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Abstract

This paper is a partial result of our researchghémain topic "On The Henstock-Kurzweil Integral for
Riesz-Spaces-valued Functions Defined on Riesz Shatewe construct Henstock-Kurzweil integral for Riesz-

spaces-valued functions defined on Euclidean spateand prove some basic properties among which the fact that
our new integral is coincides with the Henstock-Kuritvmtegral for Banach-spaces valued functions defined on

spaceR".
Keywords : Riesz Space, Henstock-Kurzweil Integral
1. INTRODUCTION
The Henstock-Kurzweil integral for B$z-space-valuedurictions defined on
bounded subintervals of the real line and wéhpect to operator-valued measures was
investigated by Riecan(1989,1992) and Rieaad Brabelova(1996), with respect to

(D) - convergence (that is a kirad convergence in which the-technique is replaced

by a technique involving double sequen¢esee Riecan and Neubrunn(1997)), with
respect to the order convergence, see Boccuto(1998) and in Boccuto and Riecan(2004)
with respect to the ordezonvergence but the Henstockigweil integral for Riesz-
space-valued functions was defined on unbodrsidintervals of the real line.

The Henstock-Kurzweil integral for reahlued functions defined on Euclidean
spaceR" with respect to volume: was investigated in Bffer(1993) and Indrati(2002)
and The Henstock-Kurzwell integral rfdoounded-sequence-spacdued functions
defined on Euclidean spado& with respect to volume: was investigated in Muslim
and Soeparna(2002) and Zachriwan(2004).

The main goal of this paper is torgealize the results above by constructing
Henstock-Kurzweil integral for Riesz-vad functions defined on Euclidean spate

and we prove some fundamental properties.

2. PRELIMINARY
Let 0 be the set of all strictly positive integers, the set of the real numbers,

R* be the set of all strictly positive realmbers. Moreover, we refer to (Pfeffer,1993)

Dipresentasikan dalam Seminar Nasional MIPA 2007 dengan tema “Peningkatan
Keprofesionalan Peneliti, Pendidik & Praktisi MIPA”  yang diselenggarakan oleh Fakultas
MIPA UNY Yogyakarta pada tanggal 25 Agustus 2007


https://core.ac.uk/display/33509855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Muslim Ansori

about the notions of cell, segmentation, partitiansvolume, and s - fine Perron

partition.

Definisi 2.1 (Zaanerl996): A Riesz space L is said to be Dedekind complete if every
nonempty subset of L, bounded from above, has supremumin L.

Definisi 2.2 (Riecan 1998): A bonded double sequence (a )m_ eL is called regulator
or (D)-sequenceif, for each iel,a; 0, thatis a,>a,Vjel and nay =0.
Definisi 2.3 (Boccuto and Riecar2004): Given a sequence (r,) L. Sequence (r,)
is said to be (D)-convergence to an element r e L if there exist a regulator (ai’i)i,;’
satisfying the following condition:

for every mapping p:L —L,thereexistsaninteger n, sehingga |r, —r|< _Zaj,p(i)

for all nx>n, . Inthiscase, the notation is denoted by (D)lim,r, =r .

Definition 2.4 (Boccuto and Riecan, 2004): A Riesz Space L issaid to be weakly o -

distributive if for every (D)- sequence (a, ), then
A (ivlai,pmj =0.

Throughout the paper, we shalways assume that is Dedekind complete

weakly o - distributive Riesz space.

Main Results

In the principle, this integral is a eralization of Henstock-Kurzweil integral
for Riesz-valued functions fieed on subintervals of thesal line by changing the
length of[a,b] = % with the general volume of a cell Ac R".SeePfeffer (1993) and
Muslim and Soeparna(2002). Remember that the volume on cell AcR" is an

additive and non negative function frofi(A) into %, where 3(A) is a collection of

all subcells inA..
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Definition 3.1 : Let « be a volume on R" and AcR" be a cel. A function
f:R" > L is said to be Henstock-Kurzwell integrable on A with respect to «,

denoted by feHK(ALa), if there exists an element ZelL and (D)-sequence

(a,), €L suchthatfor every pell wecanfind afunction §:E — %" such that

8

< V@)

PYf(X)a(1)-2|=

kzr;f(fk)a(lr)—a

for every & -fine Perron partition P ={(1,X)} = {(1,,%,),(1,,X, ).....(I,.X, )} on A.

1

Il
=

We note that the Henstock-Kurzweil integral with respect ts well- defined,

that is there exists at most one elementsatisfying Definition 3.1 and in this case we

have(HK)j'fda =Z. The uniqueness is given the following theorem.
A

Theorem 3.2 : Let « be a volume on R" and AcR" be a cel. If function

f e HK (AL ) , thenits a-integral is unique.

Proof: Let f eHK(AL ). If both = and =, are Henstock-Kumeil integral of

function f , satisfying Definition 3.1, then there exists t\m)-sequence (ai,i)i,- and
(bi,i)i,- in L such that for everypel", we can find two positive functions, and &,
on A, respectively, and for everys, -fine Perron partitionPlz{(I,i)} and s, -fine

Perron partitionP, ={(1,X)} on A , we have

PYf(R)a(l)-El<va

3 Sin(i)

and

P2 f(X)a(l)-E,|< v b,
respectively. Let nows (X) =min{5,(X),5, ()}, for everyX e A and take anys -fine
Perron partitionP ={(1,X)} on A , thenP ={(1,X)} is both ¢,-fine Perron partition and

8,-fine Perron partition oA, and thus we have
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0<|z, -5, <P f(R)a(l) -5 +[P, X f (R)a (1) -E,| < v + v
= Zl(ai,po) * biw(i))

0

< V.G

where ¢,; =2(a; +b;;) Vi,jel . By arbitrariness op el " , we get

0<[E,-5,|< A [ic. jzo

pell i=1 ip(i)
since ¢,; is (D)-sequence and thanks to weakdistributivity of L. Thusz, =&,,

and so our HK-integral is well-defined:

Now, we give some fundamental propertiesHf(A,L,«).

Theorem 33 : If f,f,eHK(ALa) and k,k, e R, then kf +k,f, e HK(A L) and
(HK)I(klflJrszz)da:kl(HK)Iflda+k2(HK)If2da_
A A \

Proof : The proof is similato the one of§jluslim , 2003), Theorem 3.1.3
Theorem 3.4: If f,g eHK(AL,e) and f(X)<g(x) for every X € A, then
(HK)[fde <(HK) [ gda .
A A

Proof : By hypotesis, there exists tw(@)-sequences(a, , )ij and (bi,j)i,- such that,

for every pell', we can find positive functionss, dand, , respectively onA, and
wheneverP, :{(I,i)} is o, -fine Perron partition andPp, ={(|,>?)} is &,-fine Perron

partition onA , we have
PYf(R)a()-[fda|<va i
) Y
{fda—i\:laiyp(i) <P f(X)a(l)< {fda+ va, )

and
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P,Yf (R)a(l)- [gdal< v b, <

A

Igda - i\:/lbi,p(i) = Pzzg ()?)a(l ) - Igda + i\:/lbi’p(i)

A A

respectively.
For every XeA, let §(X)=min{5,(X),5,(X)} , and takes -fine Perron
partition P ={(1,X)} on A, then P ={(1,X)} is boths, -fine Perron partitiofi =1,2)

on A. Thus we get

fda - va . <PYf(X)a(1)<PY.g(X)a(l)< [gda+vb,

A A

and hence, foreverpell",

0

{ fde = { gda < va, i)+ VB0 < Y, C)

where ¢, =2(a;+b;)vi,jel . By arbitrariness ofpel” , since ¢; is a

(D) -sequence and takingttnaccount of weals -distributivity of L, we get

_[fda —J/;gda < (ivlci‘p(i)) =0

that is [fde < [gda . This concludes the proof.
A A

Definition 3.5 (Elementary S@t A set A< R" which is union of finite cells is called
an elementary set.

Every elementary set can be segtadnnto non-ovedpping cells. IfA, and

A, are elementary sets they A, and A\ A, are also elementary sets. Integration

on elementary set can be constructed through the following theorem.

Teorema 3.6: Let « beavolumeon R" and A and A, be non-overlapping cells in
R" and A=A UA,.If f eHK(Al,L,a) and f eHK(AZ,L,a) , then f eHK(A,L,a) and

(HK) [ fda=(HK)[fde+(HK) [ fda

Proof : Let f eHK(A,L ) and f eHK(A,,L,a) . There exists two (D)-sequence

(a”)m_ and (bi,j)i,,-’ such that for every e ', we can find positive functions, and

Matematika 217



Muslim Ansori

S, on A respectively. WheneverP, ={(|,>?)} is ¢,-fine Perron partition o, and

P, ={(1.X)} is &,-fine Perron partition om, , we have

Plzf (Y)a(l)—Alfda < A
and
PZZf ()?)oz(l)—A fda| < i\z/lbi«p(i)
Let now 6: A— R" be such that,
5,(X) if XeAandX ¢A,
5(X)= 8, (X) if XeA,andx g A,

min{s,(X),5,(X)}  if XeANA,
for every & -fine Perron partitiorP = {(1,X)} on A whereP =P, UP,. Therefore, we

get

PZf()?)a(I)—ufda+A[fda]

< +

P> f (i)a(l)—ifda

PZZf(T()a(I)—A[fda

PR IR

< s

<

where ¢, ; = 2(% +b, )Vi,j ell is a(D)-sequence, then assertion follows.

Using Theorem 3.6 and Definition 3.5 abpwe can see immediately that the
following holds.

Corrolary 3.7 : Given an elementary set Ac®R" and a volume on A. A function
f:A—L issaid to be Henstock-Kurzweil integrable on A with respect to «, denoted

by f eHK(ALa),if feHK(A,La) for every i, where AzfjA and {A,A,,...,A} is

any divison on A . The Henstock-Kurzwell integral of function f on A is

(HK)IfdazZp:ffda.

i=1 A

We now state version of the Cauchy criterion.
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Theorem 3.8 : A function f:A—L is Henstock-Kurzweil integrable if and only if

there exists a (D) - sequence (a,; )  in L such that, for every pell” we can find a
function 5:A—>®R* and for every 5-fine Perron partition P, = {(A, i)} and

P, ={(1,X)} on A, we have
‘Plzf (X)er (1) =P, 2 F (X) (] )‘ S V&)
Proof : The proof is similar to #none of Theorem 3.1.8, p. 57Muslim (2003).

We now prove a result about Hentd€krzweil integrability on subcells.

Theorem 3.9 : Let o be a volume on a cell Ac®R". If feHK(ALe), then

f eHK(B,L,«), for every cell Bc A.

Proof : By virtue of Theorem 3.,8here exists 4D) - sequencga, )ij in L such that,

for every pell” we can find a functions: A— ®* and for everys —fine Perron

partition P, = {(1,x)}and P, ={(1,x)} on A, we have

|P12f (X)er (1) =P, 2 F (X) (] )| S V&L
Sincecell B = A, then there exista collection of finitenon-overlapping cell§

such thatA\B= U C. By virtue of Cousin Lemma, there existssa fine Perron

Cel
partion P. on C, for everyC er'. Let §-fine Perron partiorP, andP, on B . Put
P, =P, U( U Pc) andP, =P, U( U C). ThenP, andP, are § -fine Perron partion on
Cel Cell
A . Moreover, we get

P> (X)a (1) -Ps S () (1)
PB'Zf(f)a(l)+2pc2f(f)a(l)—ZPCZf(f)a(l)—P;Zf(f)au)\

Cell Cell

X1 (Rall)+ TR S (R)a) - {R X! ()al) + Tr THR)e(0)]

Cell Cel
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Again, from Theorem 3.8 and the last term, it follows fhatK (B,L,«)

By virtue of Theorem 3.9, we deé primitif function of Henstock-Kurzweil
integrable functiorf on a cellA c R" with respect to a volume as follows.

Definition 3.10: If f eHK(A,L,a) and 3(A) isa collection of all subcellsin A, then
afunction F: 3(A) - L satisfying
F(1)=(HK)[fde and F(¢)=0
|

for every cell 1€ 3(A) iscalled « - Primitif of Henstock-Kurzweil integrable function f

on 3(A).
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