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SOME REMARKS ON STATIONARY SCHEMES FOR
CAVITATION FLOW ABOUT A FLAT PLATE*

by

M. I. Gurevich

1. The appearance of cavitation flow.

It is known that behind bodies moving in water at
sufficiently high velocities a cavity opens up. In Figure 1
is shown a sketch from a photograph of such a flow taken by
Ackeret. Experiments indicate that the pressure inside the
essential part of the cavity is constant. With constant speed
of the body the flow in its neighborhood has a clearly defined
stationary character which is disturbed only at the end of the
cavity. The degree of development of cavitation is usually
characterized by the "cavitation number"

(1.1) X = 2(p. -po 1 V - 1
pv2 vZ

where X is the cavitation number, p is the density of water,
p and v, are the pressure and velocity at infinity, po
an vo the pressure in the cavity and the velocity on its
boundary.

For small cavitation numbers, i.e., when a region free
of water occurs, it is natural to try to devise a scheme for the
cavitation flow about the body which will allow one to find the
forces acting on the body and the dimensions outlining the cavity.
Proceeding to the description of such schemes, we shall, for
simplicity of exposition, speak only of schemes of cavitation
flow about a flat plate of infinite aspect ratio, situated
perpendicularly to the oncoming plane flow of a weightless
ideal incompressible fluid° The generalization of the problem
to the case of a wing profile with an arbitrary angle of attack
brings up not so much difficulties in principle as mathematical
difficulties,

2. The scheme of Betz.

Betz [1] proposed to apply Rayleigh's well-known theory
of free boundary flow to the solution of the problem of cavita-
tion (Figure 2). This, in particular, presents cavitation flow
about the flat plate for a cavitation number X = 0. In this

* Bulletin de l'Academie des Sciences de 1' URSS, Classe des
Sciences techniques, 1947, 143-150 (1947)



case the cavity has infinite dimensions and the velocity vo on
its boundary equals the velocity at infinity. The drag coeffi-
cient of the plate is Cx = 21/piv. 2 , where I is the drag and
Ais the length of the plateo For the case being considered
by us, when the angle of attack is = r/2, the drag coeffi-
cient, as is known, is given.by

(2.1) (Cx)= 0 - 2 0.88

For a cavitation number not equal to zero Betz pro-
posed to apply to the oncoming flow this same flow of Rayleigh
and only take into consideration that the pressure on the back
side of the plate will equal po < p.,o In this manner, the
drag coefficient of the plate becomes

(2.2) Cx = 23 + - po 27r+

A graph of the variation of C with X (a straight line)
is shown on Figure 11. Betz justifies Kis formula with the re-
mark that even though the inequality of pressure between infinity
and the cavity influences the form of the oncoming flow, the
influence may be considered negligeable for small cavitation
numbers, For large cavitation numbers the term 27r/(r+4 )
is itself small in comparison with X and describes the influence
of the flow pattern with less accuracy0

The scheme of Betz is useful for deriving an approxi-
mate expression for the resistance of a flat plate but it doesn't
set up and solve a hydrodynamical problem. For a formally cor-
rect solution of the problem one must propose a scheme* with
variable pressure or velocity along the streamlines issuing from
the edges of the flat plate (Figure 3)o

Consequently, we propose that along the above mentioned
streamlines the velocity decreases from v_ to v.o <v The regions
of variation of the complex potential w and of the functions

= -- are given on Figures 4 and 5o The region of varia-
tion of w is the complex plane with a cut along the real axis
from o to .o The cut represents the flat plate and the boundary
streamlines. This region coincides exactly with the correspond-
ing region for the Rayleigh flow, The region of variation of
v.. dZ/dw is the lower half-plane from which has been cut out
a piece bounded by the line CEB corresponding to the boundary
streamlineo

The flat plate is transformed onto that part of the
real axis for which l1 > vv./v o  o The shape of the boundary

* The suggestion to axamine this scheme was made by L. I. Sedov,
Corresponding Member of the Academy of Sciences of the USSR.
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BEC in the F-plane is unknown. Concerning this we know only that
in the points C,E and B, 'B = - C = q and C'E = - i. Besides this,
in the limiting case of the Rayleigh flow, when q = 1, the line CEB
becomes a semi-circle.

We shall take the contour CEB as the are of an ellipse
with semi-axes q and 1. With such an assumption it is not difficult
to solve the problem by means of conformal mapping of the regions of
variation of . 'and w upon the lower half-plane of the variable t
(Figure 6). The following formulas realize these transformations;

(2.3) w = 0 -
Iqtr t

(2.4) v. = qt -
dw

where Z is the length of the flat plate, and q is expressed through
the cavitation number by the formula

(2.5) q=

By means of the Bernoulli Theorem and the formulas (2.3),
(2.4), and (2.5) one may find the drag coefficient of the flat plate
which we shall, as before, designate by

(2,6) Cx = V+ + ( I... (1-X) - l 'C + /X in ( /1 + -)1(2.6) Cx l+ +

Curve 1 of Figure 11 was obtained with the aid of (2.6).
One may also consider another variant of the scheme just presented
which consists in considering the are of the ellipse not as a boundary
in the C-plane but as the corresponding boundary in the plane of

4,w" (Figure 7). These two schemes are not identical since the

inversion of an ellipse is not an ellipse. The solution of the
problem of mapping a semi-ellipse on to a half-plane is well known [$ .

The drag coefficient is expressed by integrals which may
be computed by numerical methods. For small cavitation numbers accord-
ing to our calculations the curves of the drag coefficient plotted
against the cavitation number for the two methods practically coincide.

3. The scheme of Riabouchinsky - Weinig

Let us proceed to the examination of a scheme which may
be used not only to find the drag of a flat plate but also the di-
mensions of the region of the cavity. The solution of the problem
of free boundary flow about two plates as shown in Figure 8 is due
to D. Riabouchinsky [31, [4], [5]. The plates are identical and
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the flow pattern is symmetrical about the x-axis. The velocity
at infinity is equal to vao. On the streamlines CMD and C'M'D'
the speed is constant and equal to vo> v . When the distance
between the plates is made equal to zero, one obtains the usual
flow about a flat plate. When one of the plates recedes to in-
finity, the Rayleigh flow about the other plate obtains0 Weinig
[7] proposed to use as a model of the cavitation flow about one
lat plate the scheme of Riabouchinsky, making the supposition

that the inexact model of the flow near the end of the cavity,
caused by the closing of the cavity by the second plate, does
not essentially influence the flow about the first plate.

The solution of Riabouchinsky's problem is conveniently
expressed in the following form:

od_. = t Vi- = .l t(-1

(3.1) w = (Dt9

where k and %D are constants. From (3.1) it is possible to ob-
tain formulas for the computation of all quantities of interest
to uso

The cavitation number:

(3.2) =2 (+

The length of the cavity (distance between plates):

(3 3) a = 2D [ E K]
vo  k k2

The width of the cavity:

(3.4) 29D -k+

vo 1 +lI.k

The length of the flat plates:

(3.5) 2 E 1, '- K

In these formulas K and E are' the complete elliptic
integrals of the first and second kinds with modulus k, and K'
and E' are these with modulus k' 1-k2

The drag coefficient of a plate:

,(3:6) cx = 2 [1-2 D. 1(-k (
VoA k ]



The results of computation from formulas (3.2) to (3.6)
are given on Figures 11, 12, 13, 14. On Figure 12 there is also
given a curve for a/.eagainst A computed for the scheme under con-
sideration by an approximate formula of Weinig [7]:

(3,7) a/e = 2/X

The discrepancy between the exact and the approximate
formulas is marked.

4. The scheme of D. A. Efros

On Figure 9 is presented the scheme due to D. A. Efros
8 . The pressure along the streamlines bounding the cavity is

constant. The jet flowing into the cavity is subsequently re-
moved onto a Riemann surface. The solution of the problem is
given by the formula [9]:

(41) dw= Lvo (0  .1)( 2+h) (h2 +1
a o (.Z+d ) (dC O+l)

(4,2) dw (r-ih) (hl-) (" -
vodZ (+ih) (hr+i +)

where V is a parameter with values in the semi-circle of radius 1
(Figure 10) and h, d, and L are constants. In addition h and d
are ,connected by the condition of sihgle-valuedness of the function

(4-3) h

where D = (d* 112 - (d + ) - 4°
jd d

On Figures 11, 12, 13, and 14 are plotted the values of
the dimensions of the cavity and the drag [9J.

By the length of the cavity is understood the distance
between the plate and the line parallel to it and tangent to the
bounding streamlines of the cavity,

50. Conclusions

From an examination of Figure 11 it follows that all
the theories outlined above give for C values very close to each
other. Apparently, the determining influences on the amount of
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drag of a plate show themselves as the existence of discontinuous
flow and the relation between the pressure at infinity and in the
cavity, but not the flow pattern at the end of the cavity. The
schemes of Riabouchinsky and Efros give according to Figures 12,
13, and 14 very similar results also for the dimensions of the
cavity. In one of the schemes described above, the modified
scheme of Betz, the cavity stretches out to infinity; in another,
Riabouchinsky's scheme, a restraining body is placed at the end
of the cavity; in the third scheme that of Efros, a jet flows
into the cavity proceeding thereafter onto another Riemann surface.

The introduction into the schemes of such sorts-of
artificial elements is done because otherwise, in the light of
D'Alembert's paradox, it would be impossible to construct a
stationary flow with an effective force on the plate. It is
possible to propose still other schemes, modelling the free-
boundary, cavitating flow about a flat plate; however, there is
no foundation for supposing that they would give essentially new
results.

The theory of Betz, as is known, agrees well with ex-
periments for small cavitation numbers. With increase in the
cavitation number there comes a moment when the experimental
curves of the coefficients of drag and lift of a wing (with given
angle of attackd), plotted against X turn downwards. This
fact, apparently, is explained by the low ceasing t@ be
a free boundary flow at this point.

Central Aero-Hydrodynamical Received by the editors
Institute N.E. Joukowsky 11 December 1946
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1. According to the scheme with a vari-
able velocity on the free boundary.

2. Scheme of Betz.
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Figure 12. RELATIVE LENGTH OF THE CAVITY

1. Scheme of Efros.
2. Scheme of Riabouchinsky.
3. Approximate formula of Weinig.



Figure 13. RELATIVE BREADTH OF CAVITY

I., Scheme of Efros.
2. Scheme of Riabouchinsky.



Figure 14. RATIO OF LENGTH TO BREADTH OF CAVITY

1. Scheme of Efros.
2. Scheme of Riabouchinsky.
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SOME REMARKS ON GUREVICH'S PAPER

by

J. V. Wehausen

In connection with this paper it is of interest to note
that similar computations have been performed in at least two
other papers. Zoller (Reference 1) computed the length and diam-
eter of the cavity behind a flat plate as well as the drag coef-
ficient, all as a function of the cavitation number, according to
the Riabouchinsky model. Gilbarg and Rock (Reference 2) perform-
ed the identical computations for this model and, in addition,
for the Efros model (Wagner model in their report) computed the
drag coefficient, length of the cavity, and asymptotic diameter
of the reentrant jet.

In the case of the Riabouchinsky model there is practi-
cally complete agreement between the three papers. This may be
seen in comparing Figures 1, 2, and 3 following these remarks
with Figures 11, 12, and 13 of Gurevich's paper.

For the Wagner-Efros model Zoller made no computations.
For the drag coefficient curves Gurevich and Gilbarg and Rock
seem to be in good agreement as far as one can tell from the
small scale of Gurevich's curves. There is no comparable data
for diameters since Gurevich computed the diameter of the cavity
and Gilbarg and Rock that of the reentrant jet, With regard to
length of the cavity there is a difference in definition. Gurevich
apparently computes the distance from the plate to the parallel
tangent to the region of the cavity whereas Gilbarg and Rock com-
pute the distance between the plate and the rear stagnation point
(the distance CH on Gurevich's Figure 9). Consequently, the
length computed by Gilbarg and Rock should be greater than that
computed by Gurevich. On the other hand the computed points of
the former show practically no difference between the two mQdels
for cavitation numbers between 0,2 and 1oO (see Figure 2 following)
whereas Gurevich's Figufe 12 shows the curve for the Wagner-Efros
model lying noticeably above that for the Riabouchinsky model.

Zoller gives the following approximate formulas for
the length, X/b, and the diameter, d/b:

d.: 4 (1

. 4 1+ 1+ 14;n
b - s+4 (T 4 2 4

where &f=a/(2+<a). The formula for d/b is accurate within 04%
for a _ 3& 'The formula fore/b loses accuracy more rapidly.
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At a = 1, it is 15% too high, but at a = 0.5 only 4% too high;
at a = 0.4 it is correct within a fraction of a per cent. For
low cavitation numbers Gilbarg and Rock give the following approxi-
mate formula for the length,/b:

d v 3.5 -1.85

That this formula is not as accurate as the Zoller approximation
for cavitation numbers less than 1 is indicated by the following
table

) Exact Zoller G-R

1 4.186 4.77 3.5

.5 13.036 13.58 12.62

.2 67.031 67.2 68,7

Both Zoller and Gilbarg-Rock give the approximate formula

CD = 2 (1+a).

This underestimates by less than 0.8% at a= 1 and improves as r
decreases.
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