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Abstract  
 

This paper is a partial result  of our researchs  in the main topic "On The Henstock-Kurzweil Integral for 
Riesz-Spaces-valued Functions Defined on Riesz Space L ". We construct Henstock-Kurzweil integral for Riesz-

spaces-valued functions defined on  Euclidean space nℜ  and  prove some basic properties among which the fact that 
our new integral is coincides with the Henstock-Kurzweil Integral for Banach-spaces valued functions defined on 

space . nℜ
Keywords : Riesz Space, Henstock-Kurzweil Integral 
 

1. INTRODUCTION 

The Henstock-Kurzweil integral for Riesz-space-valued functions defined on 

bounded subintervals of the real line and with respect to operator-valued measures was 

investigated by Riecan(1989,1992) and Riecan and Brabelova(1996), with respect to 

( )D - convergence (that is a kind of convergence in which the ε -technique is replaced 

by a technique involving double sequences , see Riecan and Neubrunn(1997)), with 

respect to the order convergence, see Boccuto(1998) and in Boccuto and Riecan(2004) 

with respect to the order convergence but the Henstock-Kurzweil integral for Riesz-

space-valued functions was defined on unbounded subintervals of the real line. 

The Henstock-Kurzweil integral for real-valued functions defined on  Euclidean 

space  with respect to volume nℜ α  was investigated in Pfeffer(1993) and Indrati(2002) 

and The Henstock-Kurzweil integral for bounded-sequence-space-valued functions 

defined on  Euclidean space  with respect to volume nℜ α  was investigated in Muslim 

and Soeparna(2002) and Zachriwan(2004). 

The main goal of this paper is to generalize the results above by constructing 

Henstock-Kurzweil integral for Riesz-valued functions defined on  Euclidean space nℜ  

and we prove some fundamental properties.   

 

2. PRELIMINARY 

Let  be the set of all strictly positive integers, ฀ ℜ  the set of the real numbers, 

 be the set of all strictly positive real numbers. Moreover, we refer to (Pfeffer,1993) +ℜ
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about the notions of cell, segmentation, partition, α -volume, and δ - fine Perron 

partition. 

 

Definisi 2.1 (Zaanen,1996) : A Riesz space  is said to be Dedekind complete if every 

nonempty subset of L , bounded from above, has supremum in L . 

L

 

Definisi 2.2 (Riecan, 1998) : A bonded double sequence ( ) ∈, ,i j i j
a L  is called regulator 

or ( )D -sequence if, for each  ,  that is  ∈ ↓฀ ,, i ji a 0 +≥ ∀ ∈ ฀, , 1i j i ja a j  and . 
∈
∧ =
฀

, 0i jj
a

Definisi 2.3 (Boccuto and Riecan, 2004) : Given a sequence ( ) ∈n n
r L . Sequence  ( )n n

r  

is said to be ( )D -convergence to an element ∈r L  if there exist a regulator ( , 

satisfying the following condition: 

), ,i j i j
a

for every mapping  ρ →: L L , there exists an integer    sehingga 0n ( )ρ

∞

=
− ≤ ∨ ,1n i ii

r r a    

for all   . In this case, the notation is denoted by ≥ 0n n ( ) =limn nD r r . 

 

Definition 2.4 (Boccuto and Riecan, 2004) :  A Riesz Space  is said to be weakly L σ -

distributive if for every ( )D - sequence ( ),i ja , then 

( )ρρ

∞

=∈

⎛ ⎞∧ ∨ =⎜ ⎟
⎝ ⎠฀฀

,1
0i ii

a . 

  

Throughout the paper, we shall always assume  that  L  is Dedekind complete 

weakly σ − distributive Riesz space. 

 

Main Results 

In the principle, this integral is a generalization of Henstock-Kurzweil integral 

for Riesz-valued functions defined on subintervals of the real line by changing the 

length of  with the general volume [ ]⊂ ℜ,a b α  of a cell .See Pfeffer(1993) and 

Muslim and Soeparna(2002). Remember that the volume 

⊂ℜnA

α  on cell  is an 

additive and non negative function from 

⊂ℜnA

( )ℑ A  into ℜ , where ( )ℑ A  is a collection of 

all subcells in . A
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Definition 3.1 : Let  α  be a volume on nℜ  and   be a cell.  A function  

 is said to be Henstock-Kurzweil integrable  on    with respect to 

⊂ ℜnA

ℜ →: nf L A α , 

denoted by ( )α∈ , ,f HK A L , if there exists an element  Ξ∈L  and ( )D -sequence  

  such that for every ( ) ∈, ,i j i j
a L ρ∈ ฀฀  we can find  a function  such that  δ +→ℜ: E

( ) ( ) ( ) ( ) ( )ρα α
∞

=
=

− Ξ = − Ξ ≤ ∨∑ ∑ ,1
1

r

k r i ii
k

P f x I f x I a                

for every  δ -fine Perron partition ( ){ } ( ) ( ) ( ){ }= = 1 1 2 2, , , , ,..., ,r rP I x I x I x I x  on . A

 

We note that the Henstock-Kurzweil integral with respect to α  is well- defined, 

that is there exists at most one element Ξ , satisfying Definition  3.1 and  in this case we 

have ( ) α = Ξ∫
A

HK fd . The uniqueness is given  in the following theorem. 

 

Theorem 3.2 : Let  α  be a volume on nℜ  and   be a cell.  If function ⊂ ℜnA

( )α∈ , ,f HK A L  , then its α -integral is unique. 

 

Proof: Let ( )α∈ , ,f HK A L . If both  Ξ1   and  Ξ2   are  Henstock-Kurzweil integral of  

function  f  , satisfying Definition 3.1,  then there exists two ( )D -sequence  and 

 in L  such that  for every  

( ), ,i j i j
a

( ), ,i j i j
b ρ∈ ฀฀ ,  we can find  two positive function δ1  and δ2  

on , respectively,  and for every  A 1δ -fine Perron partition ( ){ }=1 ,P I x  and 2δ -fine  

Perron partition ( ){ }=2 ,P I x  on   , we have A

( ) ( ) ( )ρα
∞

=
− Ξ ≤ ∨∑1 1 ,1 i ii

P f x I a  

and 

( ) ( ) ( )ρα
∞

=
− Ξ ≤ ∨∑2 2 ,1 i ii

P f x I b  

respectively. Let now ( ) ( ) ( ){ }δ δ δ= 1 2min ,x x x , for every ∈x A  and take any  δ -fine 

Perron partition ( ){ }= ,P I x  on  , then A ( ){ }= ,P I x  is both  1δ -fine Perron partition and 

2δ -fine Perron partition on ,  and thus we have A
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )
( )

ρ ρ

ρ ρ

ρ

α α
∞ ∞

= =

∞

=

∞

=

≤ Ξ − Ξ ≤ − Ξ + − Ξ ≤ ∨ + ∨

≤ ∨ +

≤ ∨

∑ ∑1 2 1 1 2 2 , ,1 1

, ,1

,1

0 i i i ii i

i i i ii

i ii

P f x I P f x I a b

a b

c

 

where  ( )= + ∀ ∈ ฀, , ,2i j i j i jc a b i j, .  By arbitrariness of ρ∈ ฀฀  , we get  

( )ρρ

∞

=∈

⎛ ⎞≤ Ξ − Ξ ≤ ∧ ∨ =⎜ ⎟
⎝ ⎠฀฀

1 2 ,1
0 0i ii

c  

since   is (,i jc )D -sequence and thanks to weak σ -distributivity of .  Thus , 

and so our HK-integral is well-defined.

L Ξ = Ξ1 2

฀ ` 

 

Now, we give some fundamental properties of ( )α, ,HK A L . 

 

Theorem 3.3 : If ( )α∈1 2, ,f f HK A L,  and ∈ℜ1 2,k k , then ( )α+ ∈1 1 2 2 , ,k f k f HK A L  and 

( ) ( ) ( ) ( )α α α+ = +∫ ∫1 1 2 2 1 1 2 2
A A

HK k f k f d k HK f d k HK f d∫
A

. 

Proof : The proof is similar to the one of (Muslim , 2003), Theorem 3.1.3 

 

Theorem 3.4 : If ( )α∈, ,f g HK A L,  and ( ) ( )≤f x g x  for every ∈x A , then  

( ) ( )α α≤∫ ∫
A A

HK fd HK gd . 

Proof : By hypotesis, there exists two ( )D − sequences, ( ), ,i j i j
a  and  such that,  

for every , we can find  positive functions 

( ), ,i j i j
b

ρ∈ ฀฀ 1δ  dan 2δ  , respectively  on  ,  and 

whenever 

A

( ){ }=1 ,P I x  is  δ1 -fine Perron partition and  ( ){ }=2 ,P I x  is δ2 -fine Perron 

partition  on , we have A

( ) ( ) ( )

( ) ( ) ( ) ( )

ρ

ρ ρ

α α

α α

∞

=

∞ ∞

= =

− ≤ ∨ ⇔

− ∨ ≤ ≤ + ∨

∑ ∫

∑∫ ∫

1 ,1

1, ,1 1

i ii
A

i i i ii i
A A

P f x I fd a

fd a P f x I fd aα
 

and 
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( ) ( ) ( )

( ) ( ) ( ) ( )

ρ

ρ ρ

α α

α α

∞

=

∞ ∞

= =

− ≤ ∨ ⇔

− ∨ ≤ ≤ + ∨

∑ ∫

∑∫ ∫

2 ,1

2, ,1 1

i ii
A

i i i ii i
A A

P f x I gd b

gd b P g x I gd bα
 

respectively. 

For every ∈x A ,  let ( ) ( ) ( ){ }1 2min ,x x xδ δ δ=  , and take δ -fine Perron 

partition ( ){ }= ,P I x  on  ,  then  A ( ){ }= ,P I x   is both δ i -fine  Perron partition( )  

on  . Thus we get 

1,2i =

A

( ) ( ) ( ) ( ) ( ) ( )ρ ρα α α
∞ ∞

= =
− ∨ ≤ ≤ ≤ + ∨∑ ∑∫ ∫, ,1 1i i i ii i

A A

fd a P f x I P g x I gd bα

ρ,

 

and hence,  for every ,  ρ∈ ฀฀

( ) ( ) ( )ρ ρα α
∞ ∞ ∞

= = =
− ≤ ∨ + ∨ ≤ ∨∫ ∫ , ,1 1 1i i i i i ii i i

A A

fd gd a b c  

where  . By arbitrariness of ( )= + ∀ ∈฀, , ,2 ,i j i j i jc a b i j ρ∈ ฀฀  , since    is a ,i jc

( ) −D sequence and taking into account of weak σ -distributivity of L , we get 

( )ρρ
α α

∞

=∈

⎛ ⎞− ≤ ∧ ∨ =⎜ ⎟
⎝ ⎠∫ ∫ ฀฀

,1
0i ii

A A

fd gd c  

that is α α≤∫ ∫
A A

fd gd . This concludes the proof.฀  

 

Definition 3.5 (Elementary Set): A set   which is union of finite cells is called  

an elementary set. 

⊂ℜnA

 

Every elementary set can be segmented into non-overlapping cells.  If   and 

 are elementary sets then    and  

1A

2A ∪1A A2 1 2\A A   are also  elementary sets. Integration 

on elementary set  can be constructed  through the following theorem. 

 

Teorema 3.6 : Let  α  be a volume on nℜ  and  and   be non-overlapping cells in 

 and . If 

1A 2A

nℜ = U1A A A2 ( )α∈ 1, ,f HK A L  and ( )α∈ 2, ,f HK A L  , then ( )α∈ , ,f HK A L  and 

( ) ( ) ( )α α α
=

= +∫ ∫
U1 2 1 2A A A A A

HK fd HK fd HK fd∫  

Proof : Let ( )α∈ 1, ,f HK A L  and ( )α∈ 2, ,f HK A L  . There exists two  ( ) −D sequence  

 and  , such that for every ( ), ,i j i j
a ( ), ,i j i j

b ρ∈ ฀฀ , we can find  positive functions δ1   and 
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δ2   on  respectively. Whenever  A ( ){ }=1 ,P I x  is δ1 -fine  Perron partition on  and  1A

( ){ }=2 ,P I x  is  δ2 -fine Perron partition on  , we have 2A

( ) ( ) ( )ρα α
∞

=
− ≤ ∨∑ ∫

1

1 ,1 i ii
A

P f x I fd a  

and 

( ) ( ) ( )ρα α
∞

=
− ≤ ∨∑ ∫

2

2 ,1 i ii
A

P f x I fd b  

Let now    be such that, : Aδ +→ℜ

( )
( )
( )

( ) ( ){ }

δ
δ δ

δ δ

⎧ ∈ ∉
⎪

= ∈⎨
⎪ ∈⎩ I

1 1

2 2

1 2 1 2

and

and

min ,

∉
2

1

x if x A x A

x x if x A x

x x if x A A

A  

for every  δ -fine Perron partition ( ){ }= ,P I x  on   where A = U1P P P2 .  Therefore, we 

get 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )ρ ρ ρ

α α α

α α α

∞ ∞ ∞

= = =

⎛ ⎞
− +⎜ ⎟⎜ ⎟
⎝ ⎠

≤ − + −

≤ ∨ + ∨ ≤ ∨

∑ ∫ ∫

∑ ∑ α∫ ∫

1 2

1 2

1 2

, , ,1 1 1

A A

A A

i i i i i ii i i

P f x I fd fd

P f x I fd P f x I fd

a b c

 

where   is a ( )= + ∀ ∈฀, , ,2 ,i j i j i jc a b i j ( ) −D sequence, then assertion follows.฀  

  

Using Theorem 3.6 and Definition 3.5 above, we can see  immediately that the 

following holds. 

 

Corrolary 3.7 : Given an elementary set  and ⊂ℜnA α  volume on . A function 

 is said to be Henstock-Kurzweil integrable  on    with respect to 

A

→:f A L A α , denoted 

by ( )α∈ , ,f HK A L , if  ( )α∈ , ,if HK A L  for every i, where  and {
=

= U
1

p

i
i

A A }1 2, ,..., pA A A  is 

any division on . The Henstock-Kurzweil integral of function f  on  is A A

( ) α α
=

=∑∫ ∫
1

i

p

iA A

HK fd fd . 

 

 We now state  version  of the Cauchy  criterion. 
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Theorem 3.8 :  A function  is Henstock-Kurzweil integrable if and only if 

there exists a 

→:f A L

( ) −D sequence  in L  such that, for every ( ), ,i j i j
a ρ∈ ฀฀   we can find a 

function δ +→ℜ: A  and for every δ − fine Perron partition ( ){ }=1 ,P A x and 

( ){ }=2 ,P I x  on , we have A

( ) ( ) ( ) ( ) ( )ρα α
∞

=
− ≤∑ ∑1 2 ,1 i ii

P f x I P f x I a∨  

 

Proof : The proof is similar to the one of Theorem  3.1.8, p. 57 of Muslim (2003). 

  

We now prove a result about Hentock-Kurzweil integrability on subcells. 

 

Theorem 3.9 :  Let α  be a volume on a cell  . If ⊂ℜnA ( )α∈ , ,f HK A L , then 

( )α∈ , ,f HK B L , for every cell  . ⊂B A

 

Proof : By virtue of Theorem 3.8, there exists a ( ) −D sequence ( ), ,i j i j
a  in L  such that, 

for every   we can find a function ρ∈ ฀฀ δ +→ℜ: A  and for every δ − fine Perron 

partition ( ){ }=1 ,P I x and ( ){ }=2 ,P I x  on , we have A

( ) ( ) ( ) ( ) ( )ρα α
∞

=
− ≤∑ ∑1 2 ,1 i ii

P f x I P f x I a∨  

 Since cell , then there exists a collection of finite non-overlapping cells ⊂B A Γ  

such that 
∈Γ

= U\
C

A B C .  By virtue of Cousin Lemma, there exists a δ − fine Perron 

partion   on  C , for every . Let  CP ∈ΓC δ − fine Perron partion  and  on B  . Put '
BP ''

BP

( )
∈Γ

= U U'
0 B C

C
P P P  and ( )

∈Γ
= U U' ''

0 B
C

P P C . Then  and  are  0P '
0P δ − fine Perron partion  on 

. Moreover, we get A

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )ρ

α α

α α α

α α α α

α α

∈Γ ∈Γ

∈Γ ∈Γ

∞

=

−

= + − − α

⎧ ⎫
= + − +⎨ ⎬

⎩ ⎭

= −

≤ ∨

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

' ''

' ''

' ''

'
0 0

,1

B B

B C C B
C C

B C B C
C C

i ii

P f x I P f x I

P f x I P f x I P f x I P f x I

P f x I P f x I P f x I P f x I

P f x I P f x I

a
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Again, from Theorem 3.8 and the last term, it follows that ( )α∈ , ,f HK B L ฀  

 By virtue of  Theorem 3.9,  we  define primitif function of Henstock-Kurzweil 

integrable function f  on  a cell  with respect to a volume ⊂ℜnA α  as follows. 

 

Definition 3.10 : If  ( )α∈ , ,f HK A L  and ( )ℑ A  is a collection of all subcells in , then  

a function 

A

( )ℑ →:F A L  satisfying 

( ) ( ) α= ∫
I

F I HK fd   and ( )φ = 0F  

for every cell ( )∈ℑI A  is called α - Primitif of Henstock-Kurzweil integrable function f  

on ( )ℑ A . 
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