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Abstract 

Cellular localization of chloride(Cl) and hydrogen peroxide (H2O2) in the leaf blades 

of maize plants exposed to 3% NaCl were investigated. This study was aimed to 

investigate whetherdifferential sensitivity to salinity between mesophyll cells (MC) 

and bundle sheath cells (BSC) in maize associated with differential accumulation of 

Cl and H2O2 in MC and BSC. Cl distribution was examined with X-ray 

microanalysis, whereas H2O2 was analyzed histochemically and cytochemically 

using 3,3-diamino-benzidine(DAB) and Cerium Chloride (CeCl30.The present study 

shows that Cl accumulation in MC and BSC of the plants treated with NaCl was 

relatively comparable. However, salinity-induced H2O2 formation in MC 

chloroplasts was higher compared with that in BSC chloroplasts. In addition, H2O2 

accumulation was also detected in apoplast of MC and BSC with the greatest 

accumulation being detected in the cell walls of MC facing to the intercellular space. 

These results suggest that differential sensitivity between MC and BSC chloroplasts 

to salinity is not caused by differential accumulationof Cl between the cells. 

Apoplastic accumulation of H2O2 may rather reflect changes in oxidative balance 

generated by ROS scavenger in the cells that affects the homeostasis of the whole 

cell. 
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INTRODUCTION 

 

Salinity is one of the major abiotic stresses in arid and semiarid region (Rengasamy et 

al., 2003). Over 6% (800 million ha) of the world’s total land area, about 2% (32 million ha) of 

1,500 million ha dryland agriculture and 20% (45 million ha) of230 million ha irrigated lands 

are affected by salinity (FAO, 2000). The stress is caused by excessive uptake of toxic ions from 

soil solution. Although the mechanisms of salt stress are still complicated, it is considered that 

excessive accumulation of salt ions, mainly Na
+
 and Cl

-
 in the plant tissues is a major factor to 

the damage caused by salinity (Flowers and Hajibagheri, 2001). 

High salt content in the plant tissues influences physiological and biochemical processes 

of the plants through osmotic and ionic stresses (Munns, 2005). Osmotic stress occurs due to Na 

and Cl uptake, which leads to a deficit of water in the plant tissues. Ionic stress occurs due to 

high concentrations of toxic ions such as Na
+
 and Cl

-
 reduces uptake of other mineral nutrients 
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such as Ca and K, which causes metabolic disturbances (Hasegawa et al, 2000).  

One of the biochemical changes that occur when the plants exposed to salinity is the 

increase of ROS production such as O2
-
, H2O2 and hydroxyl 

.
OH (Zhu, 2001; Bolkhina et al., 

2003). The major sites of ROS production in the plant cells during abiotic stress are 

chloroplasts, mitochondria and microbodies (del Rio et al., 2002). Under a normal condition, 

plants produce a relatively low concentration of ROS which are not harmful and used for 

signaling cascade such as in defense and acclimatory processes. However, high concentration of 

ROS can seriously disrupt normal metabolism through oxidative damage of lipids, proteins and 

nucleic acids (Neill et al., 2002). 

Capability of the plants to limit the uptake of toxic ions is one of the factors which 

determine sensitivity of the plants to salinity. Accumulation of toxic ions in the plant tissue of 

salt tolerant species is usually lower than in the salt sensitive species when the plants are 

exposed to salinity (Garthwaite et al., 2005). In addition, the older leaf blades accumulate higher 

concentration of toxic ions and more sensitive to salinity than the younger leaf blades 

(Garthwaite et al., 2005). In maize, an NADP-malic enzyme (NADP-ME) type C4 plants that 

possesses deferential of MC and BSC chloroplasts due to the varies of abundant in chloroplasts 

genes transcript as leaves develop (Sharpe et al., 2011), the MC were relatively more sensitive 

to salinity than chloroplasts in BSC (Hasan et al., 2005). Some investigators revealed that the 

damage of chloroplasts in the plants exposed to salinity is caused by oxidative stress that is 

mediated by ROS (Hernandez et al., 2001; Yamane et al., 2004a). However, there is no 

information about the cellular accumulation of toxic ions especially Na and Cl in MC and BSC 

and its relation to differential sensitivity of MC and BSC chloroplasts to salinity in maize plants. 

Therefore, the present study investigated the cellular localization of Cl and H2O2 in MC and 

BSC in maize plants exposed to salinity. Our results showed that the content of Cl in MC and 

BSC was relatively comparable, while H2O2 in MC was higher than in BSC. 

 

MATERIALS AND METHODS 

 

1. Plant materials 

Maize (Zea mays L. ‘Golden Bantam’) plants were grown as described previously 

(Hasan et al., 2005). The salt treatment was started when the second leaf blades (coleoptile was 

numbered as leaf zero) of the plants were fully developed. The plants were daily supplied with 

50 ml of dw (control) or 3% NaCl solutions. Five days after the start of NaCl treatment at which 

the visible symptoms were shown in the plants treated with 2 and 3% NaCl, the samples were 

taken to analyze Cl and H2O2 localization in the leaf tissue. 

 

2. X-ray microanalysis 
Cellular distribution of Cl was analyzed in the second leaf blades of control and 3% 

NaCl-treated plants. Samples were cut and immediately frozen in liquid nitrogen subsequently 

transferred to a freezing device (OKA Science Co.) overnight. The temperature was started from 

about of -75 
0
C and gradually increased until the temperature of 25 

0
C (room temperature) was 

reached.Then, the freeze-driedsamples were taken from the freezing device and sliced free hand 

transversely with a razor blade. The sections were mounted on a stub and coated with gold in a 

vacuum sputter coater. The coated specimens were analyzed in a Hitachi-4500 scanning electron 

microscope (SEM) fitted with an energy-dispersive X-ray microanalyzer (Horiba). Counts per 

second of chloride ion were measured in a transverse section of leaf blades and root from 

control and NaCl-treated plants. 
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3. Histochemical detection of H2O2  

H2O2 was visually detected in the leaves of plants by using 3,3-diamino-benzidine 

(DAB) as substrate (Thordal-Christensen, 1997). Fully developed second leaf blades were 

excised from the plant at the base of leaves with a razor blade, placed in distilled water for 1 h 

to avoid wounding stress then placed in 1 mg/ml solution of DAB (pH 3.8) for 8 h in light at 25 
O
C, and then exposed to distilled water or 200 mM NaCl. After these treatments, the leave 

blades were decolorized by immersion of leaves in boiling ethanol (96%) for 10 min. Then, 

samples were transferred to a new cool ethanol (96%). After cooling, the leaves were extracted 

at room temperature with fresh ethanol and photographed. H2O2 was visualized as a reddish-

brown coloration of the leaf blades. 

 

4. Cytochemical localization of H2O2 

Cytochemical detection of H2O2 was conducted by CeCl3 staining. Small portions (1x2 

mm) of the middle part of the second leaf of control and the plants treated with 3% NaCl for 5 h 

were incubated in freshly prepared 5 mM CeCl3 in in 50 mM 3-(N-morpholino) propanesulfonic 

acid (Mops) at pH 7.2 for 1 h (Bestwick et al. 1997). The samples were then fixed in 5% 

glutaraldehyde in 0.05 M phosphate buffer (pH 7.2), post-fixed in 2% osmium tetroxide in the 

same buffer, dehydrated with graded acetone series and propylene oxide, embedded in Spurr’s 

resin and polymerized at 70 
O
C for 24 h (Hasan et al. 2005). Sections were cut (80-90 nm) with 

a diamond knife on an Ultracut-N microtome (Reichert-Nissei), mounted on a 200 mesh grid 

and stained with uranyl acetate and lead citrate solutions. Thereafter, sections were examined 

with a transmission electron microscope (Hitachi H-7500, Tokyo) at an accelerating voltage of 

100 kV. The localization of H2O2 was detected as electron dense of cerium perhydroxide 

precipitates.  

 

RESULTS AND DISCUSSION 

 

1. X-ray microanalysis 

Transverse sections of the leaf blades were scanned by X-ray microanalysis. Data from 

both line and map scanning show that Cl accumulation was greatly higher in the plants treated 

with NaCl compared to control (Fig. 1 and 2). Comparison of Cl accumulation between MC and 

BSC from map scanning data of leaf sections shows that Cl was distributed almost homogenous 

and comparable throughout the cell in both MC and BSC (Figs. 1A,B). Data from line scanning 

of leaf sections show that Cl distribution at the area of cell where organelles are located was 

relatively comparable in both MC and BSC (Fig. 2). 
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Figure 1. SEM images of transverse sections of leaf blade in maizewith map scanning of Cl 

distribution oncontrol (left side) and 3% NaCl treated plants (right side) 

 

 
Figure. 2 Cellular distribution of Cl from line scanning on transverse sections of leaf blades in 

maize. A. Control. B. 3% NaCl-treated plant. 

 

2. H2O2 localization 
Figure 3 shows the accumulation of H2O2 in the leaves of maize plants exposed to NaCl. 

Localization of H2O2 was indicated by dark brown polymerization as reaction with DAB in the 

presence of peroxidase (Thordal-Chrisrtensen et al., 1997). In the leaf blades of control plants 

almost no visible accumulation of H2O2 was observed. In contrast, in the leaf blades of NaCl-

treated plants, accumulation of H2O2 was clearly observed. H2O2 appeared mainly in major veins 

throughout the leaf blades (Fig. 3B). 

 

Control

  
3% NaCl 
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Cellular localization of H2O2 in MC and BSC of the leaves exposed to NaCl was shown 

in figure 4. H2O2 was detected as electron dense cerium perhydroxyde precipitates resulted from 

the reaction of H2O2 with CeCl3. In control plants, H2O2 accumulation were not detectable in 

chloroplasts of either MC or BSC (Figs. 4A,B). In NaCl-treated plants, H2O2 accumulation was 

detected in chloroplasts of both MC and BSC. The accumulation of H2O2 was relatively higher 

in MC chloroplasts (Fig. 4C) than in BSC chloroplasts (Fig. 4D). However, the accumulation of 

H2O2 in other organelles such as mitochondria and peroxisome in both MC and BSC was lower 

than in chloroplasts. The accumulation of H2O2 was also clearly detected in apoplasts in which 

relatively higher compared with the other cell compartments. The greatest accumulation of H2O2 

was observed in the cell walls of MC facing intercellular space (Figurers not shown).   

 
 

DISCUSSION 

Salinity stress has a broad physiological effect influencing many metabolic processes in 

the plant development (Zhu, 2001; Yokoi et al., 2002). In tissue or organ levels, previous 

studies have shown that the sensitivity of plants to salinity is closely related to the level of salt 

ions accumulated in the tissues or organs (Munn et al., 2002; Garthwaite., 2005). The present 

study showed that MC and BSC of the plants treated with NaCl accumulated higher Cl than that 

Fig. 3 

Histochemical detectionof H2O2 with DAB 

staining inmaize leaves. The detached 

leaves were treated withdistilled water (A) 

and 200 mM NaCl (B). 

 

A 

B 

Fig. 4 

Cytochemical detection of H2O2 localization 

(arrows) with CeCl3 staining in the chloroplasts of 

MC and BSC. A. Mesophyll chloroplast of control 

plant. B. Bundle sheath chloroplast of control 

plant. C. Mesophyll chloroplast of 3% NaCl-

treated plant. D. Bundle sheath chloroplast of 

3% NaCl-treated plant. E,F. Mesophyll and 

bundle sheath chloroplasts of 3% NaCl-treated 

plant without CeCl3 staining. Bars = 250 nm. 
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of control. However, the content of Cl in MC and BSC of NaCl-treated plants was relatively 

comparable (Figs. 1 and 2). It has been reported that MC chloroplasts are more sensitive than 

BSC chloroplasts in response to salinity (Hasan et al., 2005). The present results revealed that 

differential sensitivity between MC and BSC chloroplasts were not caused by differential 

accumulation of Cl in those cells. Less sensitivity of BSC chloroplasts than MC chloroplasts to 

salinity in maize plants may not due to the function of BSC which has higher capability than 

MC to limit Cl influx. It has been documented that excessive accumulation of salt ions mainly 

Na and Cl causes ionic imbalance and metabolic damages of the cells (Hasegawa et al., 2000). 

In addition, MC and BSC in maize have different biochemical properties such as the content of 

antioxidants and photosynthetic enzymes (von Caemmerer and Furbank, 2003). Therefore, it is 

suggested that physiological processes following the accumulation of salt ions are different 

between MC and BSC.   

ROS generation such as O2
-
, H2O2 and 

.
OH are a major characteristic of biochemical 

changes of the plants in response to environmental stresses including salt stress (Alscher et al., 

1997; Mittler, 2002; Neill et al., 2002). ROS in high concentration is highly toxic and can alter 

normal cellular metabolism through oxidative damage to lipids, proteins and nucleic acids 

(Alscher et al., 1997; Imlay, 2003). In the present study, H2O2 was detected histochemically 

with DAB and cytochemically with CeCl3, the methods which have been widely used to detect 

H2O2 generated in plant tissues in response to either biotic or abiotic stresses (Bestwick et al., 

1997; Thordal-Christensen et al., 1997; Pellinen, 1999). Histochemical detection using DAB 

showed that NaCl induces H2O2 generation and can be detected visually (Fig. 3). Ultrastructural 

observation on cellular localization of H2O2 with CeCl3 revealed that H2O2 in MC chloroplasts 

was higher than in BSC chloroplasts (Figs. 4C,D), while those cells accumulated comparable Cl 

(Figs. 1 and 2). Differential accumulation of H2O2 in MC and BSC chloroplasts may be one of 

the factors which made MC chloroplasts more sensitive and show severe damage by salinity 

than BSC chloroplasts (Hasan et al, 2005). Although the mechanism of ROS generation under 

salinity in plants is still not clear, several reports from studies on salinity stress have suggested 

that high concentration of ROS is induced by excessive accumulation of salt ions. Mitsuya et al. 

(2003) proposed that chloroplast damages induced by salinity is not caused by high 

accumulation salt ions directly but through oxidative stress mediated by overproduction of ROS. 

Blokhina et al. (2003) proposed that the extent of oxidative stress in the plants exposed to 

salinity is determined by the amounts of ROS.  

The detection of higher H2O2 in MC than in BSC has also been reported in maize plants 

exposed to the unfavorable low temperature condition (Pastori et al., 2000). These results may 

be associated with the fact that MC and BSC chloroplasts in maize are different, both 

structurally and physiologically. MC chloroplasts have well-developed grana and both PSI and 

PSII activities. In contrast, BSC chloroplasts have reduced grana and a very low activity of PSII 

and are limited for non-cyclic electron flow. Therefore MC chloroplasts may have higher 

potential to generate H2O2and the other ROS under unfavorable condition such as salinity stress. 

It has been suggested that generation of ROS is caused by light-dependent processes associated 

with photosynthesis and photorespiration (Foyer and Noctor, 2003). It the chloroplasts, ROS can 

be formed either at the reducing site of PSI in the non-cyclic electron transport or at the acceptor 

site of PSII as the result of passing electrons from quinone to O2 (Polle, 1996). 

Another factor possibly caused differential H2O2 generation in MC and BSC 

chloroplasts in response to salinity is ROS scavenger system belonging to MC and BSC in 

maize leaves. It has been documented that antioxidants are differentially distributed between 

MC and BSC in maize leaves. Glutathione reductase and dehydroascorbate reductase were 

almost exclusively localized in MC, whereas ascorbate, ascorbate peroxidase, and superoxide 

dismutase were largely absent from MC. Catalase, reduced glutathione, and 

monodehydroascorbate reductase were found to be approximately equally distributed between 
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MC and BSC (Pastori et al., 2000). Although the mechanism is still not well understood, it has 

been documented that low temperature causes the changes of distribution of these antioxidants 

between MC and BSC chloroplasts. However, the distribution of antioxidants in the leaves of C4 

plants exposed to salinity has not been documented and needed further investigation. 

The localization of H2O2 in mitochondria and peroxisomes were not detected with 

CeCl3 staining in this study. Foyer and Noctor (2003) reported that H2O2 generation in the 

mitochondria of photosynthetic tissues is very low (<216 nmol.m
-2

.s
-1

), whereas in the 

chloroplast is about 4030 nmol.m
-2

.s
-1

. It has been reported that H2O2 concentration in intact 

mitochondria purified from pea leaf was not apparently altered by salinity (Hernandez et al., 

2001). Peroxisome is thought to produce H2O2 at high rates through several reactions, including 

oxidation of long chain fatty acids and glycolate oxidase. However to overcome this condition 

peroxisome has a very high antioxidant capacity, notably including catalase but also APX and 

other enzymes of the ascorbate glutathione system (Jimenez et al. 1997).  

 Salinity induces overproduction of H2O2 in the apoplasts. The greatest accumulation of 

H2O2 was observed in the cell walls of MC facing to the large intercellular space. Similar 

localization of H2O2has also been documented in the cell of plants in response to air pollutant, 

wounding and pathogen attack (Pellinen et al., 1999; Orozco-Cardenaz et al., 2001). Some 

sources of H2O2 production in the apoplast such as plasma membrane bound-NADPH oxidase, 

cell wall peroxidase, extracellular peroxidase and amine oxidase are involved in the production 

of apoplastic H2O2 induced by biotic and abiotic stresses (Vranova et al., 2002; Mittler et al., 

2002). It is considered that H2O2 have dual role in physiological processes; as signaling factor 

and oxidative stress (Alcher et al., 2002; Foyer and Noctor, 2003). H2O2 has half-life about of 1 

ms, relatively longer than other ROS such as O2
-
 (2-4 µs) and 

.
OH (<1 µs) and can diffuse for a 

considerable distance from its production site to other cell compartments (Vranova et al., 2002). 

In the present study, high accumulation of H2O2 in apoplasts of MC and BSC in maize plants 

exposed to salinity may be due to the fact that apoplasts have a relatively low ROS scavenger 

system compared with other cell compartments (Neill et al., 2002). This response may not be 

connected with defense systems to localize and restrict the area of tissue damage such as those 

reported in hypersensitive response or pathogen attack (Orozco-Cardenaz et al., 2001), but may 

rather reflect changes in oxidative balance in the cells that affects the homeostasis of the whole 

cell (Pellinen et al., 1999; Hu et al., 2005). 

  
CONCLUSION 

 The present study suggested that differential sensitivity of MC and BSC chloroplasts in 

maize plants exposed to salinity may be associated with differential H2O2 generation which 

induces oxidative damage preferably in MC chloroplasts. Less sensitivity of BSC chloroplasts 

to salinity compared to MC chloroplasts may not be due to a mechanism which controls salt 

ions to enter MC and BSC.  
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