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Abstract 

Let        be the set of all real-valued continuous functions defined on a 

closed interval      . It is a commutative Riesz algebra space with unit element  , 

where        for every        . As in the real numbers system  , we define 

        of the extended of       . In this paper, we shall generalize the notions of 

outer measure, measure, measurable sets and measurable functions from        into 

       . This paper is a part of our study in Henstock-Kurzweil integral of functions 

define on a closed interval              which values in        .  
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INTRODUCTION 

 

Some properties of real-valued continuous function defined on a closed interval were 

studied by several authors. Bartle and Sherbert [2] mention some of its properties are bounded, 

it has an absolute maximum and an absolut minimum, it can be approximated arbitrarily closely 

by step functions, uniformly continuous, and Riemann integrable. 

In this paper,        denotes the set of all real-valued continuous functions defined on a 

closed interval      . Further discussion of        can be shown in classical Banach spaces 

such as Albiac and Kalton [1], Diestel [4], Lindenstrauss and Tzafriri [5], Meyer-Nieberg [6], 

and others. 

In development of mathematical analysis, sometimes we need to extend of definition, such 

as measure. For example, Boccuto, Minotti and Sambucini [3] define Riemann sum of a 

function      , where   is a Riesz space, is 

                  

 

   

 

where                       is  -fine partition of   and   is a Riesz-valued measure  , 

that is       where   is the  -algebra of all Borel subsets of    In their definition, they 

assumed that   is Dedekind complete Riesz space. Now, if we take          that is Riesz 

space but not Dedekind complete, interesting for us to discuss a       -valued measure. 

The aim of this paper is to construct a       -valued measure and to discuss some of its 

properties, including measurable sets and measurable functions. The construction of the       -
valued measure could be applied to construct integral of       -valued functions. 
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PRELIMINARIES 

 

Before we begin the discussion, we give an introductory about        as a Riesz space and 

a commutative Riesz algebra. Let        be the set of all real-valued continuous functions 

defined on a closed interval      . It is well known that        is a commutative algebra with 

unit element  , where        for every        , over a field  . If           , we define 

                                                     

for every          The relation     is a partial ordering in        because it satisfies  

(i)       for every         , 
(ii)      and           for every             , 
(iii)     and         . 

Therefore            , briefly       , is a partially ordered set. Further, the        satisfies 

(i)               for every         , 
(ii)            for every     . 

Therefore,        is also Riesz space. If           , we define    with 

                                      

Hence,        will be called a commutative Riesz algebra with unit element  . The Riesz 

spaces and commutative Riesz algebras more in-depth discussion can be found in [6] and [9]. 

So far, if            with    , we define 
                           , 
                           , 
                       , 
                        , 
                     , 
                     . 

If           , we define                   with 

(i)             
       

            , 

(ii)                               , 

(iii)               for every         , 

(iv)        
              

                 
  , 

(v)        
                     

               
 . 

Bartle and Sherbert [2] showed that if           , then                   and    are 

members of       . Explanation of infimum/supremum of set and limit of sequence on        
can be shown in [8]. 

DISCUSSION 

 

We shall construct a        -valued outer measure. We need an extention of the system 

of        as follows: 
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and we call it the extended system of       . If            , we have             and 

          . The enlargement of the operations between            and          are 

defined as follows: 

(i)        for every         , 
(ii)        and         for every         , 
(iii)       and         for every          and      
(iv)        and        for every          and      
(v)       and           , and 

(vi)            

where   is null element of        with        for every          
 

Definition 1. A function                    is called a       -valued outer measure, briefly 

outer measure, if it satisfies the following properties: 

(i)         for every          ,  

       , 

(ii)             where                , and 

(iii)                             
 
     

    

 

 If            with     and         is a open interval, we defined a       -
valued interval function   by 

          

Next theorem is a example there is a outer measure on         
 

Theorem 2. A function                    that defined 

                 

 

   

                                         

 

   

  

is a  outer measure on         

Proof. It is clear that         for every          . Since     for every          , then 

    
 

 
 
 

 
  for every    . Therefore, we have 

         
 

    
 

 
 
 

 
      

 
 
  

 
      

Given two sets            arbitrary where    . If         , it is true that       
     . If        , then for every real number     there is a sequence                  
such that           

 
    and         

 
            . Since    , then we have 

          
 
   , hence               

 
   . Thus, we have 

             

Given a sequence             arbitrary. If there is     such that         , it is true 

that                
 
     

     If          for every    , then for every real number 

    there is a sequence                      such that                
 
    for every 

    and  
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For every    , we obtain    
 
                 

 
   

 
    and 

      

 

   

               

 

   

 

   

          
  

  
 

 

   

           

 

   

  

that is,        
 
             

 
                      

 

Next, we know a       -valued measure (the explanation of  -algebra of set  , 

measurable space       and their properties can be shown in [7]). 

 

Definition 3. Let          be a nonempty set and       be a measurable space. A function 

            is called a       -valued measure on      , briefly measure on  , if 

(i)        for every     

       , 

(ii)        where         for    , then      
 
           

 
    

 

Let          be a nonempty set and   a measure on measurable space      . A measure   

is called a finite measure if        and a measure   is called a  -finite measure if there is a 

sequence of measurable sets        such that      
 
    and         for every    . 

If   is a measure on      , a pair         is called a measure space. A measure space 

        is called complete if     with        and     implies    . Some 

properties of measure on            are given in Theorem 4, Theorem 5 and Theorem 6. 

 

Theorem 4. Let              be a measure space. If       and     then            

Proof. If     then           where          . So we have 

                                          

 

Theorem 5. Let              be a measure space. If        where         for every 

    and         then  

     

 

   

     
   

      

if it has limit. 

Proof. Set      
 
   , we have                 

 
     with               for 

every    . Then                       
 
    and                 , we have 

                          

If             exist, we have 

                            

 

   

         
   

                

   

   

 

               
   

       

that is,      
 
                     .                      
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Theorem 6. Let              be a measure space. If        then  

     

 

   

        

 

   

  

Proof. Set        and           
   
     for every      Then       for every   and 

        for every    . Thus              for every    and  

     

 

   

        

 

   

       

 

   

                                                      

Measurable Sets 

 

We introduce a definition of a   -measurable set. 

 

Definition 7. A set          is said    -measurable if every          we have 

                      . 

  

Some   -measurable sets on        is given in Theorem 8 as follows. 

 

Theorem 8. The following statements are true: 

(i)   and        are   -measurable, 

(ii) If          is   -measurable, then    is   -measurable, 

(iii) If              is   -measurable, then       and        are   -measurable. 

Proof. We only prove (iiii). Consider                          
   that implies  

                                 
                                     (a) 

Since    is   -measurable set, then we have 

       
           

               
     

   or 

        
              

               
                                 (b) 

Subtitution (b) into (a), we have 

                          
                   

          

Thus,       is   -measurable set. Based on this result and a statement (ii), we have       

   
    

  
 

   -measurable.                   

 

Theorem 9. If                   are disjoint and    -measurable sets, then for every 

         we have 

        

 

   

           

 

   

  

Proof. We shall prove by mathematical induction. 

That is clear true for      Next, we assume the theorem is true for              sets, that is  
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is true for every           

Since    disjoint sets, we have 

      

 

   

          

and  

      

 

   

    
       

   

   

   

Since    is   -measurable set for every  , we have 

        

 

   

                   

   

   

   

 

                   

   

   

 

          

 

   

                                                                   

 

Theorem 10. If       is a   -measurable sets sequence, then 

   

 

   

 

is a   -measurable set. 

 

Theorem 11. If   is a collection of all   -measurable sets on       , then   is a  -algebra on 

      . 

Proof. Since     then    . Based on definition, if     we have     , and based on 

Theorem 10, if       then    
 
    is   -measurable set.               

 

Let          be a nonempty set. If   is a collection of   -measurable subsets of 

        we have a measurable space       that is generated by a measure    as defined in 

Theorem 2. 

 

Theorem 12. Let           be a nonempty set and       be a measurable space  A function 

           , formulated by 

            

is a measure. 

Proof.              for every     and             . If        and    are 

disjoint sets, with Theorem 9 and replace          we obtain 
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for every    .                    

 

 

Measurable Functions 

 

Before we discuss a measurable function on a   -measurable set, we introduce a 

characteristic function and a simple function on       . 
Let              be a measure space and         . A function 

                  

is called characteristic function on   if 

       
 
 
      
     

 

If            are   -measurable sets and             , a function  

        

 

   

 

is called a simple function on      
 
      -measurable set. A simple function   is said in 

the form canonical representation if            are disjoint sets. Every simple function 

always can be represented in canonical representation. In what follows, we shall always assume 

that every simple function is in the form of canonical representation if there is nothing further 

information. If   and   are simple functions on set  , then    and     are simple functions 

on set   for every    .  

Before defining a measurable function on a   -measurable set, we need a terminology what 

is called “almost everywhere”. Let      denote a statement concerning the points   in a set  . 

We say that the statement      holds true almost everywhere on   or      holds true for 

almost every     if there is     with         such that      holds true for every 

     . 

 

Definition 13. A function                    is said to be measurable on a   -

measurable set   if for every number     there is a simple function    on   such that 

               

almost everywhere on    
 

By the definition, it is clear that every simple function on   -measurable set   is 

measurable on    
 

Theorem 14. If                      are two functions such that   and   are 

measurable on   -measurable set  , then for every number     functions    and     are 

measurable on   -measurable set    

Corollary 15. If                                  are functions such that    is 
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measurable on   -measurable set   for every          , then for every         
        , a function 

     

 

   

 

is measurable on   -measurable set    
 

Teorema 16. If                  is continuous function, then   is measurable on        

Proof. Interval       is   -measurable set. If   is continuous function on closed interval       
then   is uniformly continuous on      , that is, for every number     there is number     

such that for every           with          we have               . Let 

                                             be a partition on       such that         

   for every            If we take              and       
       

             for 

every  , then we obtain a simple function 

        

 

   

 

on       such that 
               

for every        , that is,   is measurable on      .                         

 

 

CONCLUSION AND SUGGESTION 

 

From the discussion results above, we conclude: 

1. There is a       -valued measure that is generated by       -valued outer measure. 

2. A continuous function that defined on a closed interval subset of        is measurable on 

it. 

 

REFERENCES 

 

[1] Albiac, F., & Kalton, N.J., Topics in Banach Space Theory, Springer-Verlag, New York, 

2006.  

[2] Bartle, R.G. & Sherbert, D.R., Introduction to Real Analysis, 3rd edition, JohnWiley, New 

York, 2000. 

[3] Boccuto, A., Minotti, M., & Sambucini, R., Set-valued Kurzweil-Henstock Integral in 

Riesz Spaces, Panam. Math. J. 23(1) (2013),  57-74. 

[4] Diestel, J., Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984. 

[5] Lindenstrauss, J. & Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, Berlin, 1977. 

[6] Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991. 

[7]   Royden, H.L., Real Analysis, 3
rd

 edition, Prentice-Hall, New Jersey, 1988. 

[8] Ubaidillah, F., Darmawijaya, S., & Indrati, Ch. R., Kekonvergenan Barisan di Dalam 

Ruang Fungsi Kontinu        , Cauchy 2(4) (2013), 184-188. 

[9] Zaanen, A.C., Introduction to Operator Theory in Riesz Spaces, Springer-Verlag, Berlin, 

1997. 


