

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

OREWORD

Project Whirlwind makes use of the facilities of the Digital Computer
The principal objective of the Project is the application Laboratory. The principal objective of the Project is the application of an electronic digital computer of large capacity and very high speed (Whirlw.
to problems in mathematics, science, engineering, simulation and control.

Whirlwind I is of the high-speed electronic digital type, in which quantities are represented as discrete numbers, and complex problems are solved by the repeated use of funddamental arithmetic and logical (i,e.e. control or
selection) operations. Computations are executed by fractional-microsecond selection) operations. Computations are executed by fractional-microsecond
pulses in electronic circuits, of which the principal ones are (1) the flip11op, a circuit containing two vacuum tubes so connected that one tube or the
other is conducting,
but not both; (2) the gate or coinclidence circuit (other is conducting, but not both; (2) the gate or colnc1dence circuitt; (3)
the magnetic-core memory, in which binary digits are stored as one of two dit the magnetic-core memory, in which binary digits are stored as one of two di-
rections of magnetic flux within ferro-magnetic cores.

Whirlwind I uses numbers of 16 binary ditis
decimal digits). This length was selected to limit the machine to a practical size, but it permits the computation of many simulation prochems. Calculations
requiring greater number length are handled by the use of multiple-1ength number requiring greater number length are handied by the use of multiple-1ength numbers.
Rapid-access magnetic-core memory has a capacity of 32,768 tinary dit sent speed of the computer $1 \mathrm{~s} 40,000$ single-address operations per second,
valent valent to about 20,000 multiplications per second.

This report covers the specific period of March 18, 1957 to May 26, 1957. During this time, 60 problems made use of 347.32 hours of the 404.40 hours of whirl
wind computer time allocated to the Sccentific and Engineering Computations (SkEC) Group. Of the 404.40 allocated hours of computer time, 3.3% was down time because
of computer malfunctions. 43.73 hours of the allocated time were usei for termina. I computer malfunctions. 43.73 hours of the allocated time were used for terminal not logged to specific probiems.
The 60 problems run during this quarter cover some 18 fields of applica
tion. The results of 19 of the problems have been or will be included in academic tion. The results of 19 of the problems have been or will be included in academic
theses. In these 19 problems, there are represented 12 Doctoral theses, 5 Master's, theses. In these 19 problems, there are represented 12 Doctoral theses, 5 Master's,
3 Navai Engineer's and 1 Bachelor's. Nineteon of the problems have originated f rom
research projects sponsored at MIT by the office of Naval Research.

Two tables are provided as an index to the problems for which progres
eports have been submitted. In the first table, the problems are arranged ac cording to the field of application and the source and amount of time used on NWI are given. In Table II, the problems are 11sted according to the principal mathematical problem involved in eachi. In each tabie, the letter after the pro
blem number indicates whether the problem 1s for academic credit and whether it blem number indicates whether the problem is for academic credit a
is sponsored. The code is explained in section 2.1, Introduction.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

2.1 Introduction

Progress reports as submitted by the various programmers are presented
in numerical order in Section 2 2 . In numerical order 1n Section 2.2. Letters have been added to the problem numbers
to indicate whether the problem 1 s for academic credit and whether it is sponsored
The letters have the following significance.

A implies the problem is NOT for academic credit, is UNsponsored,
B implies the problem IS for academ1c credit, is UNsponsored
C implies the problem is NoT for academic credit, IS sponsored.
D implies the problem is for academic credit, is sponsored.
N 1 mplies the problem is sponsored by the office of Naval Research
L implies the problem is sponsored by Lincoin Laboratory.
The absence of a letter indicates that the problem originated within the saEC
2.2 Progress Reports

106 c. MIT SEISMIC PROUECT
During the past quarter, we have completed the testing of the station arity hypothesis on seismic traces and well logs, and also the construction of theoretical random media with controlled scattering properties. Beyond this, we
plan to do a few miscellaneous computations which may be necessary for the Project's
final report final report.

126 d. data reduction
Problem 126 is a very large data-reduction program for use in the Servo mechanisms Laboratory. The overall problem is composed of many component section
 past quarteriy reports. After the development and testing of the prototype Whirl
vind programs is completed, the programs will be re-coded for wind programs 1s completed, the programs w111 be re-coded for other, compercially
available, large scale computers, (probably the ERA 1103, IBM 701 and IBM 704 computers), for use by interested agencies for actual data reduction at other locations. The programs are currently being developed by Douglas T. Ross, David P.
McAvinn, Benson H. Scheff and Dorothy A. Thompson, Seryomechanisms
staff members with the assistance of John \boldsymbol{F}. Walsh. This work 1 s sponsored by the
Air Force Weapons Guldance Laboratory through DSA Project 7668 . The nature of the probiem requires extreme automaticity and efficiency
in the actual running of the program, but also ronuires the prosence of humn sperators in the computation loop for the purpose of decision making and prograin odification. For this reason extensive use is made of output osci11oscopes so gisters soo that the human can communicate with the computer in teras of broad
1deas. while the computer is running. and have the computer prorrum translate 1deas, while the computer 1 s running, and have the computer program translate
these 1 deas into the deta1led steps necessary for program modification to conthese 1deas into the deta11ed steps necessary for program modification to con-
torm to the human operator's decision. The program
andich doos this translation
and modifitication is called the Manual Intervention Progran (MIV). The most reand modification is called the Manual Intervontion progran (MIV). The most re-
cent version of the prototype data-reduction program is called the Basic Evaluation cent vers
Program. During the past quarter, work has continued on the development of SLURR
(Servo Lab Utilitity Routine program.) As described in the 1ast tuapterly report,
the SLURP program operates 1ike a specially designed simulated computer with unthe SLURP program operates 11 ke a spectally dosigned simulated computer with an
usual control features. Work has continued on the latest version of the loggin program which creates a logical record of all manual intorvention actions and
displays during a computer rum on magnetic tape. Further additions to the Editor displays dur ing a computer run on magnetic tape. Purther additions to the editor
Generator program have also bean made and these prorams are now in the final testing stage. A new Input Translation Progran for the SLURP computer, which in
corporates increased floxibility for making changes in SLURP programs, has also corporates inor
Most efforts during this quarter have gone into the preparation of pro
 program developed under problem 256 for this work has received final modifications
and extensive translations have taken place during this quarter. It is expected and extensive transiations have taken place during this quarter
hat this work will be completed within the next month or so

Because of the extreme dependence of the work of Problem 126 on manua Intervention and oscilloscope output, it is planned that continued use of the Whiriwind computer will be made during the next year. Where appropriate, portions
of the work will be transferred to the IBM 704 computer at the Computation Center. but unt11 equivalent specialized input-output equipment is avaliable on that com puter, the basic research computer.

D. T. Ross

93 L. Eigenvalue problem for propagation of e.m. waves
Calculation of eigenvalues, eigenfunctions and mode sums have continued for the bilinear model at 411 and 3000 Mc . The 410 Mc computations using the present program have been completed; the 3000 Mc computations will be extended to
higher mode numbers.
Sim1lar calculations are being carried out at 50 Mc using higher mode numbers.
an inverse-square model

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
whilluind coding and applications
Programmers working on this problem are H. B. Dwight and R. M. Ring.
K. M. Ring
Lincoln Lailen \qquad
199 N . $\begin{aligned} & \text { laminar boundary layer of a steady, compressible plow in the entance } \\ & \text { region op a tube }\end{aligned}$ gion op a tube

Solutions were obtained for the case where temperature dependence of
the viscosity and thermal conductivity of air 1s taken into consideration, Hore
solutions solutions are to be obtained for different entrance Mach numbers.

$$
\begin{aligned}
& \text { T. Y. Toong } \\
& \text { Mechanical }{ }_{\text {Engineoring }}
\end{aligned}
$$

203 c. response of a aulti-Story prame building under dynamic loading
During the past tuarter a five-story program was completed. The de-
bugging of a new general program, using expanded high-speed storage, is now in pro
cess.
R.
Civil
G.
Engin

245 N . theory of neutron reactions
of 3 and During this quarter, lest runs have been made to determine the value experimental curves. The values give the best fit betweon the theoretical and plete set of cross-sections and angular wistributions for these values has also
been started.

Lizabeth Campbel
aboratory for Nuclear Science
253 N . APW AS APPLIED to fack- AND body-Centered iron
and matrix elements for the face the face-centered crystal is nearing completion The computation of the matrix elements for body-centron are now being computed zation of the secular determinants containing these matrix in and the dingonali ace- and body-centerod phases still must be completed.

Programmers working on this

> J. H. Wood
> Solid State and Molecu1ar
> Theory Group
hitluind coding and applications 257 c. horizontal stablilizer amalysis

Additional production runs have been satisfactorily completed during the ast quarter. Hopefully, all production runs will be completed by the end of the next quarter

Programmers working on this problem are N. P. Hobbs and E., Criscione

E. Criscione

261 c. pourier synthesis por crystal structures
During this quartor we have completed our 3 -dimensional transform compufations for the crystal Rhodonite and are presontly contouring the results. Unies tho contoured results show behavior which makes us susp cicious of the computations,
our problem is completed. If there is trouble, a few computations may have to be rerun.
S. S1mpson
Geology and

Geology and Geophysics
273 N . ANalysis of air showsr data
Most of the computer time used during the past quarter was devoted to the eduction of air shower data. A Monte Cario analysis of 25 artificial showers is n progress for the purpose of determining the resolution of the experiment. A

The titie is An Experiment on Air Showers Produced by High Energy Cosmic Rays
Programmers working on this problem are G. W. Clark and F. Scherb.
P. Scher
Physics

274 N . aulutiple scattering of waves from a spatial array of spherical scatterers
 pared to run on Wirliwind.
M. Karakashian

Laboratory for Nuclear Science

hirlimind coding and applications

278 N . energy levels of diatomic hyprides Lith
ating all of the overlap, one-electron and two-electron thater facilities in eval required to complete the work on the problem which has been outlined in previous
reports. The purpose of including π orbitals eports. The purpose of including π orbitals on both centers is to provide for
eetter degree of angular correlation in better degree of angular correlation in the molecular wave function than has been
obtained before.

Tabulation of the integrals 18 proceeding for the purpose of utilizing Mol ocular symmetry orbitals, found as 11near combinations of the appropriate dimic functions, which will give the owest energy for the single Slater deter calculation will be supplemented with a limited configuration interaction to ome physical reality to the molecular wave function at larger internuclear dis-
moment.

> A. M. Karo Solid State and Molecular Theory Group

288 N . atomic wave functions
1owing: Atomic calculations with the Roothan proced were made for the fol

1) ${ }^{0}{ }^{0}$ with various numbers of basis functions.
2) $45(3 \mathrm{~d})^{3}$ configuration of Fe .
(3d) ${ }^{8}$ conftiguration of Fe .

$$
\begin{aligned}
& \text { R. Watson } \\
& \text { Solid State and Molecular } \\
& \text { Theory Group }
\end{aligned}
$$

290 N. Polarizabllity befects in atoms and molecules
As noted in our last report, we are now engaged in production runs on
our atomic and molecular problems. For the diatomic hydrogen fluoride molecule we are carrying out a determination of the binding energy, diploore moment and seeking a Hartreo-Foch solution of internuclear separation. In addition, we are
edding basis fuolecule (for $R=$ Re) by successively adding basis functions of hisher angular momentum (for $R=R e$) by successively
as f orbitals. Besides these cale we have gone as f as f orbitals. Besides these calculdtions, we have also been we have gone as
termine Hartree-Foch solutions for the free fluorine atm. The Roothaan scheme has been used here (as in the moleculare problem nem neon
and an inditation and an indication of the successful convergence of the method is that our above) proximately 3000 e.v.
whirlwind coding and applications
These problems and others developed for electrons pucture proble have utilized Whiplwind in an efficient and thoroughgoing way. It is a1so true
that digital computers and Wirimind especialiy have revolutionized the calcul tion of electronic wave functions for atoms and simple molecules. In transferring
to the IBM 704 one can gain the advantage of standardization and it is hoped that to the $18 M$ yos one can gain the advantage of standardization and it is hoped that
it will be possible to interest people in translating and improving programs now In existence. Since this is the final whiriwind I Progress Report and we have
not yet finished all of our molecular calculations, wo will continue to report not yet finished all of our molecular calculations, we will continue to report on
these problems in the Solid State and Molecular Theory Group Quarterly Reports. Pinally, we should mention a computation underway on Problem Number 412 being actively worked on. The calculation will be carried out by the Augmented Plane wave method and will largely use programs builit up by M. M. Saffren and J. H
Wood (these have been discussed previously in Whirlwind Progress Reports). There wood (these have been discussed previously in Whirlwind Progress Reports). Ther
is considerable interest in evaluating the accuracy with which this mathematical model represents the physical situation and in particular a variety of assumed one
electron potentials are to be tested.

Results of this work
Theory Group Progress Reports

> L. C. .A11en Solda Mote and Molecular Theory Group

293 c. rolling bearing
During the past quarter, some short runs were made using new input
${ }_{\text {Mechanical }}^{\text {A. Sng ineering }}$
00 b thopospheric propacatio An uttempt is being made to compute some of the quantities required fo

$$
\begin{aligned}
& \text { P. A. Duffy } \\
& \text { Lincoln Laboratory }
\end{aligned}
$$

309 b,N. Pure and mpure potassium chloride crysta
Details of the charge density of KCI in an $x, y, 0$ plane containing nuclet ave been obtained. Now the resulting contours of the charge density have been a few other minor points may still be sought on Wirimiwd as long as the machine is availabie.
$\underset{\text { Physics }}{\text { L. P. Howland }}$

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
whirluind coding and applications
312 L . Brror analysis
Th1s problem, with 1 ts various modifications, has been used for produc
during the past
 son and L. Peterson.

L. Peterson Lincoln Laborato

317 c. Extraction of stability derivatives from plight test data
In the past quarter this project has continued the investigation of the
1ateral-stability-derivative extraction problem, using shinbrot vative method and a new statistrical method developed by this project. Investiga-
tions of the enfer ind thons of the effect of gusts on extraction accuracy for 1ongitudinal derivatives
and of the C_{α}. extraction problem have also been started computation phase of the probiem will be finished in the in thext quarter by completing
the investingations now in the the investigations now in progress. Results will in the next quarter by completing
Wright Air Development in Center Technical Notes
Programmers
M. Norking on this problem are M. E. Hoult, L. L. Mazzola
M. N. Springer
Aerophysics Res

Aerophysics Research Group
327 L. Prediction analysis
The Maximum Likelihood Method program, described in previous Quarter Progress Reports, has been run to test various characteristics of the method as
programied. Some of these characteristics are.
2) How poor the first guess may be in order to have the system converge.
2) Whether it would be sufficient to insert a fixed first guess and
what it would be.
3) what it would be

In order to investigate a few more characteristics, there will be some testing done
in the future.
The power series approximation method mentioned in Progress Report No compares with the M, method and how to extend the permissible rane the method
values. values.

The program concerned with the effects of the tionod in Progress Report No. 47 1s checked out, Runs earth's oblateness, men-
tabulate the values of errors due to this factor.
A prediction method bas also been pros
understanding the results of the data processing part of problem heen helpful in
whrlivind coding and afplications
gentioned in Progress Report No. 46). This new program is also interesting in that it has been written to handle a much more general set of conditions than has been Progranmers working on this problem are z. Hutcheson, L. Feterson and mn .

L. Peturson Lincoln Labo

$337 \mathrm{~N} . \underset{\text { NONLL }}{\text { SHELL }}$
hells
Computations for problem 337 have beon completed this term. The results
have been written up for a Technical Report, submitted to the office of Statistical Servic
H. Weinitschke
Mathematics Department

341 c. Statistical and dynamic abthods in porecasting
During this past quarter, work has been comploted on a project dealing
with a statistical-dynamic approach to numerical weather prediction. The results
wore not ospectaily encouraging: however, the changes necessary in order to make the nethod successful are believed to be known.
A short investigation of the possibility of forecasting mean monthly
tomperatures at a single station (Washington, D.C.) for a given year, from the empirical orthogenal functions of (Wishington, D.c.) for a given year, from the tion for the preceding year, was also conducted. Preliminary results are quite promising and
forecasting.
Programs for testing developed 1inear forecast methods on a set of independent data were completed and run during the last quarter. This brought to an end this particular phase of studies of sea-level pressure by empirical orthogonal
finctions. Thors
 cal model of the atmosphere using an expansion of the meteorological variables in
a small number of spherical harmonics. In a final run the system of equations was numerically integrated by a stepwise method over the equivalent of two hundred days. The bulk of the computations involved in the studies mentioned above
have been performed on wirirlwind T. The programmers for this problem are: E.
Kelley, B. Shorr, W. Sellers, K. Bryan and J. MacDonald. s. Kelley

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
whillinind coding and applications
360 b. dynamic response of shear walls
square) . Efforts have been made to obtain were obtained on 3×2 grids ($22^{\prime \prime}$ esults on 6×4 grids.

361 b,N. Growth of fatigus cracks
The integral equation was programmed to reduce the effect of round-otf
error, which was excessive for certain parameter values. This new program was error, which was excessive for cortain parameter values. This new program was
debugged and seems to give satisfactory results.

The program for determint
The program for determining the elastic-plastic stress distribution in
a circumferentially nothed round-bar was debugged. Runs are now being made for
various values and various values of notch depth and applied degree. Runs are now being made for
J. B. Walsst
Mechanical

354 C. blast response of rotor bladzs
The program for computing the natural mode shapes and frequencies of the rotor has been debugged and is rendy for production runs. Programs are currently
being written to compute, using the natural mode shapes, certain coeffictents
the expressin the exprossions for the generalized airforces. Following completion of this in work
a program will a program will be written for simultaneous solution of m equations of of this work
the system, utilizing the pron the system, utilizing the previousi, computed airrorce coefficients. A parametric
study of biast response of helicopter rotors will then be conducted.

> E. A. Witmer Aeroelastic and Structures Research Laboratory

377 L. coverage analysis
The protiem, as described in Quarterly Progress Report No, 46, has been useful for the annlysis desircod. It. will continue to be a production run problem
for some tine. pro rogrammers working on this proilom nre E, Hutcheson and L. Peterson. i.) Poterson
Lincoln Lab

380 b. Switching circuits
A study of the use of a digital computer for the solution of several types
of switching circuit problems has been completed and the results are currently being written up in a s. M. thesis entitied, Digital-Computer Solution of Switehing-
Circuit Problems. Four Whiriwind programs have been written for solution of
switching problens: switching problems Analysis of Single-Output Contact Networks. The transmission of
any contact network with 3 to 42 nodes and 4 to 8 variables can any contact network with 3 to 42 nodes and 4 to 8 variables car
bo eterermined by this program. The network is spocified by ar
Boolean matrix and the transmission is in standard sum fora.
2) Analysis of Multiple-Output Contact Networks. Similar to (1) except Analysis of allitiple-Output Contact Networks. Similar to (1) ex
that the transmissions between all pairs of nodes in the networl are obtained simultaneously.
3) Synthesis of Non-Series-Parallel Contact Notworks. This program is
capable of synthesizing a contact network to realize capable of synthesizing a contact network to realize any four-
variable switching function. The desired transmission is specifie variable switching function. The desired transmission is
in standard sum form, and the output is a Boolean matrix.
4) Detormination of Prime Implicants and Minimum Sums. Given the standard sum and optional terns (maximum 512 tems.) for any switching
function of 14 or fewer variables, this progran will determino tho function of 14 or fewer variables, this prograni
prime tmplicants and one or more minimum sums.

Using the latter program, approximately 100 problems were solved for J. P. Gouyot in connect
machine.

$$
\begin{aligned}
& \text { c. H. Roth, Jr. } \\
& \text { Blectrical Engineering. }
\end{aligned}
$$

383 c. Stokes particle velocities
Problem 383 was the solution of Stokes equations for the water particle velocities in an oscillatory wave. The equations were solved for 24 values of weve phase angle and three depths for 1 waves. The wave parameters and positions
were identically those used in an experimental determination of particle velocities The experimental and computed values were plotted to determine the range
of applicability and adequacy of Stokes relations. This report served as a Master
of Science thesis and D . S . . report. f Science thesis and D.S.R. report

The solution of stokes equations by whiriwind aliowed this study to be
made, since manual computation would have been impossible from a time standpoint The entire study used less than an hour of machine time with the main routine coded in the binary system.

$$
\begin{aligned}
& \text { T. Mariow } \\
& \text { Hydrodynan }
\end{aligned}
$$

386 c. PRER CONVECTION
Computations were completed during the present quarter. Exact solutions
were obtained for 12 representative surface temperature distributions of the form
waiklinind coding and applications

q to be insensitive (on order of 0.17) to changes in in transfer) of a change in

> J. R. Baron Naval Supers

347 C. determination of velocity potential
Al1 calculations have been completed for the delta wing and work has
negun on the straight wing. The program has been checked and approximately $1 / 3$ wegun on the straight wing. The program
of the calculations have been completed.
the swept wing on the $\begin{gathered}\text { Pure to fintish the necessary. }\end{gathered}$ Pror
R. Stapieford
Aeroelastic and
R. Stappleford
Aeroelastic and Structures
Research Laboratory

388 d. temperature distribution in a ircraft generators
Computed results do not agree with experimentai measurements. It is
hoped that certain reftnements now being made will aiter the situation, but ase, this problem will terninnte being made will alter the situation, but in and
R. Moroney

389 d. Supersonic flow of air in a tube
Servomechanisms Laboratory
The solutions of this fluid mechanics problem have been found to be
very sensitive to the property variation assumptions. Because of this sensiti
vity recalculation Vity, recalculatior of the first approximation and completion of this sensitifor the second approximation have been undertaken with a morion of the calculations
ation. The tapes for these calculations have been conerty vari W111 require only minor modifications.

$$
\begin{aligned}
& \text { J. R. Radbil1 } \\
& \text { Mechanical Engineering }
\end{aligned}
$$

394 c. Automatic programuing for numerically controlled machine tools
 Introduced a new era in the automatic translation of desidg mequil rements int into fi-
nished parts. The primary problem associated with this type of machine ion the
preparation of dotailed

whirlwind coding and applications


```
\4 is concerned with the extension and olaboration of these automatic programming
394 18 concerred with the extension and claboration of these automatic programing
tontrollod mil1\ng machnes. The programs are current1y being doveloped by Doug las
```



```
The problem may be viewed as the design of an 4PT System (Automatically
M,
in MT compüter, which 1s a combination of a general purpose computer ansexisting
Nachine tool directors. The objective is a system of Whiriwind computer programs
*)
#\mp@code{ling the past ouarter, a new "systematized solution" to the problem of}
col
put routines developed under froblem 132 have also been incorporated to provide
```



```
new method of calculation depends only upon two programs for each type of surface
The normal vector programm produces a vector perpendicular to the surface of the 
to the surface from an arbitrary point in space looking in an arbitrary direction
Norma1 and directed distance programs for planes and spheres have been in use for
some time These programs are being combined into a generalized program which
*)
Ty mean programming for the APT IlI system, which allows programming a part
by means of entire regions of the surface of the part, is also under test. The
analysis used in this program also represents a systematized solution to the pro-
blem and depends only upon normal vector and directed distance programs. A numbe
finement. It is planned that, with very sl1ght modification, the programming for
the APT III system. The oscilioscove output routine which
Computatione work on Problem 394 w111 transfer to the IBM 704 Computer at the
Computation Center in the very near future. During the week of May 20 a meeting
*)
along the 11nes set forth in these reports. The Servomechanisms Laboratory, M.,.T.
lol
                                    I. T. Ross 
```

395 l phase error calculations
During this past quarter, it has been found that the problem, in its pre
sent mathematical form, will demand an exorbitant amount of wwI
1t it has been decided that the problem should be recast.
D. MacLellan
Lincoln Laborato

400 C . temperature and stress response
During the past quarter, an additional hlade was programmed and the run
performed successfululy. Currently, three other blades are being programmed.
J. C. Loria

Aeroelastic and Structures
405 b. puel composition in nuclear reactors
following equation:

$$
\frac{d N}{d t}=-\bar{\sigma}_{r h} \Phi N
$$

(1)

In practical cases the flux is a function of the neutron energy, as 1 s
the cross section. Hence it is necessary to define the effective cross section

$$
\Phi=\int_{0}^{W} \phi(\mathrm{~s}) \mathrm{dE}
$$

$\bar{\sigma}_{\text {rh }} \Phi=\int_{0}^{\infty} \sigma(\mathbb{E}) \phi(\mathbb{E}) d E$
(3)

If the $f 1$ ux 1 s assumed to follow a Maxwel1-Boltzmann distribution, and assumptions under certain conditions) then eq. (2) and (3) can be evaluated exactiy. distribution is altered ny the effectser assumption is strictly valid. The flux of neutrons from f1ssion energy. The croos sections of a number of nuclides found
in reactors do not follow the 1 ,
rer
The purpose of the proposed calculations is to solve eq. (2) and (3) by
numerical methods.
6 ov, and the distribution of fission neutrons has its peak at about 2 Mev . Betwee
may be nimit of neutron energies,
 range is assumod to follow a Maxwell Boltzmann distribution. The flux in the thermal
perature is raised perature is raised to account for the change from the distribution to be expected If the neutrons were in true thermal equilibrium with the surroundings. Neutron
ing down theory will be used in the range from 6 ev. down to predict the flux.
 thermal Maxwell-Boltzmann distribution) the epithermal flux calculated from slowing down
theory will be simply added to the thermal flux distribution to give the resultant flux.

The epithermal flux calculated from slowing down theory approaches infinity 5. the energy approaches zero and at energies of the order of kT is obviously inap-
Therefore below $\mathrm{E}_{2}(5 \mathrm{kT})$ the epithermal flux calculated from slowing down theory is multiplied by a function Q (see eq. 6e) which reduces the epithermal itux to ero below kT , and provides a smooth transition to the Maxwel1-Boltzmann distribution
n the range from 5 kT to kT . Below E_{2} the total flux is assumed to be the sum of the Max jell-Boltzmann flux plus this corrected epithermal flux.
With the flux so defined, as the sum of a Maxwell-Boltzmann and a slowing

The first term is the contribution from the Maxwell-Boltzmann flux, the second the contribution 1 rom the epithernal flux. From the first tern, as compared to the values beglecting the non $1 / v$ cross section characteristic may be determined. From the se cond term may be determined the effect of neglecting the epithermal flux. Both of these compoenets of the effective cross sections are numerically evaluated using known
values of neutron cross sections as a function of energy and the Maxwell-Boitzmann and eplthermal flux distributions which are calculated for the particular reactor conditions under consideration. The flux distributions must be calculated using the to owing equations. It is a function of the fuel composition and thus will change dur-
ng reactor operation. The primary object of the calculations is to determine the re lative magnitude of the contritution to the effective cross section due to the epithe

Calculation of Epithermal Plux

$$
\begin{align*}
& \frac{\phi(\Sigma)}{\Phi}=F(E)+\frac{\varepsilon_{1}(E)}{\xi} c_{1} \tag{5}\\
& \text { Where the various terms are defined by: } \\
& F(E) \equiv \frac{p(E)}{\xi\left(\varepsilon_{s}+\varepsilon_{c}\right) E} \sum_{f} u_{f} N_{f} \bar{\sigma}_{t h}^{f} \quad f_{1}(E) \equiv \frac{p(E)}{\left(\varepsilon_{s}+\varepsilon_{c}\right) E} \\
& c_{1} \equiv \frac{\sum_{f} \nu_{f} N_{f} \sigma_{t h}^{f}}{\xi-\alpha} \propto \quad \alpha \equiv \int_{k T}^{E_{1}}\left[\sum_{f} U_{f} N_{f} \sigma_{f}(E)\right] Q f_{1}(E) d E
\end{align*}
$$

$$
\begin{equation*}
p(E)=p\left(E_{1}\right) \exp \left[-\frac{1}{\xi} \int_{E}^{E_{1}} \frac{\Sigma_{a}}{\left(\varepsilon_{S}+\xi_{l}\right) E^{\prime}} d E^{2}\right] \tag{6f}
\end{equation*}
$$

The computations involved are as follows. The resonance escape probability
$p(E)$, must be evaluated as a function of energy. Then the parameter alpha must be $p(\mathcal{E})$, must be evaluated as a function of energy. Then the parameter alpha must be
evealuated. The constant c_{1} can then be determined. The eppthermal fluu as a a func
tion of energy can then tion of energy can then be obtained fromee.. (5). This is then used to evaluate
the second term in eq. (4), which then gives the reauired result, for one nuclide. It is estimated that 140 to 150 steps will be needed in the numorical in-
tegrations. About mine nuclides will probably be considered, and since both absorb tegrations. About nine nuclides will probably be considered, and since both absorb
tion and fission cross sections are needed in some cases, on the order of 13×140
$\times 180$ cross or 1820 cross section values will be used.
The contribution to the total effective cross section from the epithermal
flux may run around fifty percent in some cases, due to large resonances in the ep1thermal erergy range.
$\mathrm{U}-235, \mathrm{U}-236, \mathrm{U}-238, \mathrm{ND}-237, \mathrm{Pu}-239, \mathrm{Pu}-240$, Pu-241, Xe-135, and Carbon, as the effective fission cross sections for U-235, Pu-239, and Pu-241 were calculated in eight different cases. A sodum-graphite reactor wave used as the basis
for calculation, and effects of varying fuel conposition, temperature and macrofor calculation, and effects of varying fuel composition, temperature, and macro-
scopic scattering cross section of the system were considered.
It was found that neglecting the epithermal flux 1 ed to estimates of the
cross section that were lower than the tre effective crins cross section that were lower than the true effective cross section,
the effective cross section being eight times as large (for Tu-240).

It was found that the effective cross section was significantly affected by variations of all three parameters mentioned above. Therefore in any calculation of fuel composition over extended irradiation times it will be necessary to recal-
culate effective cross sections at suitable time intervals, on the basis of rent fuel composition. This type of calculatime intervals, on the basis of the cur the methods developed for the present problem for calculating the effective cross sections, is being considered
for future work, using the IBM- 704 .

$$
\begin{aligned}
& \text { M. Cohen } \\
& \text { Nuclear En }
\end{aligned}
$$

407 c. DIFFUSION BOUNDARY LAYER
Mass transfer into a high speed boundary layer results in the simulta neous action of momentum, energy, and mass transports and produces considerable changes in the thermal behavior of the layer. Previous computations (Problem 297)
indicated the effects for free flight conditions. Presently the effects to be

$$
\begin{aligned}
& \text { wilitlwind coding and applications } \\
& \left.Q=\left\{\begin{array}{ll}
\frac{E}{5 k T}\left[-0.2\left(\frac{E}{k T}\right)^{2}\right. \\
0
\end{array}\right)^{2.85} \frac{\mathrm{E}}{\mathrm{KT}}-0.75\right] \quad \begin{array}{l}
5 \mathrm{kT} \leq \mathrm{E} \\
\mathrm{kT}<\angle<5 \mathrm{kT} \\
\mathrm{E} \leq \mathrm{kT}
\end{array}
\end{aligned}
$$

Whirlwind coding and apflications an experimental program into the phenomena

The descriptive system of simultaneous equations is of the form $\begin{array}{ll}\text { (momentum) } & \left.\left(\lambda^{\prime \prime}\right)\right)^{\prime}+\mathrm{ff}^{\prime \prime}=0 \\ \text { (mass } & \mathrm{c}_{1}+\mathrm{a}_{1} \mathrm{a}_{1}=0 \\ \text { (energy) } & \mathrm{T}^{\prime \prime}+\mathrm{b}_{1} \mathrm{~T}^{\prime}+\mathrm{b}_{2}=0\end{array}$

In which a, b_{1}, and b_{2} are functions of the indicated dependent variables. The end point boundary conditions involve coupling between c_{1} and I and otherw ${ }^{\text {specifications for either the dependent variable or }}$ its derivative s derivative Legration continued until routine will be employed for integrations and repeated in timates of boundary conditions will be made on the basis of an influence coefficient routine supplied to the computer

as functions of η
During the past quarter preliminary computations were made to check out
the program and to evaluate the need for spectal integration intervals in regions

J. R. Baron
Naval Supers

408 c. prequency spectrum of magnesium
The development of digital computers capable of making the requisite theory of lattice dynamics. The vibrational frequency distribution function and he bulk thermodynamic properties of several meta1s crystalliz1hs in the face cen from the adiabatic elastic constants of a metal single crystala or r rom the tempera-
ture difuse scattertng of X-rays. Since the most sensitive comparison with experi. ture diffuse scattering of X-rays. Since the most sensitive comparison with experi
ment is provided by the lattice heat capacity at iow temperatures, calculations sing the force constants at 11quid hol lum temperatures are of the greatest interes. ave been Recent low temperarms of a central force model considering interactioss between first, second, and third nearest neighbors. It is proposed to solve the secular determinant derived from this model at 793 points in the reduced Brillouit eell, the secular determinant is of order 6 and 4758 dist inct roots will be obtained. It is expected that th1s root sampping, when combined with the group the
 picture of the density of vibrational energy levels in magnesium.
whirluind coding and applications
The computational problem invoives the generation of the elements of the secular determinant at each point in reccprocoll space whore solututins are desired
and thie determination of the characteristic values and vectors making use of the program developed by P. J. Corbato

During the past quarter a satisfactory program was arrived at. The compu-
tations are in progress. a trial spectrum calculated from the roots of the secular ations are in progress. A trial spectrum calculated from the roots of the secular
determinant at 143 points in the first Brillouln zone have heat canacities determinant at i43 points in the farst Brinioum zone have heat capacities in good
agreement with the expermental data. Programmers working on this problem are E. agreement with the experimental dat
L. Slutsky
Chemistry

409 c. an analytical study of bluff bonb trajectories
A machine solution is to be obtained for a set of 3 differential equaIons describing the rigid bodv longitudinul dynamic motion of a bluff-bomb con
 coefficients with speed, altitude, and angle of attack will be represented ana lytically from point to point of the trajectory and the solution will be integrated
as a function of time with respect to and
$\dot{u}=-w \dot{\theta}+c_{\mathrm{x}}(\mathrm{u}, w) \frac{\mathrm{g}}{\mathrm{w}} Q-\mathrm{g} \sin (1)$
$\dot{w}=u \dot{\theta}+c_{z}(u, w) \frac{g s}{W} q+g \cos (B)$
$\ddot{\theta}=c_{m \dot{\theta}}(u, w) \frac{S_{d}^{2}}{2 I_{y}} \frac{q}{u} \dot{\theta}+c_{m \dot{x}} \dot{(u, w)} \frac{\frac{S}{2 d^{2}}}{2 I_{y}} \frac{q}{u^{2}} \dot{w}$
$+\mathrm{c}_{\mathrm{m}}(\mathrm{u}, \mathrm{w}) \frac{\frac{\mathrm{Sd}}{I_{y}}}{} \mathrm{Q}$
The Greek notation consisting of:
$\underset{\sigma}{\propto} \quad \begin{aligned} & \text { Alpha, } \\ & \text { Theta, } \\ & \text { lower case angle of attack }\end{aligned}$ (1) Theta, Capital path angle

The Roman notation being:

$c_{x} \quad \begin{aligned} & \text { Volocity along } Z \text {-axis } \\ & \mathrm{X} \text {-Force aerodynamic coefficient }\end{aligned}$
$\mathrm{c}_{\mathrm{z}} \quad{ }_{\mathrm{z}}$-Force aerodynamic coefficient
C_{m} Moment coefficient in pitch
Ma change of angle of antack
g Acceleration of gravity.
Recerence area.
Roference
Reference area,
Roference diameter
Roference
Weight.
Weight.
pitching Moment of Inertia.
Dynamic pressure.

Suring the past quarter, the present phase of the problem was completed
During the past quarter, the present phase of the probis
Future pluns w11 depend upon the analysis of the present results.
programmers working on this problem are P. G. Kase and T. Carney.
P. G. Kase
Aerophyalce research Group

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
3.1 Introduction There are a number of graduate subjects in automatic computation, numorical
analysis, electronic data processing and automatic control currently offered at $M .1$. The present 1ist of subjects directly related to machine computation offered during
the Academic year of 1957 includes the following
Subject Description

	-	Units	Year	Instructor
${ }^{6.25}$	Nachine Aided Analysis			
${ }^{6.535}$	Digital Computer Coding	${ }^{3.6}$	4	Arden
6.538 6.54	Electronic Computational Laboratory	${ }_{3}^{3.5}$	${ }_{G}^{\text {G }}$	${ }^{\text {Ard }}$
6.54 6.567	Pulse Data Systems		${ }^{\text {G }}$	Verzuh
6.568	Switching Circuits	${ }_{3-1-6}$	${ }_{G}^{G}$	Woodrow
2.215	Wethods of Engineering Ana	3-1-6	${ }_{6}$	${ }_{\text {Caldwell }}$
15.542	Management Information Systens	3-9	G	Crandalı
мз9	Methods of Applied Mathematics	${ }^{3-6}$	G	Gregory
M411	Numerical Analysis	3-9	G	Hildebrand
4412	Numerical Analysis	3-2-7	${ }^{\text {G }}$	Hildeb

It is apparent from the above 1 ist that these subjects are predominantiy Graduate A
subjects. However, a numier of undergraduate students may
3.2 Electronic Computational Laboratory -- 6.538

The subject matter offered in 6.538 during the Spring term of 1957 pro-
vided the student with an opportunity to obtain a first hand knowledge of
tion of the Type 650 tige ion of the Type 650 Megnetic Drum Calculator. Each student spent at of the opera- 14 hours

With the basic students were taught to program the 650 by first becoming familiar taught to use the M.I.T. Selective System and Bell Fixed and
pretive pretive Numeric Coding System, on occasion certain students found it polint inter-
one of the less common interpretide Decimal Interpretive Mneumonic Coding System in their work. For example the MITILAC Matrix System were used on a very limited scale.
3.3 6.538 Term Papers Performed During the Spring Term 1957

For a number of years it has been common practice to assign a term paper
as one of the major undertakings in this subject. Unfortunately
the course has doubled each yed the course has doubled each year. Specificalily, in 1955 there were 13 enroulment in
rolled in this course; in 1956 there were As a result the amount of laboratory instruction required 1957 there were 52 students.
the 1 inear scale. - Feasiontity of Nonte Cario Matrix Inversion Using Digital Computers.
Power Limit Transmission with Static Load.
Sorting on the Datamatic Compute
Mitss subroutines.
An Attempt at Finding
a Complex Matrix.
a Complex Matrix.
Data Processing in the Brokerage Field
Data Processing in the Brokerage Field.
Floating-Point Arcsin Subroutine Trace Subroutine.
Complex Arithmetic Subroutines for Use with M1TsS Floating
Decimal Point System on the IBM 650 Computer.
An Integrated Program for the IBM 650 magnetic Drum DataProcessing Machine to calculate Certain Statistical
Quantities from a Group of Data. Quantities from a Group of Data
Subroutines for 18 Digit, Floating Decimal System.
A Digital Computer Solution of Langhar's Velocity Distribution
A Subruatine for the calculation of Statistical Variations
Feasibility Studies of Automatic Data Processing Equipment
in Business
Study in Market
An Exploration of a Logical Model to obtain an Initial Distribution
in a Stepping Stone Linear Program,
A Study of Payroll Calculation on a Compute
Factorization of a Polynomial (Bitchcock's Method)
Double Register, 18 -Digit, Fioating Poolnt Arithmetic Routines for
the IBM Type 650 Magnetic Drum Data Processing Machine Preliminary Report on Function Display Program for the 704 . Digital Differential Analyzer Solution of Several Differential
Equations. Equations.
Market Analysis
arket Analysis of Electronic Daca Processing Machines.
Solution of Bessel 's Equation by Predictor Corrector Type
Formulae on the IBM Type 650 Computer
Solution of Simul taneous Linear Equations on the IBM 704

Routine for the
Equation.
Calculation of
atain. of Any Second Order Differential
the IBM 650 Calculator.
Error of Runge-Kutta Fourth-Order Formula Applied to a Bessel
Programming of Statistical quantities for Computation on the 650 Magnetic Drum Calculator.
650 Program for Solution of Bessel Equation
VADFAN, A Program to Perform Variable Degree Factorial Analysis
A System of Matrix Arithmetic Subroutines for the 1 IM 650 pata Sysocessing Machine.
Prent

acadbuic

Design a System for Use with the 650 Which will Provide Fast
Economical Sconomical Input to the Machine or Payroll Information from Departments Operation on a Piece-Work Basis.
Solution of the Heat Flow Equation.
Calculation of Life
Calculation of Life
MiTsS and soap.
Data Processing Analysis of a 650 with
Group Property Depreciation. Basic Ship Calcu1ations on the IBM Type 650 Digital Computer.
Computation of Mean Values and Variaces. Smputation of Mean Values and Variances.
Solution of Consumer Goods Distribution
Solution of Differential Equation with a Maximum Error Criterion
Sorting and Merging on Univac I and II
An Interpretive System for Double Precision Arithmetic.
3.1 The MIT Computation Center

In the Spring Term of 1957 witness the completion of the new Karl T.
Compton Laboratory and the accompanied installation
ter in the new building.
The mir co
interdepartmental activity located in the new Karl T. Compton Laboratory. The an
pal objective of the Center 1s
pal objective of the Center is to increase the Kar1 T. Compton Laboratory. The princi-
qualified to use modern computing machines in students, staff and scientist
The Thern Therts.
 In the Center program are located at MIT or at one of the participating New England
Colleges or
Center 隹 Center represents a coopperative activity involving MIT, Specif ically, the the Computation
present, 25 New England Colleges and Universities.
The following New England Colleges and Universities -- in addition
MIT -- are currentiy participating in
Amherst Collego
Bates College
${ }_{\text {Bennington Colle }}$
Boston College
Boston Univeg
Boston Universit
Bowdoin College
俍
Brandeis Universit
Brown University
Connecticut, Univ
Connecticat, University of
Dartmouth College
Harvard University
Laine, University
Maine, University of
thassachusetts
Midd1ebury College
Mount Holyoke College
Northeastern University

Rhode Island, Un Tufts University Tufts University

 Vermont, Universtiy ofWellesley College Wesleyan College
williams College
Computation An active participation by the staffe of the New England Colleges in the Computation Center program was initiated by the appointment of 24 desearch Ass isstant
and Associates at these institutions during the academic year 1956
appointees provider . These appointees provide active liaison between the staff at the center and the studonts
and staff at their individul and staff at their individual insticutions. Appointments of this type will

The physical plant of the MIT Computation Center consists of 18,000
located in the recently-erected Karl T. Conpton the Center occupies part of the basement, the entire first floor, and part of the
 house the IBM Type 704 Electronic Data Processing Mechine (EDPM) and the associated
Electric Accounting Machine (EAM) equipment.

The first floor contains adequate space for the headquarters staff, the operations staff (analysts, progranmers, machine ope rators, etc.), IBM Instatutional
Representatives, Wew England University Research Assistants and Associates. Research Assistants and Associates, classroom and seminar room, as well as the 704
computer. The basement provides space computer. The basement provides space for the EAM machines, the systems research equipment. The second floor provides spaco for the programming rosearch staff tioning visiting professors, and the library and document ro
the progress ${ }^{\text {A }}$
All this area has been furnished in a first-class manner to facilitate
The computational.facilitins in the Center are supported in large measure
by the IBM Corporation. Specifically, IBM is providing the 704 computer the asso
ciated EAM equipment, and the associated maintenance personnel on a cratis the asso ciated EAM equipment, and the associated maintenance personnel on a gratis basis.
The following machine couplement-is available in the Centor:
guantity

Type
704
711
716
716
731
736
7737
7700
711
746
773
7727
780

Description

Analytical Control Unit
Punched Card
Punched Card Reade
Alphabetic Printer Alphabetic Printer
Punched Card Recorde
 Power Prame \#1 (8:92 woolis) CRT Output Recorde Power Frame $\# 2$ Magnotict Tape Cont
Mnit
Magnot1c Magnot 1e Tape Cont
CRT D1splay Unit

It is apparent from the above 11st that the
subjects was 870 students. This does not mean however, that there were 870 indivi subjects was 870 students. This does not mean however, that there were 870 indiv1
duals involved, since a number of students took many of the above subjects. Thus duals involved, since a number of students took many of the above subjects. ins.
the actual number of individuals exposed to machine computation is sonowhat ies.

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.
appendix

1. Systems engineering

WWI RELLABILITY (18 March - 26 May 1957)
period:
The following is the wwI Computer Reliability for the above-mentioned
Total Computer Operating Time in Hours
Total Time lost in Hours 97.

Fercentage Operating Time Usable
Average Uninterrupted Operating Time Between Failure
Incidents in Total Number of Failur
falluzo incidents per 24 Hour Day
Ave эge Lost Time per Incident in Minutes
Average Preventive Maintenance Time Per Day in Hours 33.5
anelex line printer - Day in hour
The Lincoln Laboratory use of wwi requires that a great deal of data be
processed and the results printed out for visual inspection. In order tu keep ter computer time for this data processing to a minimum, the delayed ordint tout keep the used. However, after the information is recorded on the magnetic tape, a period of
from three to four days is requited before the thin from three to four days is required before the information is all available. Because
of the delay, further tests were delayed until the data was

Group 22 asked that the Whirlwind 1 people investigate high speed 1 ine quantity of data. The wini wind I people suggested the Anelex Synchro-printer and it as purchased from Anelex Corporation by Duvision II of Lincoln Laboratory.
Th1s particular Anelex Printer has avallable 56 different characters
120 characters per 1ine, and will print up to 600 ilines considerations, the printer is operated ap to only 600 13nes per minute. Due to equipment
if all 120 columns per 1ine are used the speed can increase up to a maximum of 6001 ines per minute with per per line, the ine.

With the use of the Anelex Printer the information that previously took sevoral days to obtain, is now ready in less time than was required to record on as enabling users to have the data available several days sooner.
2. visitors

Tours of the Whiriwind 1 installation include a showing of the film major computer components. During the past quarter the following 8 discussion of the 130 people visited the computer installation quarter the following 8 groups totall
April $30 \quad$ Cambridge School of

May 1 Everett Vocational High School
Northeastern University Col 1
Northeastern University Course 63-215, Computer 25
and Control Components
MIT Course 16.21. Aircraft Structures
Brown University
MIT Course 6.25, Machine-Aided Analysis Wellesley college 9
13
May 14 Brown Universit
May 16 MIT Course 6.25, Machine-Aided Analysis" 35
May 24 Representatives of AMEC/Mumerical Control 11
Representatives of AMEC/Numerical Control
Subcominitee of the Aircraft Industries
Association Subcominittee
Association The procecture of holding Open House at the Laboratory on the first Tuesday
of each month has continued. A total of 33 people attended the 3 Open House tours
during the during the quarter, representing members and friends of the MIT community, Western
Electric Co., Convair, Northrop Aircraft, Hyde Park High School and Boston Trade School During the past quarter, there were also 42 individuals wio made brief tours
of the computer installation at different times. Represented by these individuals were MIT, University of Pittsburgh, E11iott Brothers, American Gas and Electric Co United Aircraft Corp.. Harvard University, Michael Baker, Jr...Inc., and Remington Rand Corporation
. publications
Project Whirlwind technical reports and memoranda are routinely distributed oonly a restricted group known to have a particular interest in the Project, and to uilding, Dayton, Ohio. Requests for copies of individual reports should bo knott Burlding
ASTIA.
The following is a list of memoranda published by the Scientific and
DCL-161
cer
Generalization of Conjugate Gradient Methods D. N. Arden 1/22/5

| DCL-165 | SHARE Assembler Operator's Notes for Initial
 Use at the MIT Compatation Center | S. F. Best | $2 / 18 / 57$ |
| :--- | :--- | :--- | :--- | :--- |
| DCL-171 | The Direction Cards Used by the Proposed
 Operator Program | F. C. Helwig | $4 / 18 / 57$ |
| DCL-171-1 | A Proposed Operator Program for the 704
 (Revision of DCL-171) | F. C. Helwig | $5 / 1 / 57$ |
| DCL-175 | Sumary of PKDS2, an Octal Memory Printout
 Program | S. F. Best | $6 / 4 / 57$ |

Paculty Supervisors:

Philip M. Morse, Chairman	Physics
Sam'el H. Caldwell	Electrical Engineering
Stepben H. Crandall	Mechanical Engineering
David Durand	Industrial Management
Herman Feshbach	Physics
Jay W. Forrester	Industrial Management
Francis B. Hildebrand	Mathematics
Chia-Chiao Lin	Mathematics
J. Francis Reintjes	Slectrical Engineoring
--officio	
Doan N . Àrden	Electrical Engineoring
Fernando J. Corbató	Computation Center
Frank M. Verzuh	Computation Center

proubct whirlwind
Frank M. Verzuh, Head Dean N. Arden
Sheldon \mathbf{F}. Best
Marion Callaghan
Frank c. Helwig
Jack Roseman
Arnold slegel
Murray Watkins
Monroe R. Weinstein

APPROVED FOR PUBLIC RELEASE. CASE 06-1104.

