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Abstract 

 The travel times in a network are seldom precisely known, and then could be 

represented into the interval of real number, that is called interval travel times. This 

paper discusses the solution of the iterative systems of interval min-plus linear 

equations its application on shortest path problem with interval travel times. The 

finding shows that the iterative systems of interval min-plus linear equations, with 

coefficient matrix is semi-definite, has a maximum interval solution. Moreover, if 

coefficient matrix is definite, then the interval solution is unique. The networks with 

interval travel time can be represented as a matrix over interval min-plus algebra. 

The networks dynamics can be represented as an iterative system of interval min-

plus linear equations. From the solution of the system, can be deter-mined interval 

earliest starting times for each point can be traversed. Furthermore, we can 

determine the interval fastest time to traverse the network. Finally, we can determine 

the shortest path interval with interval travel times by determining the shortest path 

with crisp travel times. 
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INTRODUCTION 

Let R := R { } with R the  set of all  real numbers and  : = . In R defined two 

operations : a,b  R  ,  a  b := min(a, b)  and  a  b : =   a  b. We can show that (R , , ) 

is a commutative idempotent semiring with  neutral element  =  and  unity element e = 0. 

Moreover, (R, , ) is a semifield, that is (R, , ) is a commutative semiring, where for 

every a  R there exist a such that a  (a)  = 0. Thus, (R, , ) is a min-plus algebra, and 

is written as Rmin. One can define 
0x := 0, 

k
x := x  

1k
x , 

0 : = 0 and 
k : = ,  for k = 

1, 2, ... .. The operations  and  in Rmin can be extend to  the matrices operations in nm
minR , 

with nm
minR : =  {A = (Aij)Aij  Rmin, for i = 1, 2, ..., m and j = 1, 2, ..., n}, the  set of all matrices 

over max-plus algebra.  Specifically, for A, B  nn
minR   we define (A  B)ij = Aij  Bij and  (A  

B)ij = kjik

n

k

BA 
1

. We also define matrix E  nn
minR , (E )ij : = 









ji,

ji,

 if

 if0


 and   nm

minR  , ( )ij 

:=   for every i and j . For any matrices A  nn
minR , one can define 

0A  = En  and  
k

A = A  
1k

A  for k = 1, 2, ... . For any weighted, directed graph G = (V, A) we can define a matrix A 
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nn
minR  , Aij = 









. ),( if

 ,( if ) ,(

A,

A),

ij

ijijw


, called the weight-matrix of graph G.   

A matrix A  nn
minR  is said to be semi-definite if all of circuit in G(A) have nonnegative 

weight,  and  it is said definite if  all of circuit in G(A) have positive weight. We can show that if 

any matrices A is semi-definite, then  p  n, 
p

A
m E  A  ...   

1n
A . So, we can define 

A
* 
: = E A  ... 

n
A 

1n
A ... . Define n

minR := { x = [ x1, x2, ... , xn]
T
 | xi  Rmin, i = 1, 2, 

... , n}. Notice that we can be seen n
minR  as 1

min
n

R . The elements of n
maxR is called vector over 

Rmin. In general, min-plus algebra is analogous to max-plus algebra. Further details about max-

plus algebra, matrix and graph can be found in Baccelli et.al (2001) and Rudhito (2003). 

The existence and uniqueness of the solution of the iterative system of min-plus linear 

equation and its application to determine the shortest path in the with crisp (real) travel times 

had been discussed in Rudhito (2013). The followings are some result in brief. Let  A  nn
minR  

and b  1
min
n

R . If A is semi-definite, then x
*
 = A

*
  b is a solution of system  x = A  x  b. 

Moreover, if A is definite, then the system has a unique solution. A one-way path network S with 

crisp activity times, is a directed, strongly connected, acyclic, crisp weighted graph S = (V, A), 

with V = {1, 2, , ... , n} suct that  if (i, j)  A, then i < j.  In this network, point represent 

crosspathway, arc expresses a pathway, while the weight of the arc represent travel time, so that 

the weights in the network is always positive. Let 
e

ix  is  earliest starting times for point i can be 

traversed and x
e
 = [ ex1 , ex2 , ... , e

nx ]
T
. For the network with crisp travel times, with n nodes and A 

the weight matrix of graph of the networks, then  

x
e
  = (E  A  ...  

1n
A

 
 )  b

e
 = A

*
  b

e
     

with b
e
 = [0, , ... , ]T

. Furthermore, e
nx  is the fastest times to traverse the network.  Let l

ix  is be 

latest times left point i and x
l 
= [ lx1 , lx2  .... , l

nx ]. For the network above, vector   

x
l
 =  ( (A

T
 )

* 
 b

l
 )       

with b
l
 = [, , ... ,  e

nx ]
T
. Define, a pathway (i, j)  A in the one-way path network S  is called 

shortest pathway if e
ix  

= l
ix  dan 

e

jx
 
= 

l

jx  . Define, A path p  P in the one-way path network S 

is called shortest path if all pathways belonging to p are shortest pathway. From this definition, 

we can show that a path p  P is a shortest path if and only if p has  minimum weight, that is 

equal to e
nx . Also, a pathway is a shortest pathway if and only if it belonging to a shortest path. 

 

DISCUSSION 

We discusses the solution of the iterative systems of interval min-plus linear equations its 

application on shortest path problem with interval travel times. The discussion begins by 

reviewing some basic concepts of interval min-plus algebra and matrices over interval min-plus 

algebra. Definition and concepts in the min-plus algebra analogous to the concepts in the max-

plus algebra which can be seen in Rudhito (2011). 

The (closed) interval x in Rmin is a subset of Rmin of the form  

x = [ x , x ] = {x  Rmin  x
m
  x 

m
 x }. 
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The interval x in Rmin is called min-plus interval, which is in short is called interval. Define  

I(R) := { x = [ x , x ]  x , x   R ,   m  x  m x }  {  }, where  := [,  ]. 

In  the I(R) , define operation   and   as   

x   y = [ x  y , x  y ] and x   y = [ x  y , x  y ] ,  x, y  I(R). 

Since (R, , ) is an idempotent semiring and it has no zero divisors, with neutral element , 

we can show that I(R)  is closed with respect to the operation   and  . Moreover,  (I(R), ,

 ) is a comutative idempotent semiring with neutral element  = [, ] and unity element 0 = 

[0, 0]. This comutative idempotent semiring (I(R), , ) is called interval min-plus algebra 

which is written as I(R)min.  

Define I(R) nm
min  := {A = (Aij)Aij  I(R)min, for i = 1, 2, ..., m and   j = 1, 2, ..., n }. The 

element of I(R) nm
min  are called matrices over interval min-plus algebra. Furthermore, this 

matrices are called interval matrices. The operations   and   in I(R)min can be extended to the 

matrices operations of in I(R) nm 
max . Specifically, for A, B  I(R) nn

min  and   I(R)min we define  

( A)ij =  Aij , (A B)ij = Aij   Bij  and  (A  B)ij = kjik

n

k

BA
1




. 

Matrices A, B  I(R) nm
min are equal if Aij = Bij , that is if ijA  = ijB  and  ijA  = ijB  for every i 

and j.  We can show that (I(R) nn
min , , ) is a idempotent semiring with  neutral element is 

matrix , with ()ij:=   for every i and j,  and unity element is matrix E, with  (E)ij : = 









ji

ji

 if,ε

 if,0
. We can also show that I(R) nm

min is a semi-module over I(R)min. 

For any matrix A  I(R) nm
min , define the matrices A  = ( ijA )  R nm

min  and A = ( ijA )  R nm
min , 

which is called lower bound matrices and upper bound matrices of A, respectively. Define 

matrices interval of A, that is  

[ A , A ] = { A  R nm
min A  m  A m  A  } and I(R nm

min )
*
 = { [ A , A ]  A  I(R) nn

min }. 

Specifically, for  [ A , A ], [ B , B ]  I(R nm
min )

*
 and   I(R)min we define  

   [ A , A ] = [  A ,  A ],  [ A , A ]   [ B , B ] = [ A B , A B ]  

and [ A , A ]   [ B , B ] = [ A B , A B ]. 

The matrices interval [ A , A ] and [ B , B ]I(R nm
min )

*
 are equal if A  = B  and A  = B . We can 

show that (I(R nn
min )

*
,  ,  ) is an idempotent semiring with neutral element matrix interval [, 

] and the unity element is matrix interval [E, E]. We can also show that I(R nn
min )

* 
is a 

semimodule over I(R)min. 

The semiring (I(R) nn
min ,  ,  ) is isomorfic with semiring (I(R nn

min )
*
, ,  ). We can 

define a mapping f, where f (A) = [ A , A ], A  I(R) nn
min . Also, the semimodule I(R) nn

min  is 

isomorfic with semimodule I(R nn
min )

*
. So, for every matrices interval A  I(R nn

min )
* 

we can 

determine matrices interval [ A , A ] I(R nn
min )

*
. Conversely, for every [ A , A ]  I(R nn

min )
*
,
 
then 
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A , A  R nn
min , such that [ A ij , A ij ]  I(R)min , i and j. The matrix interval [ A , A ] is called 

matrix interval associated with the interval matrix A and which is written A  [ A , A ]. So we 

have       A  [  A , A ], A  B  [ A B , A B ] and A  B  [ A B , A  B ]. 

We define for any interval matrices A  I(R) nn
min , where A  [ A , A ], is said to be semi-

definite (definite) if every matrices A  [ A , A ] is semi-definite (definite). We can show that 

interval matrices A  I(R) nn
max  , where A  [ A , A ] is semi-definite (definite) if and only if A  

R nn 
max  semi-definite (definite). 

 

Define I(R) n
min := { x = [x1, x2, ... , xn ]

T
 | xi  I(R)min, i = 1, 2, ... , n }. The set I(R) n

min  can be 

seen as set I(R) 1
min
n . The Elements of I(R) n

min  is called interval vector over I(R)min. The interval 

vector x associated with vector interval [ x , x ], that is x  [ x , x ].  

 

Definition 1. Let A  I(R) nn
min  and b  I(R) n

min . A interval vector x
*
  I(R) n

min is called interval 

solution of iterative system of interval min-plus linear equations  x = A   x   b if x
*
 satisfy 

the system. 

Theorem 1. Let A  I(R) nn
max  and b  I(R) 1

min
n . If A is semi-definite, then interval vector          

x
* 
 [ b

*
A , b*A ], is an interval solution of  system x = A  x   b. Moreover, if A is 

definite, then interval solution is unique. 

Proof.  Proof is analogous to the case of max-plus algebra as seen in the Rudhito (2011) 

Next will be discussed the earliest starting times interval for point i can be traversed. The 

discussion is analogous to the case of (crisp) travel time (Rudhito, 2013), using the interval min-

plus algebra approach.  

Let ESi =
e

ix  is earliest starting times interval for point i can be traversed, with
e

ix = [
e

ix ,
e

ix ]. 

               Aij = 








A,

A

 ),( if                                      ])[ε(

),( if point  topoint  from  time travelinterval

ij

ijij
. 

We assume that 
e

ix = 0 = [0, 0] and with interval min-plus algebra notation we have   

  
e

ix  =  














  1 if  ) x(A

1 if                       0

1

i

 i 
e
jij

nj

.     (1) 

Let  A  is the interval weight matrix of the interval-valued weighted graph of the networks,       

x
e
 = [

e

1x ,
e

2x , ... , 
e

nx ]
T
 dan b

e
 = [0, , ... , ]

T
, then  equation (1) can be written in an iterative 

system of interval max-plus linear equations 

 x
e 
 =  A   x

e
   b

e
      (2) 

Since the project networks is acyclic directed graph, then there are no circuit, so according to 

the result in Rudhito(2011), A is definite. And then according to Theorem 1,  

x
e
  = A

*
   b

e
   [

e*
bA , 

e*
bA ]  
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= [(E  A  ... 
1

A
n

)
e

b , ( E A  …  
1

A
n

)
e

b ]  

is a unique solution of the system (2), that is the vector of earliest starting times interval for 

point i can be traversed. 

Notice that 
e

nx  is the fastest times interval to traverse the network. We summarize the 

description above in the Theorem 2. 

Teorema 2. Given a one-way path network network with interval travel times, with n node and 

A is the weight matrix of the interval-valued weighted graph of networks. The interval vector of 

earliest starting times interval for point i can be traversed is given by  

x
e
    [(E  A  ... 

1

A
n

)
e

b , ( E A  …  
1

A
n

)
e

b ]  

with  b
e
 = [0, , ... , ]

T
. Furthermore, 

e

nx  is the fastest times interval to traverse the network.  

Bukti: (see description above) .  ■ 

 

Example 1 Consider the project network in Figure 1. 

  

 

 

 

 

 

 

 

 

 

 

 

We have  

A = 





























ε8] [6,8] [5,9] [7,εεε

εε7] [4,3] [2,εεε

εεε0] [0,3] [2,εε

εεεε5] [3,3] [2,ε

εεεεεε4] [2,

εεεεεε3] [1,

εεεεεε ε,

.  

Using MATLAB computer program, we have 

4 

5 

3 
6 

7 
1  

[1, 3] [7, 9] 

[2, 3] 

[3, 5] 
[6, 8] 

[4, 7] 
[5, 8] 

[2, 4] 

2 
[2, 3] 

[2, 3] 

Figure 1. A one-way path network network with interval travel times 
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*A = 





























0655778

042545

00223

0323

02

01

0













, *A  = 





























0888111114

073869

00336

0536

04

03

0













, 

e
x  

= [0, 1, 2, 3, 3, 5, 8]
 T 

dan 
e

x  
= [0, 3, 4, 6, 6, 9, 14]

 T
. 

So the vector of earliest starting times interval for point i can be traversed is 

x
e
 = [ [0, 0],  [1, 3], [2, 4], [3, 6], [3, 6], [5, 9], [8, 14]]

T
 and the fastest times interval to 

traverse the network
 

e

nx  = [16, 25]. 

Next given shortest path interval definition and theorem that gives way determination. 

Definitions and results is a modification of the definition of critical path-interval and theorem to 

determine the critical path method-interval, as discussed in Chanas and Zielinski (2001) and 

Rudhito (2011).We also give some examples for illustration.  

Definition 2. A path p  P is called an  interval-shortest path in S if there exist a set of travel 

times  Aij  [ ijA , ijA ], (i, j)  A, such that p is shortest path, after replacing the interval travel 

times Aij with the travel time Aij .    

Definisi 3. A pathway (k, l)  A is called an interval-shortest pathway in S  if there exist a set 

of travel times  Aij  [ ijA , ijA ], (i, j)  A, such that (k, l) is shortest pathway, after replacing the 

interval travel times Aij with the travel time Aij . 

 The following theorem is given which relates the interval-shortest path and interval-

shortest pathway. 

Teorema 3.  If path  pP is an interval-shortest path, then all pathways in the p are interval-

shortest pathway. 

Proof : Let path p  P is an interval shortest path, then according to Definition 2, there exist a 

set of times  Aij  [ ijA , ijA ], (i, j)  A, such that p is shortest path, after replacing the interval 

travel times Aij with the travel time Aij . Next, according to the definition of shortest path above, 

all pathways in p are shortest pathways for a set of travel times Aij  [ ijA , ijA ], (i, j)  A. Thus 

according to Definiton 3, all pathways in p are interval-shorstest pathways.     ■ 

 The following theorem is given a necessary and sufficient condition a path is an 

interval-shortest path. 

Teorema 4.  A path p  P is an  interval-shortest path in S  if and only if  p is a shortest path, 

with interval travel times Aij  [ ijA , ijA ], (i, j)  A, have been replace with travel times Aij 

which is determined by the following formula 
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   Aij = 










pjiA

pjiA

ij

ij

  ) ,( jika 

  ) ,( jika 
.    (3) 

Bukti :  : Let p is an interval-shortest path, then according to Definition 2, there exist a set of 

travel times  Aij , Aij  [ ijA , ijA ], (i, j)  A, such that p is shortest pathway, after replacing the 

interval travel times  Aij  with travel times Aij , (i, j)  A. If the travel times for all pathway is 

located at p is reduced from Aij to ijA  and for all pathway is not located p is increased from Aij 

to ijA , then p is a path with minimum weight in S for new travel time formation. Thus path p is 

a shortest path. 

 : Since path p a shortest path with a set of travel times Aij  [ ijA , ijA ], which is determined 

by the formula (9), then according to Definition 2, path  p  is an interval-shortest path.     ■ 

Example 2. We consider the network in Example 1. We will determine all interval-shortest path 

in this network. For path 1357, by applying formula (9), we have weight  





























εεεε

εεεεε

εεεεε

εεεεε

εεεεεε

εεεεεε

εεεεεεε 

849

83

02

53

2

3

. 

Using MATLAB computer program, we have a shortest path 1357 with minimum weight 

of path is 8. Thus 1357 is an interval-shortest path. The results of the calculations for all 

possible path in the network are given in Table 1 below. 

Tabel 1 Calculation results of all path 

No Path p 

Weight 

Interval 

p 

Shortest-path p
*
 

(with formula (9)) 
Weigh

t of p
*
 

Conclusion 

1 1357 [8,14] 1357 , 8 Interval-shortest 

2 13567 [15, 23] 1357 11 Not interval-

shortest 

3 13457 [9, 16] 13457  

1357 

9 Interval-shortest 

4 13456

7 

[16, 25] 13457  

1357 

12 Not interval-

shortest 

5 13467 [13, 20] 13457  

1357 

12 Not interval-

shortest 

6 1347 [12, 18] 13457 

1347 

1357 

12 Interval-shortest 
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7 12457 [7, 13] 12457 7 Interval-shortest 

8 12456

7 

[14, 22] 12457  10 Not interval-

shortest 

9 12467 [11, 17] 12457  10 Not interval-

shortest 

10 1247 [10, 15] 12457  

1247  

10 Interval-shortest 

 

REFERENCES 

1. F. Bacelli, et al., Synchronization and Linearity,  John Wiley & Sons, New York, 2001. 

2. S. Chanas, S., P. Zielinski, P, Critical path analysis in the network with fuzzy activity times. 

Fuzzy Sets and Systems. 122. 195–204., 2001. 

3. M. A. Rudhito, Sistem Linear Max-Plus Waktu-Invariant, Tesis: Program Pascasarjana 

Universitas Gadjah Mada, Yogyakarta, 2003. 

4. M. A. Rudhito, Aljabar Max-Plus Bilangan Kabur dan Penerapannya pada Masalah 

Penjadwalan dan Jaringan Antrian Kabur. Disertasi: Program Pascasarjana Universitas 

Gadjah Mada. Yogyakarta., 2011. 

5. M. A. Rudhito, Sistem Persamaan Linear Min-Plus dan Penerapannya pada Masalah 

Lintasan Terpendek. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika. 

Jurusan Pendidikan Matematika FMIPA UNY, Yogyakarta, 9 November 2013. pp: MA-29 – 

MA-34. 

  

 

 

 

 

 

 

 

 


