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Abstract 

 
In this paper we present probability density function of vacation period of M/G/1 

queueing process that operates under (0,k) vacation policy, wherein the server goes 

on the vacation when the system becomes empty and re-opens for service 

immediately at the arrival of the k
th

 customer. The number of lattice paths when last 

arrival is an arrival has also been derived. 

The transient analysis is based on approximating the general service time 

distribution by Coxian two-phase distribution and representing the corresponding 

queueing process as a lattice path. Finally the lattice path combinatorics is used to 

present the number of lattice paths.  
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INTRODUCTION  

Study of performance analysis of a queueing system  i.e. a system consisting of one or 

several queues, is mainly devoted into two parts i.e. the steady-state performance and the 

transient behaviour.  Many authors have considered the steady-state analysis. We may mention 

Takagi [1,2], Neuts [3,4], Gross and Harris [5], Kleinrock[6,7] among those who have presented 

the steady-state analysis for more general queueing systems.  Buzacott and Shantikumar [8] 

concerned on the steady-state analysis in the area of manufacturing systems.  

Feature of actual situation in manufacturing models often follows this M/G/1 model. 

When the failed machines happened and the operators have to repair, then the amount of time 

needed to finish the job has a general distribution. Buzacott and Shanthikumar [8] presented 

some probability distributions commonly used in the modeling of manufacturing systems. These 

are including exponential, Erlang, hyperexponential, general exponential, phase type and two-

phase Coxian etc 

The queueing system when the server has to work on primary and secondary customers 

are useful in model building in many real life situations such as digital communication, 

computer network and production/inventory systems e.g., see Takagi [1,2] and Doshi [9]. For 

example in a simple case a server serving at a bank teller may continue to serve the customers 

till no more customers are waiting. At this point server may switch on to other task like counting 

cash and return back to service as soon as a new customer arrives. In this case we say that the 

queueing system is operating under server vacation and a number of different rules (control 

policies) can be set for the server to return to the main systems.  Some of the papers that 

considered server’s vacations are Kumar and Madheswari [10], Kao and Narayanan [11], 
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Agarwal and Dshalalow [12], Chae  and Kim [13], Chae and Lim [14], Sridharan and 

Mohanadivu [15], Choudury [16] and Garj [17]. 

Sen et al. [18] studied this system for M/M/1 queues. The M/G/1 queueing system under 

this control policy was studied by Agarwal and Dshalalow [12]. 

 

2. THE TRANSIENT ANALYSIS 

 
2.1 The (0,K) Control Policy 

 

In this paper we will be concentrating on control policies namely (0, K) control policies. 

Under this policy the server goes on the vacation when the system becomes empty and re-opens 

for service immediately at the arrival of the kth costumer. 

 

2.2 Two-phase Coxian distribution 

 

The Coxian distribution describes duration until an event occurs in terms of a process 

consisting of 2 latent phases, leading to the Markovian structure.  Figure 1 presents the Cox-2 

phase approximation, where 1  and 2  are the average rate of serving the customers in phase 1 

and phase 2 respectively.  The 1  is the probability that a customer will move from phase 1 to 

phase 2 and 1  is the probability that a customer will depart the system after completing the 

phase 1. 

μ1 μ2

Phase 1 Phase 2

α1

β1 1

 
Fig.1. Two-phase Coxian distribution 

 

The Coxian distribution plays an important role.  Their importance is in large part due to their 

universality i.e. any distribution function can be approximated arbitrarily closely by a Coxian 

distribution, Cox [19], Khosgooftar and Perros [20], Agarwal et al. [21, 22], Sen and Agarwal [23], 

Sen [24], Harris et al. [25]  Due to the memoryless of the exponential distribution, stochastic 

processes involving Coxian distribution whose branching probabilities are real are Markovian. 

Therefore, they can be analysed by well known technique, Khosgooftar and Perros [20], Harris et 

al. [25]. 

 

2.3 Lattice path (LP) 

 

Lattice path simply can be defined as the translation of the behaviour of the sample 

paths of the random process involved. This implies many characters of a queueing system 

become characteristics of lattice paths, like maximum height, the number of steps until the 

barrier is reached etc. 
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LPC starts with representing the behavior of the queueing process through a sequence of 

steps represented as lattice path. For example a lattice path can be constructed by representing 

an arrival into the system by a horizontal step and departure by vertical step.  In this case the 

system size at any point is the difference between the number of  horizontal and vertical steps, 

or the distance between the end point of the path and the barrier .Y X    Thus arrival of a 

customer during any phase of service, departure of a customer that can occurs at any phase of 

service and entry into phase 2 will be denoted by a horizontal unit step, a vertical unit step and a 

diagonal of 2 unit step, respectively. 

(x+1,y)

(x,y+1) (x+1,y+1)

(x,y)
 

Fig. 2 A sequence of steps represented as lattice path 

 

Therefore, if    , ,x y x k  denotes a vertex of the LP representing the M/C2/1 queueing 

process at any point,  , 1x y  denotes a departure after any phase,  1,x y  denotes an arrival 

during any phase and  1, 1x y   denotes a customer enters phase 2.  The possibility of 

movements will be as shown in Fig. 2. 

 

2.4 Definition  

 

Run (Agarwal et al., [22]): A sequence of consecutive horizontal (vertical) steps 

bounded on each side by a vertical (horizontal) step is called  a horizontal (vertical) runs of 

arrivals (departures), respectively. The sequences of arrivals starting from the origin and 

preceding the first vertical step as well as the sequence of departures at the end following the 

last arrival are also called the run of arrivals (departures), respectively. 

 

2.5 Notation and terminology. 

 

We follow notation and terminology used by Agarwal et al. [22]. 

While inserting the diagonals, we have to observe that two or more consecutive 

diagonal do not occurs, in any horizontal run not more than one diagonal occurs, in vertical run 

any number of diagonal may occurs, the first vertical step following a diagonal step has to be 

dotted vertical step, two or more consecutive dotted vertical steps cannot occurs, and a dot 
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vertical step can not immediately preceded by a vertical step (departure after phase 2 cannot be 

preceded by departure after phase 1). 

In a Lattice Path (LP), let 

k initial number of customers at the start of busy period 

r number of horizontal runs,  1r  vertical runs, if after 
thr horizontal run t there is no 

departure otherwise r vertical runs  1 .r   

p total number of diagonal representing entry into phase 2 inserted in horizontal and/or 

vertical runs  0p   

q total number of diagonal representing entry into phase 2 inserted in horizontal runs  

p-q number of diagonal representing entry into phase 2 inserted in vertical runs 

li length of the ith horizontal run (i=1,2,…,r1) 

Li length of the ith vertical run (i=1,2,…,r2) 

L
 

 
1 21 2 1 2, ,..., ; , ,...,r rl l l L L L

    
 

i
 

 1 2, ,..., qi i i
  

  i.e q horizontal runs in each of which a diagonal representing into phase 2 is inserted 

il  
 1 2, ,..., ql l l

 
 i.e  lengths of horizontal runs  

ip
 

 
1 2
, ,...,

qi i ip p p
  

 i.e distances from extreme left end points where diagonals representing entry into phase 

2  are inserted in horizontal runs i  including vertices at both ends of the runs) 

 

3. RESULTS 

 

Theorem 1.  (Vacation period probability density function) 

 

Let   0 1
f t  denote the probability density function that the system M/C2/1 has vacation period 

of length 1t  before starting service initially with k customers. Then we have 

 

 

1
1 2

1

0 1( )
1

kt ke t
f t

k

 
 


 

 (0.1) 

Proof: This term corresponds to the case when customers arrive before the system starts service. 

The total number of arrivals is 1k  , and the total number of departures is 0.  Therefore total 

number of transition during vacation period is 1.k   

At time To, Poisson process starts with rate  . The probability of an arrival is 1  and  the 

probability of a departure is 0.  The probability density function of 1t  is  1k  -Erlang with 

parameter   given by 

   
 

 

1
1 2

1

0 1( )
1

kt ke t
f t

k

 
 


 

            

(0.2) 
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Therefore the vacation density function for the case becomes 

 

 

1
1 2

1

0 1( )
1

kt ke t
f t

k

 
 


 

    ,                                             

(0.3)  

since the number of lattice paths starting from (0,0) to  1,0k   is 1. 

 

Theorem 2. (Counting the number of LPs when last event is an arrival ) 

For non-negative integers   1 2 1 2 1, , ; , ; 1 , , ,..., ; , ,..., ;r rk m n p q r r l l l L L L   let 
 *

*

, ; , ; ,k n l m r L
LP 
 
 

, where  *

1 2 1 2 1, ,..., ; , ,...,r rL l l l L L L  , denote the number of LPs  from (k,0) to (m,n), m>n, 

remaining below the line Y=X, each comprising of m-p horizontal steps 

    including those from 0,0  to ,0k , n-p vertical steps and p diagonals, such that 

(a) m p horizontal steps form r  runs of lengths 1 2, ,..., rl l l , respectively, satisfying 

1 0 2, ,..., 0rl i l l   and 
1

r

ii
l m p


   

(b) n p vertical steps form 1r   runs of lengths 1 2 1, ,..., rL L L  , respectively, 

satisfying 1 2 1, ,..., 0rL L L    and    
1

1

r

ii
L n p




 

 
 

(c)  1 0 1 1 1
, 1 , , 1,2,..., 1,

u u

i ii i
l Max i L l L u r

 
      1

,
r

ii
l m p


 

1

1

r

ii
L n p




   

(d) q diagonals representing into phase 2 are inserted each in any q out of r horizontal 

runs (including the vertices at both ends of the runs), 

(e) The remaining p-q diagonals representing into phase 2 are inserted each at any 

1n p r    vertices available along the vertical runs, 

Then, for 1r   and ,m k  

 
 *

7 8

*

, , ; , ; ,

1

k m n p q r L
R R

n p r
LP

p q

        
   

  (1.4) 

Proof. If we delete all the diagonal steps, and compress to form a skeleton path, then there must 

be  m p  horizontal steps, and  n p  vertical steps. To get from   ,0k  to  ,m p n p   

we suppose this skeleton consists of r  horizontal runs and r vertical runs of lengths li 

 1,2,...,i r , and Lj  1,2,...,j r respectively. One unique path will be produced by this 

scenario. For the purpose of insertion, suppose q diagonals are inserted into runs numbered i1, 

i2,…, iq, respectively with lengths of li, l2,…, lq at distances 
1 2

, ,...,
qi i i

p pp from the extreme left 
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end points. The remaining p-q diagonals will be inserted into any p-q vertices out of n p r  . 

The number to do this is 
n p r

p q

  
 

 
. 

 Now summing 
n p r

p q

  
 

 
 over all possible q-tuples, (i1, i2,…, iq) and 

1 2

, ,...,
qi i i

p pp , 

we get (1.4). 

 

Lemma 1. Let 
  *

, , ;k m n p
LP  the number of LPs  from (k,0) to (m,n), m>n, remaining below the 

line Y=X, each comprising of m-p horizontal steps (including those from  0,0 to  ,0k , n-p 

vertical steps and p diagonals, then summing (1.4) over 
*,  and r q L , we find 

 
    *

*
4 5 6

* *

, , ; , , ; , ; ,k m n p k m n p q r L
R R R

LP LP   
 

  (1.5) 

where 

 

 



*

6 1 1

1 2 1 2 1 2 1 2 1

1

1 1

: max , 1 ,

         ,..., ... ... ,

         ,

r r

r r

i ii i

R L l k L

l l L L l l l L L L

l m p L n p





 

  

         

    

 

For the case 1r   and p=0, we get 

      *

, , ;0,0 , , ;0,0k m n k m n

m n k m n k
LP LP

n m

      
     

   
 (1.6) 
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