + @d cos wt
Hy a = v

are given by Reference 7 as

2 .
ko cosh [ko(h - z)] sinh (koh)
2k h + sinh (2k h)
o o

d
Q)v = =47 JO(kOR)

*a T T2 K cosh vh - v sinh vh v (VR)dv

d_cos 8, ij'w e_Vh[K sinh vz - v cosh vz] + (K + v) cosh [v(h-2)]
T o

Since (Reference 8, p. 431, Equation 17)

(=]

€08 ® . PVJ ve™ % J_(vR)dv
r (e}

we find

d _ ® v cosh [v(h - z)]
<I)a = 2K PV;[O K cosh vh - v sinh vh Jo(vR)dv

Comparing with Equation [17] and applying Equations [11] and [13] shows
that

15



Further, it can be readily seen that

o3 = _(k_tanh k h)e®
v o [o] Vv

or

Thus, the dipole potential o9 takes the final form

¢d 2 cos 6
—_= ——_E___'[—D sin wt + D cos wt]
1 r a v

which is exactly the same representation as given in Reference 5. Of
course, the weighting functions are different. They agree with the repre-

sentations in Reference 5 for the special case h > =, 8 = 0.
LIMITING CASE OF INFINITE DEPTH h - «

For infinite depth, the wave number changes to
k =K
as can be seen from Equation [10]. For the weighting functions, we obtain
from Equation [18]

s = nkre “X* 3 (KR)
v 0o

from Equation [19]

sa(near) =1 - Kre X2 {%[30(KR) + Y _(KR) + A]]

16



and from Equation [20]
s, - _nkre X? Y (KR)
(far)

For the pressure directly below the sphere (R = 0) the weighting functions
for h >~ «» become

nKre'Kr

2]
n

D = -KrS
v

s =1 - Kre XTEi (kr) D

-KrS
a

as given in Reference 5.

For large argument x, the exponential integral is approximately
X
. e 1 2!
El(x)" ’;('—[].'F;'f';z—"'...], |X| >> 1

Therefore, the limiting cases for large values of K are

S ~0 D -0
A v

5+_[_1_+_2_+§£ ] D o»1+2 4 3L .
a a

ko) (ko) Kr = (kp)?

In the case of finite depth for very low frequencies K - 0 for any angle 6,

the limiting cases become

S undecided D >0
a a
T
Sv " 2h Dv >0

17



and for vefy large frequencies K - =
S, and Da approach zero asymptotically

S and D > 0
v v

RESULTS AND DISCUSSION

Before presenting any numerical results, some general remarks about
the computations should be made.

The basic assumption that the fluid is of finite depth makes the
numerical treatment of the problem much more difficult, compared to the
calculations in the case of infinite depth. Further, the difficulties are
increased, when computations are made for a point anywhere in the fluid and
not necessarily on the bottom of the fluid or directly below the sphere.
However, it pays to perform a series of such calculations insofar as some
relations in the pressure distributions then become apparent, which are
not quite obvious but can be helpful in pressure predictions. They are
presented subsequently.

We do not intend to make quantitative statements about the accuracy
of the obtained numerical values. They may be affected by truncation errors,
by the particular choice of programming, or whatever might contribute when
performing high-speed computations. These are well known facts, and often
computations of this kind should merely be taken as approximations.

We are content with the fact that results obtained herc are in
satisfactory agreement with those presented in Reference 6, wherc the more
exact method is applied.

In the following, we refer to the dimensionless pressure amplitude

p simply as pressure, hoping that no misunderstanding will occur.
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CONCLUS{ON

The computed results obtained by applying the force method are in
satisfactory agreement with those given from the exact method, as can be
seen from the tables. Not too much emphasis should be given to the
numerical data; it is more important that the general trend of the pressure
curves obtained from both methods be similar and perhaps close to that in
reality. Subsequent experimental work could confirm what at present can
only be judged as supposition. This also applies to the pecularities
mentioned in the figures.

The calculations performed with the help of the force method are
quite simple, compared to those using the exact method. The theory on
which the force method is based does not require the laborious calculations
of an unlimited set of expansion coefficients as is required in using the

exact method.
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TABLES

Tables 1 and 2 show pressure values obtained from the force method,
compared with those obtained from the exact method, for different angles
and frequencies. The values of the latter are taken from Reference 6,
where values are given for the pressures on the bottom for h = z = 4 and
h = z = 2, respectively.

Table 3 gives the pressure directly below the sphere (6=0) at z = 8
for fluids of different depths. It is recognized that h = 10 cannot be
considered as a case of infinite depth. The last column of the table
gives the calculated ratio of the pressure on the bottom to the pressure
for the case of infinite depth, which should be 2:1.

Table 4 treats the same case as that previously mentioned for z = 4.

Again, the pressure ratio is about 2:1.
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TABLE 1

Pressure Values Obtained by Force and Exact
Methods for h=z=4

TABLE 2

Pressure Values Obtained by Force and Exact
Methods for h=z=2

0
R/h | k=0.5 | k=1 k=2 | k=3 k=4 k=6
Degrees 0
R/h | k=0.5 | k=1 k=2 k=3 = k=6
o 0 0.047 | 0.020 | 0.073 | 0.130 | 0.187 | 0.303 Degrees / k=4
0 0.052 | 0.032 | 0.061 | 0.119 | 0.176 | 0.290 0 0 0.113 (0.080 | 0.446 | 0.767 |0.985 | 1.41
5 0.087 | 0.047 | 0.019 | 0.071 { 0.128 | 0.185 | 0.300 0 0.147 1 0.183 | 0.328 | 0.558 | 0.802 | 1.276
5 0.085 | 0.051 { 0.031 1 0.067 1 0.117 { 0.175 { 0.285 5 0.087 | 0.112 | 0.072 | 0.400 | 0.725 | 0.956 | 1.385
10 0.176 | 0.046 | 0.019 | 0.067 | 0.122 | 0.177 | 0.289 -5 ©.085 { 0.147 ) 0.181 | 0.322 | 0.550 | 0.790 | 1.258
10 0.175 | 0.051 | 0.030 | 0.057 | 0.113 | 0.168 | 0.275 10 0.176 | 0.111 [0.071 | 0.386 | 0.689 | 0.903 | 1.319
-10 | 0.175 | 0.144 | 0.174 | 0.302 | 0.525 |0.754 | 1.205
20 0.364 | 0.043 | 0.016 ] 0.053 | 0.100 | 0.148 | 0.244 0360 | 0106 |0.086 | 033 | 0257 |07 | 1008
0.365 | 0.047 | 0.024 | 0.048 | 0.090 | 0.145 | 0.238 20 . . . . . . .
w 0.577 1 0.038 | 0.012 | 0.035 | 0.072 | 0.109 | 0.183 0.365 { 0.132 [ 0.149 | 0.241 | 0.433 [0.629 | 1.014
0.575 | 0.041 | 0.015 | 0.036 | 0.074 | 0.113 | 0.184 30 | 0-577 | 0.097 }0.059 | 0.252 | 0.347 |0.466 | 0.783
” 0.8¢ | 0.032 | 0.007 | 0.021 | 0.048 | 0.060 | 0.117 0.575 | 0.116 | 0.114 | 0.162 | 0.313 | 0.464 | 0.772
0.8 | 0.034 | 0.008 | 0.022 | 0.045 | 0.069 | 0.117 a0 | 0.84 | 0.086 | 0.049 | 0.146 | 0.142 | 0.277 | 0.481
50 1.19 | 0.025 | 0.003 | 0.012 | 0.028 | 0.031 | 0.061 0.84 | 0.099 | 0.082 | 0.081 | 0.189 } 0.291 | 0.489
1.19 | 0.027 | 0.005 | 0.010 | 0.023 | 0.035 | 0.061 so | 1-19 | 0.061 | 0.038 | 0.060 | 0.081 | 0.168 | 0.300
60 1.732 | 0.019 | 0.003 | 0.003 | 0.006 | 0.011 | 0.020 1.19 | 0.084 |0.062 ( 0.034 | 0.092 (0.143 | 0.247
63.5 2.00 | 0.020 | 0.006 | 0.002 | 0.005 | 0.008 { 0.014 60 1.732 | 0.060 | 0.029 | 0.060 } 0.035 | 0.041 | 0.070
7 2747 | 0.015 | 0.002 | 0.001 | 0.001 | 0.002 | 0.003 63.5 2.00 | 0.065 | 0.049 | 0.013 | 0.014 | o0.025 | 0.046
7n.5 3.00 | 0.016 | 0.004 | 0.000 | 0.001 | 0.001 | 0.003 70 1 2.747 | 0.048 | 0.023 | 0.048 [ 0.026 | 0.012 | 0.010
80 s.671 | 0.010 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 71.5 | 3.00 | 0.054 |0.041 { 0.008 | 0.002 |0.003 | 0.006
none none 80 5.671 | 0.034 | 0.016 | 0.034 | 0.018 | 0.006 { 0.000
none none
First row for each degree refers to force method. -
Second row for each degree refers to exact method First row for each degree refers to force method.
(Reference 6). Second row for each degree refers to exact method.
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TABLE 3

TABLE 4
Pressure Directly below Sphere at
z=8 for Different Frequencies and Pressure Distribution below Sphere at
Depths z=4 for Different Frequencies and
Depths
Ka h=8 h=10 h > « | Ratio
0.02 | 0.0028 | 0.0022 | 0.0014 [ 2.0:1 Ka h=4 h=8 h > « | Ratio
0.04 | 0.0049 | 0.0039 | 0.0030 | 1.6:1 0.02 | 0.0061 | 0.0035 | 0.0028 | 2.2:1
0.06 | 0.0068 | 0.0055 | 0.0041 | 1.7:1 0.04 § 0.0108 | 0.0063 |*0.0058 | 1.9:1
0.08 [ 0.0085 | 0.0069 { 0.0057 | 1.5:1 0.06 | 0.0148 | 0.0089 | 0.0087 | 1.7:1
0.10 | 0.0101 | 0.0081 | 0.0067 | 1.5:1 0.08 | 0.0185 | 0.0114 | 0.0115 | 1.6:1
0.2 0.0158 | 0.0126 | 0.0098 | 1.6:1 0.10 | 0.0219 | 0.014 0.07140 [ 1.6:1
0.3 0.0176 | 0.0132 | 0.0100 | 1.8:1 0.20 | 0.0354 [ 0.0232 | 0.0236 | 1.5:1
0.4 0.0164 | 0.0117 | 0.0090 | 1.8:1 0.3 0.0437 | 0.0286 | 0.0282 | 1.5:1
0.5 0.0139 | 0.0095 | 0.0074 | 1.9:1 0.4 0.0475 | 0.0300 | 0.0290 | 1.6:1
0.6 0.0111 | 0.0076 | 0.0059 | 1.8:1 0.5 0.0472 | 0.0285 | 0.0278 | 1.7:1
0.7 0.0085 | 0.0062 | 0.0045 | 1.9:1 0.6 0.0436 | 0.0254 | 0.0247 | 1.8:1
0.8 | 0.0065 | 0.0043 | 0.0033 | 2.0:1 0.7 | 0.0377 | 0.0215 | 0.0209 | 1.8:1
0.9 | 0.0046 | 0.0030 | 0.0026 | 1.8:1 0.8 | 0.0307 | 0.0173 [ 0.0168 | 1.8:1
1.0 0.0036 | 0.0025 | 0.0019 | 1.9:1 0.9 0.0242 | 0.0135 | 0.0130 | 1.9:1
1.5 0.0075 | 0.0053 | 0.0039 | 1.9:1 1.0 0.0197 | 0.0110 | 0.0106 | 1.9:1
2.0 0.0143 | 0.0103 | 0.0076 | 2.0:1 1.5 0.0414 [ 0.0232 | 0.0223 | 1.9:1
3.0 0.0286 | 0.0207 | 0.0151 | 1.9:1 2.0 0.0725 | 0.0411 | 0.0392 | 1.8:1
4.0 0.0432 | 0.0312 | 0.0227 | 1.9:1 3.0 0.1298 | 0.0743 | 0.0706 | 1.8:1
6.0 0.0714 | 0.0522 | 0.0392 | 1.8:1 6.0 0.303 0.174 0.165 1.8:1




FIGURES

In the figures, the points where the pressure is observed is fixed,
and the sphere is moved on the free surface to different horizontal dis-
tances from the point of observation. Imagine that the sphere on the sur-
face is approaching an observation point at a certain level (z) in the
fluid. The angle 6 becomes the azimuth angle between the upward vertical
through point P of observation and the radius vector from point P to the
position R of the sphere.

Figure 1 shows the pressure on the bottom of the fluid as a function
of frequency for different positions of the sphere. Observe that

1. With respect to frequency, the pressure is fluctuating with a
maximum value for Ka<0.5 and with a minimum value for about Ka . 1. For
higher frequencies, the pressure increases almost linearly with increasing
frequency. This behaviour is observed for any position of the sphere and
leads to the remarkable conclusion that the sphere radiates the same
pressure amplitude to a point of observation at three different frequencies
for a given heaving amplitude.

2. With respect to distance, the pressure decreases with increasing
distance of the sphere. The maximum occurs directly under the sphere (6=0).

Figure 2 shows the pressure at a fixed point for different locations
of the sphere, oscillating at the frequency Ka = 0.1. The depth of the
fluid is varied. Observe that the pressure decreases with increasing depth
of the fluid.

Figure 3 shows the pressure for the same frequency, plotted against
the azimuth angle 6. This presentation shows clearly the decrease of the
pressure to zero, when the angle approaches 90 degrees, i.e., when the
sphere is very far distant from the point of observation (R » «).

Figure 4 is a particular case taken from Figure 2. The pressure
directly under the sphere (6=0) is calculated as a function of frequency
(1) on the bottom (h = z = 8), and (2) at the same level (z = 8), when the
fluid is of infinite depth (h - =), Observe that the pressure on the bottom
is almost doubled, compared to the pressure at the same point in the case
of infinite depth. This can be explained as the reflection effect from the
bottom. The plot does not show exactly the ratio of 2 to 1. The doubled

value is plotted as a broken line.
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Figure 5 gives the pressure on the bottom (z = h = 4) as a function
of the horizontal distance of the sphere for various values of the fre-
quency parameters Ka. Intersections of curves indicate equal pressure for
different frequencies at the same position of the sphere. Observe also
the pressure fluctuations in the lower frequency range as described in
Figure 1.

Figure 6 is a plot of the monopole weighting function S and its
components Sa and Sv’ versus frequency, for h = z = 8, 6=0. Limiting

values for Sv can be obtained from Equation [18] as

T Z
v > h for K =0

and

1]

S
v

0 for K > =

Limiting values for Sa could not be obtained by analysis.

Figure 7 is the plot of the corresponding dipole weighting function
and its components. The limiting values for K = 0 are zero.

Figure 8 shows for h = z = 8, 6 = 0 the pressure 5 and the correspond-
ing components in phase with acceleration (pa) and velocity (pv). For
higher frequencies, the contribution of p, decreases, whereas the influence
of P, increases. For lower frequencies, P, dominates.

Figure 9 gives the pressure for h = 10 and z = 4 for different
azimuth angles 6. The log-log representation permits plotting a wider

range of frequencies.
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